Skip to main content
Log in

Distribution of waiting time for dynamic pickup and delivery problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Pickup and delivery problems have numerous applications in practice such as parcel delivery and passenger transportation. In the dynamic variant of the problem, not all information is available in advance but is revealed during the planning process. Thus, it is crucial to anticipate future events in order to generate high-quality solutions. Previous work has shown that the use of waiting strategies has the potential to save costs and maximize service quality. We adapt various waiting heuristics to the pickup and delivery problem with time windows. Previous research has shown, that specialized waiting heuristics utilizing anticipatory knowledge potentially outperform general heuristics. Direct policy search based on evolutionary computation and a simulation model is proposed as a methodology to automatically specialize waiting strategies to different problem characteristics. Based on the strengths of the previously introduced waiting strategies, we propose a novel waiting heuristic that can utilize historical request information based on an intensity measure which does not require an additional data preprocessing step. The performance of the waiting heuristics is evaluated on a single set of benchmark instances containing various instance classes that differ in terms of spatial and temporal properties. The diverse set of benchmark instances is used to analyze the influence of spatial and temporal instance properties as well as the degree of dynamism to the potential savings that can be achieved by anticipatory waiting and the incorporation of knowledge about future requests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://dev.heuristiclab.com/AdditionalMaterial

References

  • Affenzeller, M., Winkler, S., Wagner, S., & Beham, A. (2009). Genetic algorithms and genetic programming: Modern concepts and practical applications (Numerical Insights) (1st ed.). UK: Chapman & Hall.

    Book  Google Scholar 

  • Attanasio, A., Cordeau, J. F., Ghiani, G., & Laporte, G. (2004). Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3), 377–387.

    Article  Google Scholar 

  • Beham, A., Kofler, M., Wagner, S., Affenzeller, M. (2009). Coupling simulation with heuristiclab to solve facility layout problems. In: Simulation Conference (WSC), Proceedings of the 2009 Winter, pp. 2205–2217. doi:10.1109/WSC.2009.5429238.

  • Bent, R., Van Hentenryck, P. (2007). Waiting and relocation strategies in online stochastic vehicle routing. In: IJCAI, pp. 1816–1821.

  • Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202(1), 8–15. doi:10.1016/j.ejor.2009.04.024.

    Article  Google Scholar 

  • Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing, 1(1), 3–52.

    Article  Google Scholar 

  • Branke, J., Middendorf, M., Noeth, G., Dessouky, M. (2005). Waiting strategies for dynamic vehicle routing. Transportation Science 39:298–312. doi:10.1287/trsc.1040.0095.

  • Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., et al. (2013). Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724.

    Article  Google Scholar 

  • Can, B., Beham, A., Heavey, C. (2008). A comparative study of genetic algorithm components in simulation-based optimisation. In: Proceedings of the 40th Conference on Winter Simulation, Winter Simulation Conference, WSC ’08, pp 1829–1837, URL http://dl.acm.org/citation.cfm?id=1516744.1517063

  • Cordeau, J., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6), 579–594.

    Article  Google Scholar 

  • Cordeau, J., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational research society, 52(8), 928–936.

    Article  Google Scholar 

  • Cordeau, J., Gendreau, M., Laporte, G., Potvin, J., & Semet, F. (2002). A guide to vehicle routing heuristics. Journal of the Operational Research Society, 53(5), 512–522.

  • Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of Operations Research, 153(1), 29–46.

    Article  Google Scholar 

  • Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem. European Journal of Operational Research, 175(3), 1605–1615.

    Article  Google Scholar 

  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. doi:10.2307/2627477.

    Article  Google Scholar 

  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers and Industrial Engineering, 57(4), 1472–1483. doi:10.1016/j.cie.2009.05.009.

    Article  Google Scholar 

  • Ferrucci, F., Bock, S., & Gendreau, M. (2012). A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods. European Journal of Operational Research, 225(1), 130–141.

  • Fu, M. C. (2002). Feature article: Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192–215. doi:10.1287/ijoc.14.3.192.113.

    Article  Google Scholar 

  • Gendreau, M., & Potvin, J. (2004). Issues in real-time fleet management. Transportation Science, 38(4), 397–398.

    Article  Google Scholar 

  • Ghiani, G., Guerriero, F., Laporte, G., & Musmanno, R. (2003). Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1), 1–11. doi:10.1016/S0377-2217(02)00915-3.

    Article  Google Scholar 

  • Golden, B., Raghavan, S., & Wasil, E. (2008). The vehicle routing problem: Latest advances and new challenges. Operations Research/Computer Science Interfaces. Dordrecht: Springer.

    Book  Google Scholar 

  • Gutenschwager, K., Niklaus, C., & Voß, S. (2004). Dispatching of an electric monorail system: Applying metaheuristics to an online pickup and delivery problem. Transportation science, 38(4), 434–446.

    Article  Google Scholar 

  • Hentenryck, P. V., & Bent, R. (2009). Online stochastic combinatorial optimization. Cambridge: The MIT Press.

    Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J. Y. (2006). Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science, 40, 211–225. doi:10.1287/trsc.1050.0114.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., Potvin, JY. (2007). Planned route optimization for real-time vehicle routing. In: Dynamic fleet management, Springer, pp 1–18.

  • Li, H., Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time windows. In: Tools with artificial intelligence, Proceedings of the 13th International Conference on, pp 160–167, Doi:10.1109/ICTAI.2001.974461.

  • Longo, F. (2011). Advances of modeling and simulation in supply chain and industry. Simulation, 87(8), 651–656.

    Article  Google Scholar 

  • Mes, M., van der Heijden, M., & van Harten, A. (2007). Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. European Journal of Operational Research, 181(1), 59–75.

