Skip to main content
Log in

Game theoretical transportation network design among multiple regions

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Previous studies of transportation network design assumed that transportation network was managed by a central administrative authority with an objective of improving the performance of the whole network. In practice, the transportation network may comprise of multiple local regions, which are independently and separately managed by local transportation administrative authorities with different objectives. Therefore, it is possible that local authorities may act with different behaviours, either cooperatively or competitively, in designing transportation networks. This paper addresses various network design strategies, such as competitive, cooperative, chronological, Stackelberg and the mixed schemes. Multiple-level games are used to describe the behaviours of different regions. The proposed NDP models are used to describe various game behaviours of regional authorities that evaluate the NDP effects more reasonably. It can also be used to assess the impact of regional budget distribution and help the central authority make reasonable budget distribution scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulaal, M., & Leblanc, L. J. (1979). Continuous equilibrium network design models. Transportation Research Part B-Methodological, 13(1), 19–32.

    Article  Google Scholar 

  • Blum, A., & Monsour, Y. (2007). Learning, regret minimization, and equilibria. In N. Nisan, T. Roughgarden, E. Tardos, & V. V. Vazirani (Eds.), Algorithmic game theory. New York: Cambridge University Press.

    Google Scholar 

  • Bosse, H., Byrka, J., & Markakis, E. (2007). New algorithms for approximate nash equilibria in bimatrix games. In X. Deng & F. Graham (Eds.), Internet and network economics. Berlin: Springer.

    Google Scholar 

  • Chen, A., & Yang, C. (2004). Stochastic transportation network design problem with spatial equity constraint. Transportation Research Record, 1882, 97–104.

    Article  Google Scholar 

  • Chen, A. T., Zhou, Z., Chootinan, P., Ryu, S., Yang, C., & Wong, S. C. (2011). Transport network design problem under uncertainty: A review and new developments. Transport Reviews, 31(6), 743–768.

    Article  Google Scholar 

  • Chen, A., Kim, J., Lee, S., & Kim, Y. (2010). Stochastic multi-objective models for network design problem. Expert Systems with Applications, 37(2), 1608–1619.

    Article  Google Scholar 

  • Davis, G. A. (1994). Exact local solution of the continuous network design problem via stochastic user equilibrium assignment. Transportation Research Part B-Methodological, 28(1), 61–75.

    Article  Google Scholar 

  • de Palma, A. (1992). A game-theoretic approach to the analysis of simple congested networks. American Economic Review, 82(2), 494–500.

    Google Scholar 

  • de Palma, A., & Lindsey, R. (2000). Private toll roads: Competition under various ownership regimes. Annals of Regional Science, 34(1), 13–35.

    Article  Google Scholar 

  • Desai, J., & Sen, S. (2010). A global optimization algorithm for reliable network design. European Journal of Operational Research, 200(1), 1–8.

    Article  Google Scholar 

  • Devany, A., & Saving, T. R. (1980). Competition and highway pricing for stochastic traffic. Journal of Business, 53(1), 45–60.

    Article  Google Scholar 

  • Ekstrom, J., Sumalee, A., & Lo, H. K. (2012). Optimizing toll locations and levels using a mixed integer linear approximation approach. Transportation Research Part B-Methodological, 46(7), 834–854.

    Article  Google Scholar 

  • Iimura, T. (2003). A discrete fixed point theorem and its applications. Journal of Mathematical Economics, 39(7), 725–742.

    Article  Google Scholar 

  • Ishii, M., Lee, P. T.-W., Tezuka, K., & Chang, Y.-T. (2013). A game theoretical analysis of port competition. Transportation Research Part E: Logistics and Transportation Review, 49(1), 92–106.

    Article  Google Scholar 

  • Karoonsoontawong, A., & Waller, S. T. (2007). Robust dynamic continuous network design problem. Transportation Research Record, 2029, 58–71.

    Article  Google Scholar 

  • Lawphonpanich, S., & Yin, Y. F. (2010). Solving the Pareto-improving toll problem via manifold suboptimization. Transportation Research Part C-Emerging Technologies, 18(2), 234–246.

    Article  Google Scholar 

  • Leblanc, L. J. (1975). An algorithm for the discrete network design problem. Transportation Science, 9(3), 183–199.

    Article  Google Scholar 

  • Li, C., Yang, H., Zhu, D., & Meng, Q. (2012a). A global optimization method for continuous network design problems. Transportation Research Part B: Methodological, 46(9), 1144–1158.

    Article  Google Scholar 

  • Li, Z. C., Lam, W. H. K., & Wong, S. C. (2012b). Modeling intermodal equilibrium for bimodal transportation system design problems in a linear monocentric city. Transportation Research Part B-Methodological, 46(1), 30–49.

    Article  Google Scholar 

  • Lim, Y., Heydecker, B. G., & Lee, S. (2005). A continuous network design model in stochastic user equilibrium based on sensitivity analysis. Journal of Advanced Transportation, 39(1), 63–79.

    Article  Google Scholar 

  • Lo, H. K., & Szeto, W. Y. (2003). Time-dependent transport network design: A study of budget sensitivity. Journal of the Eastern Asia Society for Transportation Studies, 5, 1124–1139.

