Skip to main content

Advertisement

Log in

A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper a multi-criteria group decision making model is presented in which there is a heterogeneity among the decision makers due to their different expertise and/or their different level of political control. The relative importance of the decision makers in the group is handled in a soft manner using fuzzy relations. We suppose that each decision maker has his/her preferred solution, obtained by applying any of the techniques of distance-based multi-objective programming [compromise, goal programming (GP), goal programming with fuzzy hierarchy, etc.]. These solutions are used as aspiration levels in a group GP model in which the differences between the unwanted deviations are interpreted in terms of the degree of achievement of the relative importance amongst the group members. In this way, a group GP model with fuzzy hierarchy (Group-GPFH) is constructed. The solution for this model is proposed as a collective decision. To show the applicability of our proposal, a regional forest planning problem is addressed. The objective is to determine tree species composition in order to improve the values achieved by Pan-European indicators for sustainable forest management. This problem involves stakeholders with competing interests and different preference schemes for the aforementioned indicators. The application of our proposal to this problem allows us to be able to comfortably address all these issues. The results obtained are consistent with the preferences of each stakeholder and their hierarchy within the group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(x_{ext}\) note the extended vector of decision and auxiliary variables.

References

  • Aköz, O., & Petrovic, D. (2007). A fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research, 181, 1427–1433.

  • Ananda, J., & Herath, G. (2003a). Incorporating stakeholder values into regional forest planning: A value function approach. Ecological Economics, 45, 75–90.

    Article  Google Scholar 

  • Ananda, J., & Herath, G. (2003b). The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. Forest Policy and Economy, 5, 13–26.

    Article  Google Scholar 

  • Ananda, J., & Herath, G. (2008). Multi-attribute preference modeling and regional land-use planning. Ecological Economics, 65, 325–335.

    Article  Google Scholar 

  • Ananda, J., & Herath, G. (2009). A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological Economics, 68, 2535–2548.

    Article  Google Scholar 

  • Bard, J. F., & Sousk, S. F. (1990). A tradeoff analysis for rough terrain cargo handlers using the AHP: An example of group decision making. IEEE Transactions on Engineering Management, 37(3), 222–228.

    Article  Google Scholar 

  • Bertomeu, M., Diaz-Balteiro, L., & Giménez, J. C. (2009). Forest management optimization in Eucalyptus plantations: A goal programming approach. Canadian Journal of Forest Research, 39(2), 356–366.

    Article  Google Scholar 

  • Bose, U., Davey, A. M., & Olson, D. L. (1997). Multi-attribute utility methods in group decision making: Past applications and potential for inclusion in GDSS. OMEGA, International Journal of Management Science, 25, 691–706.

    Article  Google Scholar 

  • Brans, J. P., & Vincke, P. (1985). A preference ranking organization method. Management Science, 31, 647–656.

    Article  Google Scholar 

  • Brans, J. P., Vincke, P., & Marechal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24, 228–238.

    Article  Google Scholar 

  • Cai, F.-L., Liao, X., & Wang, K.-L. (2012). An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities. Annals of Operations Research, 197(1), 87–108.

    Article  Google Scholar 

  • Choi, H., Suh, E., & Suh, C. (1994). Analytic hierarchy process: It can work for group decision support systems. Computers & Industrial Engineering, 27(1–4), 167–171.

    Article  Google Scholar 

  • Contreras, I., & Mármol, A. M. (2007). A lexicographical compromise method for multiple criteria group decision problems with imprecise information. European Journal of Operational Research, 181(3), 1530–1539.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Diaz-Balteiro, L., González-Pachón, J., & Romero, C. (2009). Forest management with multiple criteria and multiple stakeholders: An application to two public forests in Spain. Scandinavian Journal of Forest Research, 24, 87–93.

    Article  Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2003). Forest management optimisation models when carbon captured is considered: A goal programming approach. Forest Ecology and Management, 174, 447–457.

    Article  Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2004). Sustainability of forest management plans: A discrete goal programming approach. Journal of Environmental Management, 71, 351–359.

    Article  Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2008). Making forestry decisions with multiple criteria: A review and assessment. Forest Ecology and Management, 255, 3222–3241.