    Article  Google Scholar 

  • Mitrovic-Minic, S., & Laporte, G. (2004). Waiting strategies for the dynamic pickup and delivery problem with time windows. Transportation Research Part B: Methodological, 38(7), 635–655. doi:10.1016/j.trb.2003.09.002.

    Article  Google Scholar 

  • Mitrovic-Minic, S., Adviser-Krishnamurti, R., & Adviser-Laporte, G. (2001). The dynamic pickup and delivery problem with time windows. Burnaby: Simon Fraser University.

    Google Scholar 

  • Mitrovic-Minic, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research Part B: Methodological, 38(8), 669–685. doi:10.1016/j.trb.2003.09.001.

    Article  Google Scholar 

  • Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary algorithms for reinforcement learning. Journal of Artificial Intelligence Research, 11, 241–276.

    Google Scholar 

  • Pankratz, G. (2005). Dynamic vehicle routing by means of a genetic algorithm. International Journal of Physical Distribution and Logistics Management, 35(5), 362–383. doi:10.1108/09600030510607346.

    Article  Google Scholar 

  • Pappa, GL., Ochoa, G., Hyde, MR., Freitas, AA., Woodward, J., Swan, J. (2013). Contrasting meta-learning and hyper-heuristic research: The role of evolutionary algorithms. Genetic Programming and Evolvable Machines, 1–33.

  • Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems. Journal für Betriebswirtschaft, 58(1), 21–51.

    Article  Google Scholar 

  • Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11.

    Article  Google Scholar 

  • Pitzer, E., Beham, A., Affenzeller, M., Heiss, H., Vorderwinkler, M. (2011). Production fine planning using a solution archive of priority rules. In: Logistics and industrial informatics (LINDI), 2011 3rd IEEE International Symposium on, pp 111–116, Doi:10.1109/LINDI.2011.6031130.

  • Psaraftis, H. (1988). Dynamic vehicle routing problems. In: Vehicle routing: Methods and studies, Elsevier Science Publishers, pp 223–249.

  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org

  • Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation science, 40(4), 455–472.

    Article  Google Scholar 

  • Sáez, D., Cortés, C. E., & Núñez, A. (2008). Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Computers and Operations Research, 35(11), 3412–3438.

    Article  Google Scholar 

  • Savelsbergh, M. (1995). The general pickup and delivery problem. Transportation Science, 29(1), 17–29.

    Article  Google Scholar 

  • Scheibenpflug, A., Wagner, S., Kronberger, G., Affenzeller, M. (2012). Heuristiclab hive-an open source environment for parallel and distributed execution of heuristic optimization algorithms. In: 1st Australian Conference on the Applications of Systems Engineering ACASE’12, p 63.

  • Silverthorn, BC. (2012). A probabilistic architecture for algorithm portfolios. PhD thesis, The University of Texas at Austin, may.

  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35, 254–265. doi:10.1287/opre.35.2.254.

    Article  Google Scholar 

  • Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11), 1067–1081.

    Article  Google Scholar 

  • Tjokroamidjojo, D., Kutanoglu, E., & Taylor, G. D. (2006). Quantifying the value of advance load information in truckload trucking. Transportation Research Part E: Logistics and Transportation Review, 42(4), 340–357.

    Article  Google Scholar 

  • Van Hemert, JI., La Poutré, JA. (2004). Dynamic routing problems with fruitful regions: Models and evolutionary computation. In: Parallel problem solving from nature-PPSN VIII, Springer, pp 692–701.

  • Vonolfen, S., Affenzeller, M., Beham, A., Lengauer, E., & Wagner, S. (2013a). Simulation-based evolution of resupply and routing policies in rich vendor-managed inventory scenarios. Central European Journal of Operations Research, 21(2), 379–400.

    Article  Google Scholar 

  • Vonolfen, S., Beham, A., Kommenda, M., Affenzeller, M. (2013b). Structural synthesis of dispatching rules for dynamic dial-a-ride problems. In: Proceedings of the 14th international conference on Computer Aided Systems Theory, Springer.

  • Wagner, S. (2009). Heuristic optimization software systems - Modeling of heuristic optimization algorithms in the HeuristicLab software environment. PhD thesis, Johannes Kepler University, Linz, Austria.

  • Waisanen, H. A., Shah, D., & Dahlehm, M. A. (2008). A dynamic pickup and delivery problem in mobile networks under information constraints. Automatic Control, IEEE Transactions on, 53(6), 1419–1433.

    Article  Google Scholar 

  • Whiteson, S. (2012). Evolutionary computation for reinforcement learning. In: Reinforcement learning, Springer, pp 325–355.

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. Evolutionary Computation, IEEE Transactions on, 1(1), 67–82.

    Article  Google Scholar 

  • Xiang, Z., Chu, C., & Chen, H. (2008). The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments. European Journal of Operational Research, 185(2), 534–551.

    Article  Google Scholar 

  • Zeimpekis, V., Tarantilis, C., Giaglis, G., & Minis, I. (2007). Dynamic fleet management. Operations research/computer science interfaces. New York: Springer.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the attendees of the ORP3 workshop held during July 2012 in Linz as well as the reviewers for their helpful comments, discussions and feedback. The work described in this article was done within the Regio 13 program sponsored by the European Regional Development Fund and by Upper Austrian public funds.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vonolfen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vonolfen, S., Affenzeller, M. Distribution of waiting time for dynamic pickup and delivery problems. Ann Oper Res 236, 359–382 (2016). https://doi.org/10.1007/s10479-014-1683-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1683-6

Keywords

Navigation