Skip to main content

Advertisement

Log in

A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We propose a novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting. Our method is based on the principles of “data-characteristic-based modeling” and “decomposition and ensemble”. The model improves on existing decomposition ensemble learning techniques (with “decomposition and ensemble”) by using “data-characteristic-based modeling” to forecast the decomposed modes. Ensemble empirical mode decomposition is first used to decompose the original nuclear energy consumption data into a series of comparatively simple modes, reducing the complexity of the data. Then, the extracted modes are thoroughly analyzed to capture hidden data characteristics. These characteristics are used to determine appropriate forecasting models for each mode. Final forecasts are obtained by combining these predicted components using an effective ensemble tool, such as least squares support vector regression. For illustration and verification purposes, we have implemented the proposed model to forecast nuclear energy consumption in China. Our numerical results demonstrate that the novel method significantly outperforms all considered benchmarks. This indicates that it is a very promising tool for forecasting complex and irregular data such as nuclear energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Khader, M. M. (2009). Recent advances in nuclear power: A review. Progress in Nuclear Energy, 51(2), 225–235.

    Article  Google Scholar 

  • Beck, R., & Solow, J. L. (1994). Forecasting nuclear power supply with Bayesian autoregression. Energy Economics, 16(3), 185–192.

    Article  Google Scholar 

  • Besmann, T. M. (2010). Projections of US GHG reductions from nuclear power new capacity based on historic levels of investment. Energy Policy, 38(5), 2431–2437.

    Article  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (2nd ed.). San Francisco: Holden Day.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1987). Time series: Theory and methods. New York: Springer.

    Book  Google Scholar 

  • Chang, C. C. (2010). A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Applied Energy, 87(11), 3533–3537.

    Article  Google Scholar 

  • Choi, T. M., Yu, Y., & Au, K. F. (2011). A hybrid SARIMA wavelet transform method for sales forecasting. Decision Support Systems, 51(1), 130–140.

    Article  Google Scholar 

  • Comsan, M. N. H. (2010). Nuclear electricity for sustainable development: Egypt a case study. Energy Conversion and Management, 51(9), 1813–1817.

    Article  Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427–431.

    Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unitroot. Econometrica, 49, 1057–1072.

    Article  Google Scholar 

  • Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistic, 13(3), 253–263.

    Google Scholar 

  • Edelman, D. (2007). Adapting support vector machine methods for horserace odds prediction. Annals of Operations Research, 151(1), 325–336.

    Article  Google Scholar 

  • Eynard, J., Grieu, S., & Polit, M. (2011). Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption. Engineering Applications of Artificial Intelligence, 24(3), 501–516.

    Article  Google Scholar 

  • Fang, Y., Park, J. I., Jeong, Y. S., Jeong, M. K., Baek, S. H., & Cho, H. W. (2011). Enhanced predictions of wood properties using hybrid models of PCR and PLS with high-dimensional NIR spectral data. Annals of Operations Research, 190(1), 3–15.

    Article  Google Scholar 

  • Ghorashi, A. H. (2007). Prospects of nuclear power plants for sustainable energy development in Islamic Republic of Iran. Energy Policy, 35(3), 1643–1647.

    Article  Google Scholar 

  • Glover, F., Klingman, D., & Phillips, N. V. (1989). A network-related nuclear power plant model with an intelligent branch-and-bound solution approach. Annals of Operations Research, 21(1), 317–331.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.

    Article  Google Scholar 

  • Hochbaum, D. S., & Fishbain, B. (2011). Nuclear threat detection with mobile distributed sensor networks. Annals of Operations Research, 187(1), 45–63.

    Article  Google Scholar 

  • Hornik, K., Stinchocombe, M., & White, H. (1989). Multilayer feedforward networks are universal ap-proximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., & Long, S. R. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A, 454, 903–995.

    Article  Google Scholar 

  • Jammazi, R., & Aloui, C. (2012). Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, 34(3), 828–841.

    Article  Google Scholar 

  • Janjarasjitt, S., Scher, M. S., & Loparo, K. A. (2008). Nonlinear dynamical analysis of the neonatal EEG time series: The relationship between sleep state and complexity. Clinical Neurophysiology, 119, 1812–1823.

    Article  Google Scholar 

  • Jewell, J. (2011). Ready for nuclear energy: An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39(3), 1041–1055.

    Article  Google Scholar 

  • Jiao, T. S., Peng, J. M., & Terlaky, T. (2009). A confidence voting process for ranking problems based on support vector machines. Annals of Operations Research, 166(1), 23–38.

