Skip to main content
Log in

Time-dependent and independent control rules for coordinated production and pricing under demand uncertainty and finite planning horizons

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We address the effect of uncertainty on a manufacturer’s dynamic production and pricing decisions over a finite planning horizon. The demand for products, which depends on their price, is characterized by two stochastic processes: potential demand and customer price sensitivity. An optimal policy for coordinating production and pricing is a time-dependent feedback rule with respect to the state of the manufacturer’s inventories. We show that when the volatility of customer sensitivity to the product price is negligible, the optimal policy can be obtained analytically. Moreover, our simulations demonstrate that the volatility of stochastic customer price sensitivity does not have a strong effect on the manufacturer’s expected profit. Therefore, the solution derived for the case of customer price sensitivity with zero volatility can serve as a good approximation heuristic for the optimal policy if the true volatility of customer price sensitivity is within 40 % of its mean and the volatility of potential demand is within 25 % of its mean. Moreover, under these conditions, a simplified, time-independent control rule deteriorates expected profits by only 1.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bertsekas, D. P. (2005a). Dynamic programming and optimal control (Vol. 1). Nashua, NH: Athena Scientific.

    Google Scholar 

  • Bertsekas, D. P. (2005b). Dynamic programming and optimal control (Vol. 2). Nashua, NH: Athena Scientific.

    Google Scholar 

  • Chakravarty, A. K. (2011). A contingent plan for disaster response. International Journal of Production Economics, 134(1), 2–15.

    Article  Google Scholar 

  • Chan, L. M. A., Shen, Z. J. M., Simchi-Levi, D., & Swann, J. L. (2004). Coordination of pricing and inventory decisions: A survey and classification. In Handbook of quantitative supply chain analysis: Modeling in the ebusiness era. Alphen aan den Rijn, Netherlands: Kluwer.

  • Chen, H., Wu, O. Q., & Yao, D. D. (2010). On the benefit of inventory-based dynamic pricing strategies. Production and Operations Management, 19(3), 249–260.

  • Chen, X., & Simchi-Levi, D. (2006). Coordinating Inventory control and pricing strategies with random demand and fixed ordering cost: The continuous review model. Operations Research Letters, 34, 323–332.

    Article  Google Scholar 

  • Desai, V. S. (1996). Interactions between members of a marketing-production channel under seasonal demand. European Journal of Operational Research under, 90, 115–141.

    Article  Google Scholar 

  • Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices and future directions. Management Science, 49(10), 1287–1309.

    Article  Google Scholar 

  • Escudero, L. F., Kamesam, P. V., King, A. J., & Wets, R. J. B. (1993). Production planning via scenario modelling. Annals of Operations Research, 43, 311–335.

    Google Scholar 

  • Freidenfelds, J. (1980). Capacity expansion when demand is a birth-death process. Operations Research, 28, 712–721.

    Article  Google Scholar 

  • Freidenfelds, J. (1981). Capacity expansion: Analysis of simple models with applications. New York, NY: North-Holland.

  • Gayon, J. P., & Dallery, Y. (2007). Dynamic vs static pricing in a make-to-stock queue with partially controlled production. Operations Research Spectrum, 29(2), 193–205.

    Article  Google Scholar 

  • Gayon, J. P., Talay, I., Karaesmen, F., & Ormeci, E. L. (2009). Optimal pricing and production policies of a make-to-stock system with fluctuating demand. Probability in the Engineering and Informational Science, 23, 205–230.

    Article  Google Scholar 

  • Gerchak, Y., & Grosfeld-Nir, A. (2004). Multiple lotsizing in production to order with random yields: Review of recent advances. Annals of Operations Research, 126(1–4), 43–69.

    Google Scholar 

  • Ghosh, M. K., Arapostathis, A., & Marcus, S. I. (1993). Optimal control of switching diffusions with application to flexible manufacturing systems. SIAM Journal of Control and Optimization, 31, 1183–1204.

    Article  Google Scholar 

  • Haurie, A. (1995). Time scale decomposition in production planning for unreliable flexible manufacturing system. European Journal of Operational Research, 82, 339–358.

    Article  Google Scholar 

  • Henig, M., & Gerchak, Y. (1990). The structure of periodic review policies in the presence of random yield. Operations Research, 38(4), 634–643.

    Article  Google Scholar 

  • Jørgensen, S., Kort, P. M., & Zaccour, G. (1999). Production, inventory, and pricing under cost and demand learning effects. European Journal of Operational Research, 117(2), 382–395.

    Article  Google Scholar 

  • Karatzas, I. (1980). Optimal discounted linear control of the Wiener process. Journal of Optimization Theory and Applications, 31(3), 431–440.

