Abstract
The structure of the pork sector in world economy is changing. In many countries the number of pig farms is being reduced, while the herd size of the remaining ones is increasing. Pig production process is partitioned into different phases with specialized farms devoted to piglet production, rearing or fattening pigs are common instead of old farrowing-to-fattening farms. Pig farms have tended to be integrated and coordinate their operations into pork supply chains by using tighter vertical coordination linkages. This paper presents a description of the pork supply chain, stressing the role of pig farming as one of the key issues to improve pork supply chain efficiency. A survey of literature to support the decision making on the pork sector has revealed that most papers had only considered individual farm operations, while the pork supply chain management involves the coordination of sets of farm units at different stages of production. Thus, our contribution emphasizes the importance and complexity of new decision-making tasks regarding the modern organization of the pork sector. All these elements make it possible to envisage new opportunities for operations research methods to be successfully applied to the pork supply chain. Likewise, we have identified some existing gaps in the literature that we believe should be addressed in the near future.



Similar content being viewed by others
References
Allen, M. A., & Stewart, T. S. (1983). A simulation model for a swine breeding unit producing feeder pigs. Agricultural Systems, 10, 193–211.
Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: a review. European Journal of Operational Research, 196(1), 1–20.
Backus, G., & Dijkhuizen, A. A. (2002). Kernkamp lecture: the future of the European pork chain. In Allen D. Leman swine conference, Minnesota, USA (pp. 8–11).
Bailleul, P. J. D., Bernier, J. F., van Milgen, J., Sauvant, D., & Pomar, C. (2000). The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. In J. P. McNamara, J. France, & D. Beever (Eds.), Modelling nutrient utilization in farm animals (pp. 379–392). Wallingford: CABI Publishing.
Balogh, P., Ertsey, I., Fenyves, V., & Nagy, L. (2009). Analysis and optimization regarding the activity of a Hungarian pig sales and purchased cooperation. Studies in Agricultural Economics, 109, 35–54.
Bloemhof, J. M., Smeets, C. M., & van Nunen, J. A. E. E. (2004). Supply chain optimization in animal husbandry. Erasmus Research Institute of Management. In B. Fleischmann & A. Klose (Eds.), Lecture notes in econometrics and mathematical systems: Vol. 544. Distribution logistics; advanced solutions to practical problems (pp. 47–64). Berlin: Springer.
Boland, M. A., Preckel, P. V., & Schinckel, A. P. (1993). Optimal hog slaughter weights under alternative pricing systems. Journal of Agriculture and Applied Economics, 25(2), 148–163.
Boys, K. A., Li, N., Preckel, P. V., Schinckel, A. P., & Foster, K. A. (2007). Economic replacement of a heterogeneous herd. American Journal of Agricultural Economics, 89, 24–35.
Broek, J. V. D., Schütz, P., Stougie, L., & Tomasgard, A. (2006). Location of slaughterhouses under economies of scale. European Journal of Operational Research, 175(2), 740–750.
Broekmans, J. E. (1992). Influence of price fluctuations on delivery strategies for slaughter pigs. Dina Nota, 7, 1–24.
Bookbinder, J. H., & Matuk, T. A. (2009). Logistics and Transportation in Global Supply Chains: Review, Critique, and Prospects. In Tutorials in Operations Research INFORMS (pp. 182–211). ISBN 978-1-877640-24-7.
Cachon, G. (2003). Supply chain coordination with contracts. In S.G. deKok (Ed.), Handbooks in operations Research and Management Science: Supply Chain Management, Amsterdam: North-Holland. Chap. 11.
Chavas, J. P., Kliebenstein, J., & Crenshaw, J. D. (1985). Modeling dynamical agricultural production response: the case of swine production. American Journal of Agricultural Economics, 67(3), 636–646.
Christopher, M. (1998). Logistics and supply chain management. strategies for reducing cost and improving service. London: Prentice Hall.
Chopra, S., & Meindl, P. (2007). Supply chain management: strategic, planning and operation. Upper Saddle River: Prentice-Hall.
Christou, I. T. (2012). Quantitative methods in supply chain management. models and algorithms. London: Springer.
Dijkhuizen, A. A., Morris, R. S., & Morrow, M. (1986). Economic optimization of culling strategies in swine breeding herds, using the “PORKCHOP computer program”. Preventive Veterinary Medicine, 4, 341–353.