    Article  Google Scholar 

  • Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review, 45(6), 3403–3411.

    Article  Google Scholar 

  • Kusiak, A., & Wei, X.P. (2011). Prediction of methane production in wastewater treatment facility: A data-mining approach. Annals of Operations Research. doi:10.1007/s10479-011-1037-6.

  • Li, J. P., Tang, L., Yu, L. A., He, W., Yang, Y. Y., & Sun, X. L. (2012). Country risk forecasting for major oil-exporting countries: A decomposition hybrid approach. Computers and Industrial Engineering, 63(3), 641–651.

    Article  Google Scholar 

  • Nelson, C. R., & Plosser, C. I. (1982). Trends and random walks in macroeconomics time series: Some evidence and implications. Journal of Monetary Economics, 10, 139–162.

    Article  Google Scholar 

  • Osowski, S., & Garanty, K. (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence, 20(6), 745–755.

    Article  Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(3), 712–716.

    Article  Google Scholar 

  • Partal, T., & Kişi, O. (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342(15), 199–212.

    Article  Google Scholar 

  • Sun, X. L., Li, J. P., Wu, D. S., & Yi, S. L. (2011). Energy geopolitics and Chinese strategic decision of the energy supply security: A multiple-attribute analysis. Journal of Multi-Criteria Decision Analysis, 18, 151–160.

    Article  Google Scholar 

  • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  Google Scholar 

  • Tang, L., Yu, L. A., Liu, F. T., & Xu, W. X. (2013). An integrated data characteristic testing scheme for complex time series data exploration. International Journal of Information Technology and Decision Making, 12(3), 491–521.

    Article  Google Scholar 

  • Tang, L., Yu, L. A., Wang, S., Li, J. P., & Wang, S. Y. (2012). A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Applied Energy, 93, 432–443.

    Article  Google Scholar 

  • Tuyttens, D., Pirlot, M., Teghem, J., Trauwaertand, E., & Lidgeois, B. (1994). Homogeneous grouping of nuclear fuel cans through simulated annealing and tabu search. Annals of Operations Research, 50, 575–607.

    Article  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

    Book  Google Scholar 

  • Wang, S., Yu, L. A., Tang, L., & Wang, S. Y. (2011). A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy, 36(11), 6542–6554.

    Article  Google Scholar 

  • Wang, S. Y., Yu, L., & Lai, K. K. (2005). Crude oil price forecasting with TEI@I methodology. Journal of Systems Sciences and Complexity, 18(2), 145–166.

    Google Scholar 

  • White, H. (1990). Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks, 3, 535–549.

    Article  Google Scholar 

  • Wu, Z., & Huang, N. E. (2004). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Centre for Ocean-Land-Atmosphere Studies, Technical Report No. 193. 51.

  • Yan, Q., Wang, A. J., Wang, G. S., Yu, W. J., & Chen, Q. S. (2011). Nuclear power development in China and uranium demand forecast: Based on analysis of global current situation. Progress in Nuclear Energy, 53(6), 742–747.

    Article  Google Scholar 

  • Yu, L. A. (2012). An evolutionary programming based asymmetric weighted least squares support vector machine ensemble learning methodology for software repository mining. Information Sciences, 191, 31–46.

    Article  Google Scholar 

  • Yu, L. A., & Yao, X. (2013). A total least squares proximal support vector classifier for credit risk evaluation. Soft Computing, 17(4), 643–650.

    Article  Google Scholar 

  • Yu, L. A., Wang, S. Y., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, 30(5), 2623–2635.

    Article  Google Scholar 

  • Zhang, X., Lai, K. K., & Wang, S. Y. (2008). A new approach for crude oil price analysis based on empirical mode decomposition. Energy Economics, 30(3), 905–918.

    Article  Google Scholar 

  • Zhou, Y. (2010). Why is China going nuclear? Energy Policy, 38(7), 3755–3762.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Science Fund for Distinguished Young Scholars (NSFC No. 71025005), the National Natural Science Foundation of China (NSFC No. 71301006, 71201054 and 91224001), and the Fundamental Research Funds for the Central Universities in BUCT (Project No. ZY1320 and ZZ1315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wang, S., He, K. et al. A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting. Ann Oper Res 234, 111–132 (2015). https://doi.org/10.1007/s10479-014-1595-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1595-5

Keywords

Navigation