    Article  Google Scholar 

  • Dyer, R. F., & Forman, E. H. (1992). Group decision support with the Analytic Hierarchy Process. Decision Support Systems, 8, 99–124.

    Article  Google Scholar 

  • Fan, Z.-P., & Liu, Y. (2010). A method for group decision-making based on multi-granularity uncertain linguistic information. Expert System with Applications, 37, 4000–4008.

    Article  Google Scholar 

  • Field, D. B. (1973). Goal programming for forest management. Forest Science, 19, 125–135.

    Google Scholar 

  • Forman, E., & Peniwati, K. (1998). Aggregating individual judgements and priorities with the Analytic Hierarchy Process. European Journal of Operational Research, 108, 165–169.

    Article  Google Scholar 

  • Gómez, T., Hernández, M., León, M. A., & Caballero, R. (2006). A forest plannig problem solved via linear fractional goal programming model. Forest Ecology and Management, 277, 77–88.

    Google Scholar 

  • Gómez, T., Hernández, M., Molina, J., León, M. A., Aldana, E., & Caballero, R. (2011). A multiobjective model for forest planning with adjacency constraints. Annals of Operations Research, 190(1), 75–92.

    Article  Google Scholar 

  • González-Pachón, J., & Rodríguez Galiano, M. I. (2003). Transitive approximation to paiwise comparison matrices by using interval goal programming. Journal of the Operational Research Society, 54(5), 532–538.

    Article  Google Scholar 

  • González-Pachón, J., & Romero, C. (2001). Aggregation of partial ordinal rankings: An interval goal programming approach. Computers and Operation Research, 28(8), 827–834.

    Article  Google Scholar 

  • González-Pachón, J., & Romero, C. (2007). Inferring consensus weights from pairwise comparison matrices without suitable properties. Annals of Operation Research, 154, 123–132.

    Article  Google Scholar 

  • González-Pachón, J., & Romero, C. (2011). The design of socially optimal decisions in a consensus scenario. OMEGA, International Journal of Management Science, 39(2), 179–185.

    Article  Google Scholar 

  • Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renewable Energy, 28(6), 961–973.

    Article  Google Scholar 

  • Harrison, S. R., & Qureshi, M. E. (2000). Choice of stakeholder groups and members in multi-criteria decision models. Natural Resources Forum, 24, 11–19.

    Article  Google Scholar 

  • Hasle, G., Haavardtun, J., Kloster, O., & Lokketangen, A. (2000). Interactive planning for sustainable forest management. Annals of Operations Research, 95(1–4), 19–40.

    Article  Google Scholar 

  • Hayashi, K. (2000). Multicriteria analysis for agricultural resource management: A critical survey and future perspectives. European Journal of Operational Research, 122, 486–500.

    Article  Google Scholar 

  • Inventario Forestal CAE 2005 Guipuzcoa. http://www.nasdap.ejgv.euskadi.net/50-15135/es/contenidos/.

  • Jiménez, M., Rivas, J. A., & Puerta, C. (2012). Regional forest planning using multiobjective programming and goal programming. International Journal of Multicriteria Decision Making, 2(4), 338–354.

    Article  Google Scholar 

  • Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213, 238–245.

    Article  Google Scholar 

  • Jones, D. & Jiménez, M. (2013). Incorporating additional meta-objectives into the extended lexicographic goal programming framework. European Journal of Operational Research, 227, 343–349.

  • Jones, D. F., & Tamiz, M. (2010). Practical Goal programming. New York: Springer.

    Book  Google Scholar 

  • Kangas, J. (1994). An approach to public participation in strategic forest management planning. Forest Ecology and Management, 70, 75–88.

    Article  Google Scholar 

  • Kilgour, D. M., & Eden, C. (2010). Handbook of group decision and negotiation (advances in group decision and negotiation 4). New York: Springer.

    Book  Google Scholar 

  • Korpela, J., & Tuominen, M. (1995). Group decision support for defining the vision and strategic goals for distribution logistics. Proceedings of the twenty-eighth Hawaii international conference on systems sciences, (Vol. 4, pp. 475–484).

  • Korpela, J., & Tuominen, M. (1997). Group decision support for analysing logistics development projects. Hawaii international conference on system sciences (Vol. 2, pp. 493–502).