Faostat (2012). Statistics of livestock primary in the section of Production. Downloadable from the webpage http://faostat.fao.org/site/573/default.aspx#ancor. Last access February 23th, 2012.
Filho, K. E. (2004). Supply chain approach to sustainable beef production from a Brazilian perspective. Livestock Production Science, 90, 53–61.
Gribkovskaia, I., Gullberg, B. O., Hovden, K., & Wallance, S. W. (2006). Optimization model for a livestock collection problem. International Journal of Physical Distribution & Logistics Management, 36(2), 136–152.
Higgins, A. J., & Laredo, L. A. (2006). Improving harvesting and transport planning within a sugar value chain. Journal of the Operational Research Society, 57(4), 367–376.
Higgins, A. J., Miller, C. J., Archer, A. A., Ton, T., Fletcher, C. S., & McAllister, R. R. J. (2009). Challenges of operations research practice in agricultural value chains. Journal of the Operational Research Society, 61, 964–973.
Hobbs, J. E., Kerr, W. A., & Klein, K. K. (1998). Creating international competitiveness through supply chain management: Danish pork. Supply Chain Management: An International Journal, 3(2), 68–78.
Hobbs, J. E., & Young, L. M. (2000). Closer vertical co-ordination in agri-food supply chains: a conceptual framework and some preliminary evidence. Supply chain Management: An International Journal, 5(3), 131–143.
Huirne, R. B., Dijkhuizen, A. A., Van Beek, P., & Hendriks, Th. H. B. (1993). Stochastic dynamic programming to support sow replacement decisions. European Journal of Operational Research, 67, 161–171.
Jalving, A. W., Dijkhuizen, A. A., & van Arendonk, J. A. M. (1992). Dynamic probabilistic modelling of reproduction and management in sow herds. General aspects and model description. Agricultural Systems, 39, 133–152.
Jørgensen, E. (1993). The influence of weighing precision on delivery decision in slaughter pig production. Acta Agriculture Scandinavica, Section A, Animal Science, 43, 181–189.
Khamjan, S., Piewthongngam, K., & Pathumnakul, S. (2013). Pig procurement plan considering pig growth and size distribution. Computers & Industrial Engineering, 64(4), 886–894.
Kamp, J. A. L. M. (1999). Knowledge based systems: from research to practical application: pitfalls and critical success factors. Computers & Electronics in Agriculture, 22(2–3), 243–250.
Kohls, R. L., & Uhl, J. N. (2002). Marketing of agricultural products (9th ed.). Upper Saddle River: Prentice Hall.
Krieter, J. (2002). Evaluation of different pig production systems including economic, welfare and environmental aspects. Archiv für Tierzucht, 45(3), 223–235.
Kristensen, A. R., Jørgensen, E., & Toft, N. (2012). Herd Management Science. II. Advanced topics http://www.prodstyr.ihh.kvl.dk/vp/2011/book.htm. Academic Books ISBN: 9788763461214.
Kristensen, A. R., & Søllested, T. A. (2004a). A sow replacement model using Bayesian updating in a three-level hierarchic Markov process I. Biological model. Livestock Production Sciences, 87, 13–24.
Kristensen, A. R., & Søllested, T. A. (2004b). A sow replacement model using Bayesian updating in a three-level hierarchic Markov process II. Optimization model. Livestock Production Sciences, 87, 25–36.
Kristensen, A. R., Nielsen, L., & Hielsen, M. S. (2012). Optimal slaughter pig marketing with emphasis on information from on-line live weight assessment. Livestock Science, 145, 95–108.
Kure, H. (1997). Marketing Management support in slaughter pig production. Ph.D. dissertation, Department of Animal Science and Animal Health, The Royal Veterinary and Agricultural University, Copenhagen.
Liang, J., Fabiosa, J. F., Jensen, H. H., & Miller, G. Y. (2010). Potential HPAI shocks and welfare implications of market power in the US broiler industry. Agricultural and Applied Economics Association. Joint Annual Meeting, Denver, Colorado.
Manzini, R., & Gebennini, E. (2008). Optimization models for the dynamic facility location and allocation problem. International Journal of Production Research, 46(8), 2061–2086.