    Article  Google Scholar 

  • Karlin, S. (1958). The application of renewal theory to the study of inventory policies. In K. Arrow, S. Karlin, & H. Scarf (Eds.), Studies in the mathematical theory of inventory and production. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Khmelnitsky, E., & Caramanis, M. (1998). One-machine \(N\)-part-type optimal set-up scheduling: Analytical characterization of switching surfaces. IEEE Transactions on Automatic Control, 43(11), 1584–1588.

    Article  Google Scholar 

  • Kim, H., Lu, J. C., Kvam, P. H., & Tsao, Y. C. (2011). Ordering quantity decisions considering uncertainty in supply-chain logistics operations. International Journal of Production Economics, 134(1), 16–27.

    Article  Google Scholar 

  • Kogan, K., & Perkins, J. R. (2003). Infinite horizon production planning with periodic demand: solvable cases and a general numerical approach. IIE Transactions, 35(1), 61–71.

    Article  Google Scholar 

  • Kogan, K., & Spiegel, U. (2006). Optimal policies for inventory usage, production and pricing of fashion goods over a selling period. Journal of the Operational Research Society, 57, 304–315.

    Article  Google Scholar 

  • Kogan, K., & Tapiero, C. (2007). Supply chain games: Operations management and risk valuation. Boston, MA: Springer.

    Google Scholar 

  • Maimon, O., Khmelnitsky, E., & Kogan, K. (1998). Optimal flow control in manufacturing systems: Production planning and scheduling. Boston, MA: Kluwer.

    Book  Google Scholar 

  • Meybodi, M., & Foote, B. (1995). Hierarchical production planning and scheduling with random demand and production failure. Annals of Operations Research, 59, 259–280.

    Article  Google Scholar 

  • Mirzapour Al-e-hashem, S. J. M., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28–42.

    Article  Google Scholar 

  • Sethi, S., & Thompson, G. L. (1980). Turnpike horizons for production planning. Management Science, 26(3), 229–241.

    Article  Google Scholar 

  • Sethi, S. P., Yan, H., Zhang, H., & Zhang, Q. (2002). Optimal and hierarchical controls in dynamic stochastic manufacturing systems. Manufacturing and Service Operations Management, 4, 133–170.

    Article  Google Scholar 

  • Tapiero, C. S. (1988). Applied stochastic models and control in management. New York, NY: North Holland.

  • Wu, D., & Olson, D. L. (2010a). Enterprise risk management: Coping with model risk in a large bank. Journal of the Operational Research Society, 61, 179–190.

    Article  Google Scholar 

  • Wu, D., & Olson, D. L. (2010b). Enterprise risk management: A DEA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932.

    Article  Google Scholar 

  • Wu, O. Q., & Chen, H. (2010). Optimal control and equilibrium behavior of production-inventory systems. Management Science, 56(8), 1362–1379.

    Article  Google Scholar 

  • Wu, D., Olson, D. L., Seco, L. A., & Birge, J. R. (2011a). Introduction to the special issue on “operational research and Asia risk management”. Asia-Pacific Journal of Operational Research, 28(1), v–xi.

  • Wu, D., Olson, D. L., & Birge, J. R. (2011b). Introduction to the special issue on “Enterprise risk Management in Operations”. International Journal of Production Economics, 134(1), 1–2.

    Article  Google Scholar 

  • Yano, C. A., & Lee, H. L. (1995). Lot sizing with random yields: A review. Operations Research, 43(2), 311–334.

    Article  Google Scholar 

  • Yin, R., & Rajaram, K. (2007). Joint pricing and inventory control with a markovian demand model. European Journal of Operational Research., 182(1), 113–126.

    Article  Google Scholar 

  • Zipkin, P. (1989). Critical number polices for inventory models with periodic data. Management Science, 35(1), 71–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Herbon.

Appendices

Appendix 1

Here we detail the solution analysis of the dynamic coefficient \(a_2 (t)\). Substituting solution (20) for \(a_1 (t)\) in (21), we obtain a linear, first-order differential equation, with the general solution

$$\begin{aligned} a_2 (t)=e^{-\int {4\beta a_1 (t)} dt}\left[ {k_3 +\int {\left( {r_1 -2\alpha a_1 (t)} \right) e^{\int {4\beta a_1 (t)dt} }dt} } \right] , \end{aligned}$$
(33)

where \(a_2 (T)=0\) is the terminal condition for determining constant \(k_3 \).