  • Lai, V. S., Bo, K. W., & Cheung, W. (2002). Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research, 137, 134–144.

    Article  Google Scholar 

  • Leyva-López, J.-C., & Fernández-González, E. (2003). A new method for group decision support based on ELECTRE III methodology. European Journal of Operational Research, 148, 14–27.

    Article  Google Scholar 

  • Linares, P., & Romero, C. (2002). Aggregation of preferences in an environmental economics context: A goal programming approach. OMEGA, International Journal of Management Science, 30, 89–95.

    Article  Google Scholar 

  • Lu, J., Zhang, G., Ruan, D., & Wu, F. (2007). Multi-objective group decisison making: Methods, software and applications with fuzzy set techniques. Series in Electrical and Computer Engineering (Vol. 6). Imperial College Press.

  • Macharis, C., Brans, J. P., & Mareschal, B. (1998). The GDSS PROMETHEE procedure. Journal of Decision Systems, 7, 283–307.

    Google Scholar 

  • Matsatsinis, N. F., & Samaras, A. P. (2001). MCDA and preference disaggregation in group decision support systems. European Journal of Operational Research, 130(2), 414–429.

    Article  Google Scholar 

  • Mendoza, G. A., & Martins, H. (2006). Muti-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. Forest Ecology and Management, 230, 1–22.

    Article  Google Scholar 

  • Pfeiffer, J., Golle, U., & Rothlauf, F. (2008). Reference point based multi-objective evolutionary algorithms for group decisions. Proceedings of the genetic and evolutionary computation conference (GECCO’08) (pp. 697–704). ACM Press, New York.

  • Romero, C. (2001). Extended lexicographic goal programming approach: An unifying approach. OMEGA, International Journal of Management Science, 29, 63–71.

    Article  Google Scholar 

  • Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153, 675–686.

    Article  Google Scholar 

  • Romero, C., & Rehman, T. (2003). Multiple criteria analysis for agricultural decisions (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Roy, B. (1968). Classement et choix en prsence de points de vue multiple (la mthode electre). RAIRO, 2, 57–75.

    Google Scholar 

  • Rustagi, K. P. (1973). Forest management planning for timber production: A goal programming approach. Ph.D. Thesis, Yale University, New Haven, CT.

  • Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1986). Axiomatic foundations of the analytical hierarchy process. Management Science, 32, 841–855.

    Article  Google Scholar 

  • Sanayei, A., & Farid Mousavi, S. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37(1), 24–30.

    Article  Google Scholar 

  • Sen, N., & Nandi, M. (2012). A goal programming approach to rubber plantation planning in Tripura. Applied Mathematical Sciences, 6(124), 6171–6179.

    Google Scholar 

  • Su, Z., Xia, G., Chen, M., & Wang, L. (2012). Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making. Expert System with Applications, 39, 1902–1910.

    Article  Google Scholar 

  • Tapia García, J. M., Moral, M. J., Martínez, M. A., & Herrera-Viedma, E. (2012). A consensus model for group decision making problems with linguistic interval fuzzy preference relations. Expert Systems with Applications, 39(11), 10022–10030.

    Article  Google Scholar 

  • Tavana, M., Sodenkamp, M., & Suhl, L. (2010). A soft multi-criteria decision analysis model with application to the European Union enlargement. Annals of Operation Research, 181, 393–421.

    Article  Google Scholar 

  • Tiwari, R. N., Dharmar, S., & Rao, J. R. (1987). Fuzzy goal programming—An additive model. Fuzzy Sets and Systems, 24, 27–34.

    Article  Google Scholar 

  • Wheeler, B. M., & Russell, J. R. M. (1977). Goal programming and agricultural planning. Journal of Operational Research Society, 28, 21–32.

    Article  Google Scholar 

  • Xu, M. S., & Chen, J. Z. (2013). A general group decision support system based on the outranking relations method. Applied Mechanics and Materials, 278–280, 1984–1988.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the financial support provided by the Spanish Ministry of Education, Project ECO2011-26499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Arenas-Parra.

