Abstract
Two decades of research led to the development of a number of efficient algorithms that can be classified as exterior point simplex-type. This type of algorithms can cross over the infeasible region of the primal (dual) problem and find an optimal solution reducing the number of iterations needed. The main idea of exterior point simplex-type algorithms is to compute two paths/flows. Primal (dual) exterior point simplex-type algorithms compute one path/flow which is basic but not always primal (dual) feasible and the other is primal (dual) feasible but not always basic. The aim of this paper is to explain to the general OR audience, for the first time, the developments in exterior point simplex-type algorithms for linear and network optimization problems, over the recent years. We also present other approaches that, in a similar way, do not preserve primal or dual feasibility at each iteration such as the monotonic build-up Simplex algorithms and the criss-cross methods.

Similar content being viewed by others
References
Achatz, A., Paparrizos, K., Samaras, N., & Tsiplidis, K. (2002). A forest exterior point algorithm for assignment problems. In M. P. Pardalos, A. Midgalas, & R. Buckard (Eds.), Combinatorial and global optimization, chap. Combinatorial and global optimization (pp. 1–10). Singapore: Word Scientific.
Achatz, H., Kleinschmidt, P., & Paparrizos, K. (1991). A dual forest algorithm for the assignment problem. In Applied geometry and discrete mathematics: The Victor Klee Festschrift (Vol. 4, pp. 1–10). London: AMS & ACM.
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms and applications. Englewood Cliffs, NJ: Prentice Hall.
Ahuja, R. K., Magnanti, T. L., Orlin, J. B., & Reddy, M. R. (1995). Applications of network optimization. In M. O. Ball, T. L. M. C. L. Monma, & G. L. Nemhauser (Eds.), Network models, vol. 7, chap. Handbooks of operations research and management science (pp. 1–83). Amsterdam: Elsevier, North-Holland.
Ahuja, R. K., & Orlin, J. B. (1992). The scaling network simplex algorithm. Operations Research, 40(Supp. No. 1), S5–S13.
Akgül, M. (1993). A genuinely polynomial primal simplex algorithm for the assignment problem. Discrete Applied Mathematics, 45(2), 93–115.
Akkeleş, A. A., Balogh, L., & Illeś, T. (2004). New variants of the criss-cross method for linearly constrained convex quadratic programming. European Journal of Operational Research, 157(1), 74–86.
Al-Sultan, K. S., & Murty, K. G. (1992). Exterior point algorithms for nearest points and convex quadratic programs. Mathematical Programming, 57, 145–161.
Alpers, A., & Trotter, L. E. (2009). Teaching computational discrete optimization at the undergraduate level. INFORMS Transactions on Education, 9(2), 63–69.
Andreou, D., Paparrizos, K., Samaras, N., & Sifaleras, A. (2005). Application of a new network-enabled solver for the assignment problem in computer-aided education. Journal of Computer Science, 1(1), 19–23.
Andreou, D., Paparrizos, K., Samaras, N., & Sifaleras, A. (2007). Visualization of the network exterior primal simplex algorithm for the minimum cost network flow problem. An International Journal of Operational Research, 7(3), 449–464.
Andrus, J., & Schaferkotter, M. (1996). An exterior-point method for linear programming problems. Journal of Optimization Theory and Applications, 91, 561–583.
Anstreicher, K.M., & Terlaky, T. (1991). A monotonic build-up simplex algorithm for linear programming. Technical Report 91–82, Faculty of Technical Mathematics and Informatics, Delft University of Technology, The Netherlands.
Anstreicher, K. M., & Terlaky, T. (1994). A monotonic build-up simplex algorithm for linear programming. Operations Research, 42(3), 556–561.
Armstrong, R. D., & Jin, Z. (1997). A new strongly polynomial dual network simplex algorithm. Mathematical Programming, 78(2), 131–148.
Arsham, H. (2007). A hybrid gradient and feasible direction pivotal solution algorithm for general linear programs. Applied Mathematics and Computation, 188(1), 596–611.