    Google Scholar 

  • Lo, H. K., & Szeto, W. Y. (2009). Time-dependent transport network design under cost-recovery. Transportation Research Part B-Methodological, 43(1), 142–158.

    Article  Google Scholar 

  • Lo, H. K., & Tung, Y. K. (2003). Network with degradable links: capacity analysis and design. Transportation Research Part B-Methodological, 37(4), 345–363.

    Article  Google Scholar 

  • Lu, H. S. (2007). On the existence of pure-strategy Nash equilibrium. Economics Letters, 94(3), 459–462.

    Article  Google Scholar 

  • Luathep, P., Sumalee, A., Lam, W. H. K., Li, Z. C., & Lo, H. K. (2011). Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach. Transportation Research Part B-Methodological, 45(5), 808–827.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation-planning: Models and algorithms. Transportation Science, 18(1), 1–55.

    Article  Google Scholar 

  • Mallick, I. (2011). On the existence of pure strategy Nash equilibria in two person discrete games. Economics Letters, 111(2), 144–146.

    Article  Google Scholar 

  • Meng, Q., & Yang, H. (2002). Benefit distribution and equity in road network design. Transportation Research Part B-Methodological, 36(1), 19–35.

    Article  Google Scholar 

  • Meng, Q., Yang, H., & Bell, M. G. H. (2001). An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transportation Research Part B-Methodological, 35(1), 83–105.

    Article  Google Scholar 

  • Meng, Q., Yang, H., & Wang, H. (2014). The transportation network design problems: Recent advances. Submitted to Transportation Research Part B-Methodological. (Unpublished Paper).

  • Nagurney, A. (2000). Congested urban transportation networks and emission paradoxes. Transportation Research Part D-Transport and Environment, 5(2), 145–151.

    Article  Google Scholar 

  • Sharma, S., Ukkusuri, S. V., & Mathew, T. V. (2009). Pareto optimal multiobjective optimization for robust transportation network design problem. Transportation Research Record, 2090, 95–104.

    Article  Google Scholar 

  • Sumalee, A., Luathep, P., Lam, W. H. K., & Connors, R. D. (2009). Evaluation and design of transport network capacity under demand uncertainty. Transportation Research Record, 2090, 17–28.

    Article  Google Scholar 

  • Szeto, W. Y., & Lo, H. K. (2005). Strategies for road network design over time: Robustness under uncertainty. Transportmetrica, 1(1), 47–63.

    Article  Google Scholar 

  • Ukkusuri, S. V., & Patil, G. (2009). Multi-period transportation network design under demand uncertainty. Transportation Research Part B-Methodological, 43(6), 625–642.

    Article  Google Scholar 

  • Ukkusuri, S. V., & Waller, S. T. (2008). Linear programming models for the user and system optimal dynamic network design problem: Formulations, comparisons and extensions. Networks & Spatial Economics, 8(4), 383–406.

    Article  Google Scholar 

  • Waller, S. T., & Ziliaskopoulos, A. K. (2001). Stochastic dynamic network design problem. Transportation Research Record, 1771, 106–113.

    Article  Google Scholar 

  • Wang, D. Z. W., & Lo, H. K. (2010). Global optimum of the linearized network design problem with equilibrium flows. Transportation Research Part B-Methodological, 44(4), 482–492.

    Article  Google Scholar 

  • Wang, J. Y. T., & Yang, H. (2005). A game-theoretic analysis of competition in a deregulated bus market. Transportation Research Part E-Logistics and Transportation Review, 41(4), 329–355.

    Article  Google Scholar 

  • Wang, S., Meng, Q., & Yang, H. (2013). Global optimization methods for the discrete network design problem. Transportation Research Part B: Methodological, 50, 42–60.

    Article  Google Scholar 

  • Wong, S. C., & Yang, H. (1997). Reserve capacity of a signal-controlled road network. Transportation Research Part B-Methodological, 31(5), 397–402.

    Article  Google Scholar 

  • Xiao, F., Yang, H., & Han, D. R. (2007). Competition and efficiency of private toll roads. Transportation Research Part B-Methodological, 41(3), 292–308.

    Article  Google Scholar 

  • Yang, H., & Bell, M. G. H. (1998). Models and algorithms for road network design: A review and some new developments. Transport Reviews, 18(3), 257–278.

    Article  Google Scholar 

  • Yang, H., Bell, M. G. H., & Meng, Q. (2000). Modeling the capacity and level of service of urban transportation networks. Transportation Research Part B-Methodological, 34(4), 255–275.

    Article  Google Scholar 

  • Yin, Y. F., Madanat, S. M., & Lu, X. Y. (2009). Robust improvement schemes for road networks under demand uncertainty. European Journal of Operational Research, 198(2), 470–479.

    Article  Google Scholar 

  • Zhang, X. N., & van Wee, B. (2012). Enhancing transportation network capacity by congestion pricing with simultaneous toll location and toll level optimization. Engineering Optimization, 44(4), 477–488.

    Article  Google Scholar 

Download references

Acknowledgments

This research was substantially supported by a research grant from the National Natural Science Foundation Council of China (Project No. 71125004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, X. Game theoretical transportation network design among multiple regions. Ann Oper Res 249, 97–117 (2017). https://doi.org/10.1007/s10479-014-1700-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1700-9

Keywords

Navigation