Marsh, W. E. (1986). Economic decision making on health and management livestock herds: examining complex problems through computer simulation. Ph.D. Dissertation, University of Minnesota, St. Paul.
Martel, G., Dedieu, B., & Dourmad, J. Y. (2008). Simulation of sow herd dynamics with emphasis on performance and distribution of periodic task events. Journal of Agricultural Science, 146, 365–380.
Martinez, S. W., & Reed, A. (1996). From farmers to consumers. Vertical coordination in the food Industry. Economic Research Service. Report, No. 720, USDA, Washington.
McCown, R. L. (2002). Locating agricultural decision support systems in the troubled past and sociotechnical compexity of ‘models for management’. Agricultural Systems, 74(1), 11–25.
Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—a review. European Journal of Operational Research, 119, 14–34.
Min, H., & Zhou, G. (2002). Supply chain modelling: past, present and future. Computers & Industrial Engineering, 43, 231–249.
Nadal, E., & Plà, L. M. (2013). Optimal planning of pig transfers along a pig supply chain by a mixed integer linear programming model. Submitted to the Journal of the Operational Research Society.
Niemi, J. K. (2006). A dynamic programming model for optimizing feeding and slaughter decisions regarding fattening pigs. Agricultural and Food Science, 15, 6–121.
Ohlmann, J. W., & Jones, P. C. (2011). An integer programming model for optimal pork marketing. Annals of Operations Research, 190(1), 271–287.
Oppen, J., & Løkketangen, A. (2008). A tabu search approach for the livestock collection problem. Computers & Operations Research, 35(10), 3213–3229.
Oppen, J., Løkketangen, A., & Desrosiers, J. (2010). Solving a rich vehicle routing and inventory using column generation. Computers & Operations Research, 37(7), 1308–1317.
Ouden, M., Dijkhuizen, A. A., Huirne, R. B. M., & Zuurbier, P. J. P. (1996). Vertical cooperation in agricultural production marketing chains, with special reference to product differentiation in pork. Agribusiness, 12, 277–290.
Ouden, M., Huirne, R. B. M., Dijkhuizen, A. A., & van Beek, P. (1997a). Economic optimization of pork production-marketing chains: II. Modelling outcome. Livestock Production Science, 48, 39–50.
Ouden, M., Nijsing, J. T., Dijkhuizen, A. A., & Huirne, R. B. M. (1997b). Economic optimization of pork production-marketing chains: I. Model input on animal welfare and cost. Livestock Production Science, 48, 23–37.
Perez, C., de Castro, R., & Font i Furnols, M. (2009). The pork industry: a supply chain perspective. British Food Journal, 111(3), 257–274.
Perez, C., de Castro, R., Simons, D., & Gimenez, G. (2010). Development of lean supply chains: A case study of the Catalan pork sector. Supply Chain Management, 11:271–280.
Pettigrew, J. E., Cornelius, S. G., Eidman, V. R., & Moser, R. L. (1986). Integration of factors affecting sow efficiency: a modelling approach. Journal of Animal Science, 63, 1314–1321.
Plà-Aragonés, L. M., Rodríguez-Sánchez, S. V., & Rebillas-Loredo, V. (2013, accepted). A mixed integer linear programming model for optimal delivery of fattened pigs to the abattoir. Journal of Applied Operations Research.
Plà, L. M. (2006). Tactical supply chain model of pig production. Proceedings of the Second Meeting of the EURO Working group on Operational Research (OR) in Agriculture and Forest Management. Journal of Agricultural Science, 144(5), 467–472.
Plà, L. M. (2007). Review of mathematical models for sow herd management. Livestock Science, 106, 107–119.
Plà, L. M., Conde, J., & Pomar, J. (1998). Sow model for decision aid at farm level. In F. J. Giron (Ed.), Applied decision analysis, Boston: Kluwer Academic.
Plà, L. M., Pomar, C., & Pomar, J. (2003). A Markov decision sow model representing the productive lifespan of sows. Agricultural Systems, 76, 253–272.
Plà, L. M., Faulin, J., & Rodriguez, S. V. (2009). A linear programming formulation of a semi-Markov model to design pig facilities. Journal of the Operational Research Society, 60(5), 619–625.
Plà, L. M., Sandars, D., & Higgins, A. (2013, accepted). A perspective on Operational Research prospects for agriculture. Journal of Operational Research Society. doi:10.1057/jors.2913.45
Pibernik, R., & Sucky, E. (2007). An approach to inter-domain master planning in supply chains. International Journal of Production Economics, 108, 200–212.