Arsham, H., Cimperman, G., Damij, N., Damij, T., & Grad, J. (2005). A computer implementation of the push-and-pull algorithm and its computational comparison with LP simplex method. Applied Mathematics and Computation, 170(1), 36–63.
Arsham, H., & Kahn, A. (1989). A simplex-type algorithm for general transportation problems: An alternative to stepping-stone. Journal of the Operational Research Society, 40(6), 581–590.
Balinski, M. L. (1985). Signature methods for the assignment problem. Operations Research, 33(3), 527–536.
Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2009). Linear programming and network flows (4th ed.). Hoboken, NJ: Wiley.
Bilen, F., Csizmadia, Z., & Illés, T. (2007). Anstreicher–Terlaky type monotonic simplex algorithms for linear feasibility problems. Optimization Methods and Software, 22(4), 679–695.
Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2(2), 103–107.
Borgwardt, K. (1982a). The average number of pivot steps required by the simplex-method is polynomial. Mathematical Methods of Operations Research, 26(1), 157–177.
Borgwardt, K. (1982b). Some distribution-independent results about the asymptotic order of the average number of pivot steps of the simplex method. Mathematics of Operations Research, 7(3), 441–462.
Burkard, R., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Philadephia, PA: Society for Industrial and Applied Mathematics.
Cardoso, D. M., & Clímaco, J. C. (1992). The generalized simplex method. Operations Research Letters, 12(5), 337–348.
Charnes, A., & Cooper, W. W. (1954). The stepping stone method of explaining linear programming calculations in transportation problems. Management Science, 1(1), 49–69.
Chen, H. D., Pardalos, P. M., & Saunders, M. A. (1994). The simplex algorithm with a new primal and dual pivot rule. Operations Research Letters, 16(3), 121–127.
Cochran, J. J. (2012). You want them to remember? Then make it memorable! means for enhancing operations research education. European Journal of Operational Research, 219(3), 659–670.
Csizmadia, Z. (2007). New pivot based methods in linear optimization, and an application in the petroleum industry. Ph.D. thesis, Eötvös Loránd University of Sciences, Applied Mathematics.
Csizmadia, Z., & Illeś, T. (2006). New criss-cross type algorithms for linear complementarity problems with sufficient matrices. Optimization Methods and Software, 21(2), 247–266.
Csizmadia, Z., Bilen, F., & Illés, T. (2007). A new analysis for monotonic type simplex algorithms for feasibility problems. Alkalmazott Matematikai Lapok, 24(2), 163–185.
Csizmadia, Z., Illés, T., & Nagy, A. (2012). The s-monotone index selection rules for pivot algorithms of linear programming. European Journal of Operational Research, 221(3), 491–500.
Csizmadia, Z., Illés, T., & Nagy, A. (2013). The s-monotone index selection rule for criss-cross algorithms of linear complementarity problems. Acta Univ. Sapientiae, 5(1), 103–139.
Curet, N. D. (1993). A primal-dual simplex method for linear programs. Operations Research Letters, 13(4), 233–237.
Dantzig, G. B. (1948). Programming in a linear structure. Technical report, Comptroller, US Air Force, Washington, DC.
Dantzig, G. B. (1949). Programming of interdependent activities: II mathematical model. Econometrica, 17(3/4), 200–211.
Dantzig, G. B. (1951). Application of the simplex method to a transportation problem. In T. C. Koopmans (Ed.), Activity analysis of production and allocation (pp 359–373). New York: Wiley.
den Hertog, D., Roos, C., & Terlaky, T. (1993). The linear complimentarity problem, sufficient matrices, and the criss-cross method. Linear Algebra and Its Applications, 187, 1–14.
Dobson, G., & Shumsky, R. (2006). Web-based simulations for teaching queueing, little’s law, and inventory management. INFORMS Transactions on Education, 7(1), 106–123.