Appendices

Appendix 1: An extended goal programming model with fuzzy hierarchy

The corresponding specifications introduced in Table 1 lead to the following models:

  • Conventional mathematical programming (CMP):

    $$\begin{aligned} \begin{array}{l} \min \;\; \alpha _1 n_1 + \beta _1 p_1 \\ \mathrm {s.t.} \\ \quad f_1 (x) + n_1 - p_1 = f_1^* \\ \quad n_1 ,p_1 \ge 0,\quad n_1 \times p_1 = 0, \\ \quad x \in X. \\ \end{array} \end{aligned}$$

    the objective is assumed to be minimized, then we have \(n_1=0\) and \(p_1=f_1(x)-f_1^*\). By substituting this expression in the objective function of (CMP), the conventional mathematical programming model is obtained.

  • Weighting model (WM):

    $$\begin{aligned} \begin{array}{l} \min \;\; \sum \limits _{i = 1}^m {\left( -\alpha _i n_i + \alpha _i p_i \right) } \\ \mathrm {s.t.} \\ \quad f_i (x) + n_i - p_i = 0 ,\quad i = 1,\ldots ,m, \\ \quad n_i, \quad p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \quad x \in X. \\ \end{array} \end{aligned}$$

    In (WM) we have \(f_i(x)=p_i-n_i\) and substituing in the objective function we obtain the usual weighted model.

  • Compromise Programming (\(L_1\) metric):

    $$\begin{aligned}&\min \;\; \sum \limits _{i = 1}^m {\left( \gamma _i W_i n_i +\eta _i W_i p_i \right) } \end{aligned}$$
    $$\begin{aligned}&\mathrm {s.t.} \\&\quad f_i (x) + n_i - p_i = f_i^* ,\quad i = 1,\ldots ,m, \\&\quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\&\quad x \in X. \\ \end{aligned}$$

    In this case we have \(\gamma _i=0\) for minimizing objectives and \(\eta _i=0\) for maximizing objectives; \(W_i\) is a preferential as well as normalizing factor.

  • Compromise Programming (\(L_\infty \) metric):

    $$\begin{aligned} \begin{array}{l} \min \;\; D \\ \mathrm {s.t.} \\ \quad \gamma _i W_i n_i +\eta _i W_i p_i \le D \\ \quad f_i (x) + n_i -p_i = f_i^* ,\quad i = 1,\ldots ,m, \\ \quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \quad x \in X. \\ \end{array} \end{aligned}$$
  • linear GP with Archimedian weights:

    $$\begin{aligned} \begin{array}{l} \min \;\; \sum \limits _{i = 1}^m {\left( \alpha _i n_i + \beta _i p_i \right) } \\ \mathrm {s.t.} \\ \quad f_i (x) + n_i - p_i = t_i ,\quad i = 1,\ldots ,m, \\ \quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \quad x \in X. \\ \end{array} \end{aligned}$$
  • MINMAX GP:

    $$\begin{aligned} \begin{array}{l} \min \;\; D \\ \mathrm {s.t.} \\ \quad \alpha _i n_i +\beta _i p_i \le D \\ \quad f_i (x) + n_i -p_i = t_i ,\quad i = 1,\ldots ,m, \\ \quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \quad x \in X. \\ \end{array} \end{aligned}$$
  • Extended GP:

    $$\begin{aligned} \begin{array}{l} \min \;\; \left( 1-\lambda \right) D + \lambda \sum \limits _{i = 1}^m {\left( \alpha _i n_i + \beta _i p_i \right) } \\ \mathrm {s.t.} \\ \quad \alpha _i n_i +\beta _i p_i \le D \\ \quad f_i (x) + n_i -p_i = t_i ,\quad i = 1,\ldots ,m, \\ \quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \quad x \in X. \\ \end{array} \end{aligned}$$

Parameter \(\lambda \) weights the importance attached to the minimizing of the weighted sum of unwanted desviation variables. For \(\lambda \in \left( 0,1\right) \) we have intermediate solutions between the solutions provided by de MINMAX GP model \(\left( \lambda =0 \right) \) and the Archimedian GP model \(\left( \lambda =1 \right) \).