Pomar, C., Harris, D. L., & Minvielle, F. (1991). Computer simulation model of swine production systems: III. A dynamic herd simulation model including production. Journal of Animal Science, 69, 2822–2836.
Rodriguez, S. V., Albornoz, V., & Plà, L. M. (2009). A two stage stochastic programming model for scheduling replacements in sow farms. TOP, 17(1), 171–179.
Rodriguez, S. V. (2010). Models under uncertainty to support sow herd management in the context of the Pork Supply Chain Supply. Ph.D. Dissertation, Department of Mathematics. University of Lleida, Spain.
Rodriguez, S. V., Jensen, T., Plà, L. M., & Kristensen, A. (2011). Optimal replacement policies and economic value of clinical observations in sow herd. Livestock Science, 138, 207–219.
Roo, G. (1987). A stochastic model to study breeding schemes in a small pig population. Agricultural Systems, 25, 1–25.
Singh, D. (1986). Simulation of swine herd population dynamics. Agricultural Systems, 22, 157–183.
Stadler, H. (2005). Supply chain management and advanced planning-basics, overview and challenges. European Journal of Operational Research, 163, 575–588.
Schütz, P., Stougie, L., & Tomasgard, A. (2008). Stochastic facility location with general long-run costs and convex short-run costs. Computers & Operations Research, 35(9), 2988–3000.
Schütz, P., Tomasgard, A., & Ahmed, S. (2009). Supply chain design under uncertainty using sample average approximation and dual decomposition. European Journal of Operational Research, 199(2), 409–419.
Taylor, D. H. (2006). Strategic consideration in the development of lean agri-food supply chains: a case study of the UK pork sector. Supply Chain Management: An International Journal, 11(3), 271–280.
Tess, M. W., Bennett, G. L., & Dickerson, G. E. (1983). Simulation of genetic changes in life cycle efficiency of pork production. I. A bioeconomic model. Journal of Animal Science, 56, 336–353.
Toft, N. (1998). The dynamic aspect of the reproductive performance in the sow herd. Dina Notat No. 70.
Trienekens, J., Petersen, B., Wognum, N., & Brinkmann, D. (2009). European pork chains. In Diversity and quality challenges in consumer-oriented production and distribution, Wageningen Academic: Wageningen. ISBN 978-90-8686-103-3.
Upton, M. (1989). Livestock productivity assessment and herd growth models. Agricultural Systems, 29, 149–164.
van der Gaag, M., Vos, F., Saatkamp, H. W., van Boven, M., van Beek, P., & Huirne, R. B. M. (2004). A state-transition simulation model for the spread of salmonella in the pork supply chain. European Journal of Operational Research, 156, 782–798.
van der Vorst, J. G. A. J., da Silva C. A, & Trienekens, J. H. (2007). Agro-industrial supply chain Management: Concepts and applications. Food and Agriculture Organization of the United Nations, Rome. Agricultural Management, Marketing and Finance, 17.
Whittemore, C. T., & Kyriazakis, I. (2006). Whittemore’s science and practice of pig production. London: Blackwell.
Acknowledgements
The authors appreciate the financial help from the Working Community of the Pyrenees in the development of this research (code IIQ13172.RI1-CTP09-R2). Sara V. Rodriguez acknowledges the Mexican Mathematical Society-Sofia Kovalevskaia Foundation, the project NPTC founded by PROMEP PROMEAP/103.5/11/4330, and the AMC-FUMEC for the grant received during the development of this work. Lluis M. Plà wishes to acknowledge the financial support of the Spanish Research Program (MTM2005-09362-C03-02, AGL2009-12026 and MTM2009-14087-C04-01). Javier Faulin wants also to recognize the financial aid of the Spanish Ministry of Science with the project TRA2010-21644-C03-01 and the support of the Research Network “Sustainable TransMET” funded by the Government of Navarre (Spain) in the Program “Jerónimo de Ayanz”.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Rodríguez, S.V., Plà, L.M. & Faulin, J. New opportunities in operations research to improve pork supply chain efficiency. Ann Oper Res 219, 5–23 (2014). https://doi.org/10.1007/s10479-013-1465-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-013-1465-6