Dosios, K., & Paparrizos, K. (1994). A new exterior point algorithm for linear problems. Yugoslav Journal of Operations Research, 4(2), 137–148.
Dosios, K., Notopoulos, P., & Paparrizos, K. (1996a). Generalization of a signature method to transportation problems. Yugoslav Journal of Operations Research, 6(1), 55–71.
Dosios, K., Paparrizos, K., Samaras, N., & Tsiplidis, K. (1996b). Simplex type algorithms generating two paths to the optimal solution. In Proceedings of the 2nd Scandinavian workshop on linear programming, Copenhagen, Denmark (pp. 35–39).
Fukuda, K., & Matsui, T. (1991). On the finiteness of the criss-cross method. European Journal of Operational Research, 52(1), 119–124.
Fukuda, K., Namiki, M., & Tamura, A. (1998). EP theorems and linear complementarity problems. Discrete Applied Mathematics, 84(13), 107–119.
Fukuda, K., & Terlaky, T. (1997). Criss-cross methods: A fresh view on pivot algorithms. Mathematical Programming, 79(1–3), 369–395.
Fukuda, K., & Terlaky, T. (1999). On the existence of a short admissible pivot sequence for feasibility and linear optimization problems. Pure Mathematics and Applications, 10(4), 431–447.
Gay, D. M. (1985). Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter, 13, 10–12.
Geranis, G., Paparrizos, K., & Sifaleras, A. (2009). A dual exterior point simplex type algorithm for the minimum cost network flow problem. Yugoslav Journal of Operations Research, 19(1), 157–170.
Geranis, G., Paparrizos, K., & Sifaleras, A. (2012). On a dual network exterior point simplex type algorithm and its computational behavior. RAIRO - Operations Research, 46(3), 211–234.
Glavelis, T., Samaras, N., & Paparrizos, K. (2011) An experimental investigation of a primal-dual exterior point simplex algorithm. In Proceedings of the 1st international symposium and 10th Balkan conference on operational research (BALCOR 2011), Thessaloniki, Greece (Vol. 2, pp. 240–247).
Glover, F., Glover, R., & Klingman, D. (1986). Threshold assignment algorithm. In G. Gallo & C. Sandi (Eds.), Netflow at Pisa, mathematical programming studies (Vol. 26, pp. 12–37). Berlin: Springer.
Glover, F., Klingman, D., & Napier, A. (1972). Basic dual feasible solutions for a class of generalized networks. Operations Research, 20(1), 126–136.
Goldfarb, D. (1985). Efficient dual simplex algorithms for the assignment problem. Mathematical Programming, 33(2), 187–203.
Goldfarb, D., & Hao, J. (1990). A primal simplex algorithm that solves the maximum flow problem in at most \(nm\) pivots and \({O}(n^2 m)\) time. Mathematical Programming, 47(3), 353–365.
Goldfarb, D., Hao, J., & Kai, S. R. (1990). Efficient shortest path simplex algorithms. Operations Research, 38(4), 624–628.
Gondzio, J. (1996). Another simplex-type method for large scale linear programming. Control and Cybernetics, 25(4), 739–760.
Gregoriou, G., Kirytopoulos, K., & Kiriklidis, C. (2013). Project management educational software (ProMES). Computer Applications in Engineering Education, 21(1), 46–59.
Guerrero-Garcia, P., & Santos-Palomo, A. (2009). A deficient-basis dual counterpart of Paparrizos, Samaras and Stephanides’ primal-dual simplex-type algorithm. Optimization Methods Software, 24, 187–204.
Hultz, J., Klingman, D., & Russell, R. (1976). Advanced dual basic feasible solution for a class of capacitated generalized networks. Operations Research, 24(2), 301–313.
Hung, M. S. (1983). A polynomial simplex method for the assignment problem. Operations Research, 31(3), 595–600.
Illeś, T., & Mèszêros, K. (2001). A new and constructive proof of two basic results of linear programming. Yugoslav Journal of Operations Research, 11(1), 15–30.