In (33), \(\int {a_1 (t)dt} \) takes the following form

$$\begin{aligned} \int {a_1 (t)dt}&= \displaystyle \int \frac{\sqrt{\beta r_2 }\left( {e^{\left( {4\sqrt{\beta r_2 }} \right) t}-e^{4\sqrt{\beta r_2 }T}} \right) }{2\beta \left( {e^{\left( {4\sqrt{\beta r_2 }} \right) t}+e^{4\sqrt{\beta r_2 }T}} \right) }dt\\&= \int {\left[ {\frac{\sqrt{\beta r_2 }\left( {e^{4\sqrt{\beta r_2 }t}} \right) }{2\beta \left( {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right) }-\frac{\sqrt{\beta r_2 }\left( {e^{4\sqrt{\beta r_2 }T}} \right) }{2\beta \left( {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right) }} \right] dt} \\&= \frac{\sqrt{\beta r_2 }\ln \left[ {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right] }{2\beta \left( {4\sqrt{\beta r_2 }} \right) } \\&-\frac{\sqrt{\beta r_2 }\left( {e^{4\sqrt{\beta r_2 }T}} \right) }{2\beta }\int {\left( {\frac{1}{\left( {e^{\left( {4\sqrt{\beta r_2 }} \right) t}+e^{4\sqrt{\beta r_2 }T}} \right) }dt} \right) } \\&= \frac{\sqrt{\beta r_2 }\ln \left[ {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right] }{2\beta \left( {4\sqrt{\beta r_2 }} \right) }\\&-\frac{\sqrt{\beta r_2 }\left( {e^{4\sqrt{\beta r_2 }T}} \right) }{2\beta }\left[ {\frac{t}{e^{4\sqrt{\beta r_2 }T}}-\frac{\ln \left[ {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right] }{4\sqrt{\beta r_2 }e^{4\sqrt{\beta r_2 }T}}} \right] . \end{aligned}$$

That is,

$$\begin{aligned} \int {a_1 (t)dt} =\frac{\ln \left[ {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right] }{4\beta }-\frac{\sqrt{\beta r_2 }t}{2\beta }. \end{aligned}$$

Thus, (33) is reduced to

$$\begin{aligned} a_2 (t)&= e^{-4\beta \left[ {\frac{\ln \left[ {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right] }{4\beta }-\frac{\sqrt{\beta r_2 }t}{2\beta }} \right] }\left[ {k_3 +\int {\left( {r_1 -2\alpha a_1 (t)} \right) e^{\int {4\beta a_1 (t)dt} }dt} } \right] \\&\!= e^{\left[ {2\sqrt{\beta r_2 }t\!-\!\ln \left( {e^{4\sqrt{\beta r_2 }t}\!+\!e^{4\sqrt{\beta r_2 }T}} \right) } \right] }\left[ {k_3 \!+\!\int {\left( {r_1 \!-\!2\alpha a_1 (t)} \right) e^{4\beta \left[ {\frac{\ln \left[ {e^{4\sqrt{\beta r_2 }t}\!+\!e^{4\sqrt{\beta r_2 }T}} \right] }{4\beta }\!-\!\frac{\sqrt{\beta r_2 }t}{2\beta }} \right] }dt} } \right] \\&= \frac{e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\left[ {k_3 +\int {\left( {r_1 -2\alpha a_1 (t)} \right) \frac{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}{e^{2\sqrt{\beta r_2 }t}}dt} } \right] . \end{aligned}$$

Therefore,

$$\begin{aligned} a_2 (t)&= \frac{k_3 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}+\frac{r_1 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\int {\frac{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}{e^{2\sqrt{\beta r_2 }t}}dt} \\&-\frac{2\alpha e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\int {\left( {\frac{\sqrt{\beta r_2 }\left( {e^{\left( {4\sqrt{\beta r_2 }} \right) t}-e^{4\sqrt{\beta r_2 }T}} \right) }{2\beta \left( {e^{\left( {4\sqrt{\beta r_2 }} \right) t}+e^{4\sqrt{\beta r_2 }T}} \right) }} \right) \frac{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}{e^{2\sqrt{\beta r_2 }t}}dt} \\&= \frac{k_3 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}+\frac{r_1 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\int {\left( {e^{2\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}e^{-2\sqrt{\beta r_2 }t}} \right) dt} \\&-\frac{\alpha \sqrt{\beta r_2 }}{\beta }\frac{e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\int {\left( {e^{2\sqrt{\beta r_2 }t}-e^{4\sqrt{\beta r_2 }T}e^{-2\sqrt{\beta r_2 }t}} \right) dt} \\&= \frac{k_3 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}+\frac{r_1 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\left( {\frac{e^{2\sqrt{\beta r_2 }t}-e^{4\sqrt{\beta r_2 }T}e^{-2\sqrt{\beta r_2 }t}}{2\sqrt{\beta r_2 }}} \right) \\&-\frac{\alpha \sqrt{\beta r_2 }}{\beta }\frac{e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\left( {\frac{e^{2\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}e^{-2\sqrt{\beta r_2 }t}}{2\sqrt{\beta r_2 }}} \right) \end{aligned}$$