  • Archimedean GP with Fuzzy Hierarchy:

    $$\begin{aligned} \begin{array}{l} \min \;\; \lambda \sum \limits _{i = 1}^m \displaystyle \gamma _{i}\frac{n_i}{u_i} + \displaystyle \eta _{i}\frac{p_i }{u_i} - \left( 1- \lambda \right) \mathop {\mathop {\mathop {\sum }\limits _{i,j = 1}}_{i \ne j}}\limits ^m \; \sum \limits _{l=1}^{3} \, b_{\tilde{R}_l \left( {i,j} \right) } \mu _{\tilde{R}_l} \left( {h_i,h_j} \right) \\ \mathrm {s.t.} \\ \\ f_i (x) + n_i^{} - p_i^{} = t_i ,\quad i = 1,\ldots ,m, \\ \\ \displaystyle 1 - \left( \frac{h_i }{u_i } - \frac{h_j}{u_j } \right) \ge \mu _{\tilde{R}_1} (h_i,h_j), \quad \mathrm{{if}} \quad {b_{\tilde{R}_1 \left( i,j \right) }} = 1, \\ \\ \displaystyle \frac{1 - \displaystyle \left( \frac{h_i }{u_i } - \frac{h_j}{u_j } \right) }{2} \ge \mu _{\tilde{R}_2} (h_i,h_j),\quad \mathrm{{if }} \quad b_{\tilde{R}_2} \left( i,j \right) = 1, \\ \\ \displaystyle \frac{{h_j }}{{u_j }} - \frac{{h_i} }{{u_i }} \ge \mu _{\tilde{R}_3} (h_i,h_j),\quad \mathrm{{if }} \quad {b_{\tilde{R}_3 \left( {i,j} \right) }} = 1, \\ \quad i,j = 1, \ldots , m, \\ \\ \quad 0 \le \mu _{\tilde{R}_l} (h_i,h_j) \le 1,\quad l = 1,2,3, \\ \\ \quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\ \\ \quad x \in X. \\ \end{array} \end{aligned}$$
  • MINMAX GP with Fuzzy Hierarchy:

    $$\begin{aligned}&\min \;\;\lambda D - \; \left( 1- \lambda \right) \mathop {\mathop {\mathop {\sum }\limits _{i,j = 1}}_{i \ne j}}\limits ^m \; \sum \limits _{l=1}^{3} \, b_{\tilde{R}_l \left( {i,j} \right) } \mu _{\tilde{R}_l} \left( {h_i,h_j} \right) \\&\mathrm {s.t.} \\&\displaystyle \gamma _{i}\frac{n_i}{u_i} + \displaystyle \eta _{i}\frac{p_i}{u_i} \le D \\&f_i (x) + n_i^{} - p_i^{} = t_i ,\quad i = 1,\ldots ,m, \\&\displaystyle 1 - \left( \frac{h_i }{u_i } - \frac{h_j}{u_j }\right) \ge \mu _{\tilde{R}_1} (h_i,h_j),\quad \mathrm{{if}} \quad {b_{\tilde{R}_1 \left( i,j \right) }} = 1, \\&\displaystyle \frac{1 - \displaystyle \left( \frac{h_i }{u_i } - \frac{h_j}{u_j } \right) }{2} \ge \mu _{\tilde{R}_2} (h_i,h_j),\quad \mathrm{{if }} \quad b_{\tilde{R}_2} \left( i,j \right) = 1, \\&\displaystyle \frac{{h_j }}{{u_j }} - \frac{{h_i} }{{u_i }} \ge \mu _{\tilde{R}_3} (h_i,h_j) ,\quad \mathrm{{if }} \quad {b_{\tilde{R}_3 \left( {i,j} \right) }} = 1, \\&\quad i,j = 1, \ldots , m, \\&\quad 0 \le \mu _{\tilde{R}_l} (h_i,h_j) \le 1,\quad l = 1,2,3, \\&\quad n_i ,p_i \ge 0,\quad n_i \times p_i = 0,\quad i = 1, \ldots ,m, \\&\quad x \in X. \\ \end{aligned}$$

Appendix 2

See Tables 67 and 8.

Table 6 Value of indicators for different tree species
Table 7 Anti-ideal and ideal indicators
Table 8 Bounds for different tree species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilbao-Terol, A., Jiménez, M. & Arenas-Parra, M. A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning. Ann Oper Res 245, 137–162 (2016). https://doi.org/10.1007/s10479-014-1633-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1633-3

Keywords

Navigation