Illés, T., & Molnár-Szipai, R. (2013). On strongly polynomial variants of the MBU-simplex algorithm for a maximum flow problem with non-zero lower bounds. Optimization, 63(1), 39–47.
Illés, T., & Nagy, A. (2014a). Computational aspects of simplex and MBU-simplex algorithms using different anti-cycling pivot rules. Optimization, 63(1), 49–66.
Illés, T., & Nagy, A. (2014b). Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied. Technical Report 2014–01, Department of Operations Research, Eötvös Loránd University of Sciences, Budapest, Hungary.
Illés, T., Szirmai, A., & Terlaky, T. (1999). The finite criss-cross method for hyperbolic programming. European Journal of Operational Research, 114(1), 198–214.
Illeś, T., & Terlaky, T. (2002). Pivot versus interior point methods: Pros and cons. European Journal of Operational Research, 140(2), 170–190.
Jurík, T. (2008). A nearest point approach algorithm for a class of linear programming problems. Journal of Applied Mathematics, Statistics and Informatics, 4(2), 129–138.
Karagiannis, P., Markelis, I., Paparrizos, K., Samaras, N., & Sifaleras, A. (2006). E-learning technologies: Employing matlab web server to facilitate the education of mathematical programming. International Journal of Mathematical Education in Science and Technology, 37(7), 765–782.
Karmarkar, N. (1984). A new polynomial time algorithm for linear programming. Combinatorica, 4(4), 373–395.
Khachian, L. G. (1979). A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20, 191–194.
Klafszky, E., & Terlaky, T. (1991). The role of pivoting in proving some fundamental theorems of linear algebra. Linear Algebra and Its Applications, 151, 97–118.
Klafszky, E., & Terlaky, T. (1992). Some generalizations of the criss-cross method for quadratic programming. Optimization, 24(1–2), 127–139.
Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm? In O. Shisha (Ed.), Inequalities (Vol. III, pp. 159–175). New York: Academic Press.
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., et al. (2011). MIPLIB 2010. Mathematical Programming Computation, 3(2), 103–163.
Lazaridis, V., Paparrizos, K., Samaras, N., & Sifaleras, A. (2007). Visual linprog: A web-based educational software for linear programming. Computer Applications in Engineering Education, 15(1), 1–14.
Lee, J., & Raffensperger, J. (2006). Using AMPL for teaching the TSP. INFORMS Transactions on Education, 7(1), 37–69.
Li, W. (2010). Practical criss-cross method for linear programming. In L. Zhang, B. L. Lu, & J. Kwok (Eds.), Advances in Neural Networks - ISNN 2010, Lecture Notes in Computer Science (Vol. 6063, pp. 223–229). Berlin: Springer.
Li, W., Guerrero-García, P., & Santos-Palomo, A. (2006). A basis-deficiency-allowing primal phase-I algorithm using the most-obtuse-angle column rule. Computers & Mathematics with Applications, 51, 903–914.
Malakooti, B., & Al-Najjar, C. (2010). The complex interior-boundary method for linear and nonlinear programming with linear constraints. Applied Mathematics and Computation, 216(7), 1903–1917.
Maros, I. (2003). Computational techniques of the simplex method (Vol. 61). Massachusetts: Springer.
Mitra, G., Tamiz, M., & Yadegar, J. (1988). Experimental investigation of an interior search method within a simplex framework. Communications of the ACM, 31, 1474–1482.
Murty, K., & Fathi, Y. (1984). A feasible direction method for linear programming. Operations Research Letters, 3(3), 121–127.
Orlin, J. B. (1993). A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41(2), 338–350.
Orlin, J. B. (1997). A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming, 78(2), 109–129.
Orlin, J. B., Plotkin, S. A., & Tardos, É. (1993). Polynomial dual network simplex algorithms. Mathematical programming, 60(1–3), 255–276.