That is,

$$\begin{aligned} a_2 (t)=\frac{k_3 e^{2\sqrt{\beta r_2 }t}}{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}+\frac{r_1 }{e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}}\left( {\frac{e^{4\sqrt{\beta r_2 }t}-e^{4\sqrt{\beta r_2 }T}}{2\sqrt{\beta r_2 }}} \right) -\frac{\alpha }{2\beta }. \end{aligned}$$

From the terminal condition, \(a_2 (T)=0\), we have \(k_3 =\frac{\alpha e^{2\sqrt{\beta r_2 }T}}{\beta }\). Therefore,

$$\begin{aligned} a_2 (t)=\frac{1}{\left( {e^{4\sqrt{\beta r_2 }t}+e^{4\sqrt{\beta r_2 }T}} \right) }\left( {\frac{\alpha e^{2\sqrt{\beta r_2 }T}e^{2\sqrt{\beta r_2 }t}}{\beta }+r_1 \left( {\frac{e^{4\sqrt{\beta r_2 }t}-e^{4\sqrt{\beta r_2 }T}}{2\sqrt{\beta r_2 }}} \right) } \right) -\frac{\alpha }{2\beta }\nonumber \\ \end{aligned}$$
(34)

Appendix 2

Table 5 presents the set of parameters for an additional experiment.

Table 5 List of parameters

We have computed the expected profits when varying both the volatility of potential demand, \(\sigma _a \), and the volatility of customer price sensitivity, \(\sigma _b \). As in the case of the original set of parameters (Fig. 2), the curve of the expected profit is concave. The observed maximum value is 7887.15 monetary units for \(\sigma _a =0.5\) (around 5 % of the mean potential demand) and \(\sigma _b =0.02\) (around 10 % of the mean customer price sensitivity).

Similarly to Fig. 4, three different volatility modes are examined. The first mode refers to \(\sigma _a =0.5\) and \(\sigma _b =0.1\mu _b \), which result in near-optimal performance. The second mode refers to raising the volatility, \(\sigma _b \), up to 40 % of the mean, i.e., \(\sigma _a =0.5,\sigma _b =0.4\mu _b \) reflecting very high volatility of customer sensitivity to price. In the third mode the volatility, \(\sigma _a \), is set at 40 % of the mean, i.e., \(\sigma _a =4\) and \(\sigma _b =0.1\mu _b \), reflecting very high volatility of potential demand.

The difference between the profits obtained in modes 1 and 3 reflects the loss of profit due to the high volatility of potential demand. The difference between the profits obtained in modes 1 and 2 reflects the loss of profit due to the high volatility of customer price sensitivity. The higher the ratio of these differences, the lower the relative impact of the volatility of customer price sensitivity on profit as compared to the impact of the volatility of the potential demand on profit. This ratio, which is shown in Fig. 10, decreases from the factor of 4.24 for \({\mu _b }/{\mu _a }=0.005\), to 2.99 for \({\mu _b }/{\mu _a }=0.02\) (coincides with value of \({\mu _b }/{\mu _a }\) in Table 5) and then to 2.124 for \({\mu _b }/{\mu _a }=0.05\). Similarly to what was obtained for the original set, the conclusion is that the smaller the value of \({\mu _b }/{\mu _a }\), the lower the relative impact of volatility of customer sensitivity to price on the profit as compared to the impact of volatility of potential demand on the profit. Specifically, within the range of \({\mu _b }/{\mu _a }\) values [0, 0.0575], a range even larger than that obtained for the original set, the lower bound for this ratio is larger than 2, i.e., the impact of uncertainty in potential demand is two times greater than the impact of uncertainty in customer price sensitivity. Figure 10 shows that for the entire examined spectrum of ratios \({\mu _b }/{\mu _a }\), the expected profit for the cases of high volatility of potential demand is inferior to the expected profit for the cases of high volatility of customer price sensitivity.

Fig. 10
figure 10

Ratio between the profit differences for different volatilities and ratios of \({\mu _b }/{\mu _a }\) (in units of \(10^{-4})\) under the time-dependent control rule

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbon, A., Kogan, K. Time-dependent and independent control rules for coordinated production and pricing under demand uncertainty and finite planning horizons. Ann Oper Res 223, 195–216 (2014). https://doi.org/10.1007/s10479-014-1616-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1616-4

Keywords

Navigation