Pan, P. Q. (2008). A largest-distance pivot rule for the simplex algorithm. European Journal of Operational Research, 187(2), 393–402.
Pan, P. Q. (2010). A fast algorithm for linear programming. Journal of Computational Mathematics, 28(6), 837–847.
Papamanthou, C., Paparrizos, K., & Samaras, N. (2004). Computational experience with exterior point algorithms for the transportation problem. Applied Mathematics and Computation, 158(2), 459–475.
Papamanthou, C., Paparrizos, K., & Samaras, N. (2005). A parametric visualization software for the assignment problem. Yugoslav Journal of Operations Research, 15(1), 1–12.
Papamanthou, C., Paparrizos, K., Samaras, N., & Sifaleras, A. (2010). On the initialization methods of an exterior point algorithm for the assignment problem. International Journal of Computer Mathematics, 87(8), 1831–1846.
Papamanthou, C., Paparrizos, K., Samaras, N., & Stergiou, K. (2008). Worst case examples of an exterior point algorithm for the assignment problem. Discrete Optimization, 5(3), 605–614.
Paparrizos, K. (1988). A non-dual signature method for the assignment problem and a generalization of the dual simplex-method for the transportation problem. RAIRO, 22(3), 269–289.
Paparrizos, K. (1991a). An infeasible (exterior point) simplex algorithm for assignment problems. Mathematical Programming, 51(1), 45–54.
Paparrizos, K. (1991b). A relaxation column signature method for assignment problems. European Journal of Operational Research, 50(2), 211–219.
Paparrizos, K. (1993). An exterior point simplex algorithm for (general) linear programming problems. Annals of Operations Research, 46–47(2), 497–508.
Paparrizos, K. (1996a). A new primal and dual pivoting rule for the simplex algorithm. In Proceedings of the SYMOPIS’ 96, Zlatibor (pp. 448–453).
Paparrizos, K. (1996b). A non improving simplex algorithm for transportation problems. RAIRO, 30(1), 1–15.
Paparrizos, K. (1997). Pivoting algorithms generating two paths. In: International symposium on mathematical programming (ISMP’ 97), (p. 207); (book of abstracts). Laussane: EPFL Switzerland.
Paparrizos, K., Samaras, N., & Sifaleras, A. (2009a). A new exterior simplex type algorithm for the minimum cost network flow problem. Computers & Operations Research, 36(4), 1176–1190.
Paparrizos, K., Samaras, N., & Tsiplidis, K. (2009b). Pivoting algorithms for linear programming generating two paths. In C. A. Floudas & P. M. Pardalos (Eds.), Encyclopedia of optimization (2nd ed., pp. 2965–2969). New York: Springer.
Paparrizos, K., Samaras, N., & Stephanides, G. (2003a). An efficient simplex type algorithm for sparse and dense linear programs. European Journal of Operational Research, 148(2), 323–334.
Paparrizos, K., Samaras, N., & Stephanides, G. (2003b). A new efficient primal dual simplex algorithm. Computers & Operations Research, 30(9), 1383–1399.
Paparrizos, K., Samaras, N., & Triantafyllidis, C. (2008). A computational study of exterior point simplex algorithm variations. In: Proceedings of 20th Hellenic Operational Research Society, Spetses, Greece (pp. 777–785).
Paparrizos, K., Samaras, N., & Tsiplidis, K. (1995). Some results on the finiteness of an exterior point simplex algorithm. In: Proceedings of the 3rd Balkan Conference on Operations Research, Thessaloniki, Greece (Vol. 1, pp. 402–414).
Phillips, N. V., Glover, F., & Klingman, D. (1992). Network models in optimization and their applications in practice. New York: Wiley.
Ploskas, N., & Samaras, N. (2015). Efficient GPU-based implementations of simplex type algorithms. Applied Mathematics and Computation, 250, 552–570.
Ploskas, N., Samaras, N., & Sifaleras, A. (2009). A parallel implementation of an exterior point algorithm for linear programming problems. In: Proceedings of the 9th Balkan conference on operational research (BALCOR 2009), Constanta, Romania.
Portugal, L., Bastos, F., Júdice, J., Paixão, J., & Terlaky, T. (1996). An investigation of interior-point algorithms for the linear transportation problem. SIAM Journal on Scientific Computing, 17(5), 1202–1223.
Reinelt, G. (1991). TSPLIB: A traveling salesman problem library. INFORMS Journal on Computing, 3(4), 376–384.
Roos, C. (1990). An exponential example for Terlaky’s pivoting rule for the criss-cross simplex method. Mathematical Programming, 46(1), 79–84.
Russell, E. J. (1969). Letters to the editor: Extension of Dantzig’s algorithm to finding an initial near-optimal basis for the transportation problem. Operations Research, 17(1), 187–191.
Samaras, N. (2001). Computational improvements and efficient implementation of two path pivoting algorithms. Ph.D. thesis, Dept. of Applied Informatics, University of Macedonia.
Samaras, N., & Sifaleras, A. (2007). A comparative computational study of exterior point algorithms for the assignment problem. In: Proceedings of 19th national conference of Hellenic Operational Research Society (HELORS), Arta, Greece.
Samaras, N., Sifaleras, A., & Triantafyllidis, C. (2009). A primal–dual exterior point algorithm for linear programming problems. Yugoslav Journal of Operations Research, 19(1), 123–132.
Sherali, H. D., Özdaryal, B., Adams, W. P., & Attia, N. (2001). On using exterior penalty approaches for solving linear programming problems. Computers and Operations Research, 28, 1049–1074.
Sifaleras, A. (2013). Minimum cost network flows: Problems, algorithms, and software. Yugoslav Journal of Operations Research, 23(1), 3–17.
Terlaky, T. (1985). A convergent criss-cross method. Optimization, 16(5), 683–690.
Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: A survey on recent theoretical developments. Annals of Operations Research, 46(1), 203–233.
Triantafyllidis, C., & Samaras, N. (2014). Three nearly scaling invariant versions of an exterior point algorithm for linear programming. Optimization: A Journal of Mathematical Programming and Operations Research. To appear.
Väliaho, H. (1992). A new proof for the criss-cross method for quadratic programming. Optimization, 25(4), 391–400.
Vygen, J. (2002). On dual minimum cost flow algorithms. Mathematical Methods of Operations Research, 56(1), 101–126.
Wolfe, P. (1959). The simplex method for quadratic programming. Econometrica: Journal of the Econometric Society, 27, 382–398.
Yeh, W. C., & Corley, H. (2009). A simple direct cosine simplex algorithm. Applied Mathematics and Computation, 214(1), 178–186.
Zhang, S. (1999). New variants of finite criss-cross pivot algorithms for linear programming. European Journal of Operational Research, 116(3), 607–614.
Zionts, S. (1969). The criss-cross method for solving linear programming problems. Management Science, 15(7), 426–445.
Zionts, S. (1972). Some empirical tests of the criss-cross method. Management Science, 19(4–Part–1), 406–410.
Acknowledgments
It is with sorrow that we note that, during the preparation of this paper, the first author Prof. Konstantinos Paparrizos, suddenly and unexpectedly passed away. Prof. Konstantinos Paparrizos was a well respected and loved colleague for the Operations Research community, at the international level, for his excellent scientific activity and sincerity. He was a very active researcher and he had successfully stimulated many young scientists. The main research results of his career, together with contributions from the other two co-authors who were honored to be supervised by him during their Ph.D. studies, are presented in this paper, which we dedicate to his memory. Finally, we would also like to express our gratitude to the referees, whose their instructive comments greatly improved the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Paparrizos, K., Samaras, N. & Sifaleras, A. Exterior point simplex-type algorithms for linear and network optimization problems. Ann Oper Res 229, 607–633 (2015). https://doi.org/10.1007/s10479-014-1769-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-014-1769-1