Skip to main content

Advertisement

Log in

Experimental analysis of crossover and mutation operators on the quadratic assignment problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In genetic algorithms crossover is the most important operator where pair of chromosomes and crossover site along their common length are selected randomly. Then the information after the crossover site of the parent chromosomes is swapped. On the other hand, mutation operator randomly alters some genes of a chromosome, and thus diversifies the search space. We consider three crossover and ten mutation operators for the genetic algorithms which are then compared for the quadratic assignment problem on some benchmark QAPLIB instances. The experimental study shows the effectiveness of the sequential constructive crossover and the adaptive mutation operators for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acan, A. (2005). An external partial permutations memory for ant colony optimization. Lecture Notes in Computer Science, 3448, 1–11.

  • Ahmed, Z. H. (2010). Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. International Journal of Biometrics and Bioinformatics, 3(6), 96–105.

    Google Scholar 

  • Ahmed, Z. H. (2011). Multi-parent extension of sequential constructive crossover for the traveling salesman problem. International Journal of Operational Research, 11(3), 331–342.

    Article  Google Scholar 

  • Ahmed, Z. H. (2013a). A new reformulation and an exact algorithm for the quadratic assignment problem. Indian Journal of Science and Technology, 6(4), 4368–4377.

    Google Scholar 

  • Ahmed, Z.H. (2013b). A hybrid genetic algorithm for the bottleneck traveling salesman problem. ACM Transactions on Embedded Computing Systems, 12(1), Art No. 9.

  • Ahmed, Z. H. (2013c). An experimental study of a hybrid genetic algorithm for the maximum travelling salesman problem. Mathematical Sciences, 7(1), 1–7.

    Article  Google Scholar 

  • Ahmed, Z. H. (2014a). The ordered clustered travelling salesman problem: A hybrid genetic algorithm. The Scientific World Journal, 2014(258207), 13. doi:10.1155/2014/258207.

  • Ahmed, Z. H. (2014b). Improved genetic algorithms for the traveling salesman problem. International Journal of Process Management and Benchmarking, 4(1), 109–124.

    Article  Google Scholar 

  • Ahmed, Z. H. (2014c). A data-guided lexisearch algorithm for the quadratic assignment problem. Indian Journal of Science and Technology, 7(4), 480–490.

    Google Scholar 

  • Ahmed, Z. H. (2014d). A simple genetic algorithm using sequential constructive crossover for the quadratic assignment problem. Journal of Scientific and Industrial Research, 73(12), 763–766.

    Google Scholar 

  • Ahmed, Z.H. (2014e). An improved genetic algorithm using adaptive mutation operator for the quadratic assignment problem. In: Proceedings of 37th international conference on telecommunications and signal processing 2014 (TSP 2014), (pp. 616–620). Berlin, Germany.

  • Ahmed, Z.H., Bennaceur, H., Vulla, M.H., & Altukhaim, F. (2014). A hybrid genetic algorithm for the quadratic assignment problem. In: Proceedings of second international conference on emerging research in computing, information, communication and applications (ERCICA 2014), Vol. 3 (pp. 916–922). Bangalore, India.

  • Ahuja, R., Orlin, J. B., & Tiwari, A. (2000). A greedy genetic algorithm for the quadratic assignment problem. Computers and Operations Research, 27(10), 917–934.

    Article  Google Scholar 

  • Banzhaf, W. (1990). The molecular traveling salesman. Biological Cybernetics, 64, 7–14.

    Article  Google Scholar 

  • Bos, J. (1993). A quadratic assignment problem solved by simulated annealing. Journal of Environmental Management, 37(2), 127–145.

    Article  Google Scholar 

  • Brusco, M. J., & Stahl, S. (2000). Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. Journal of Classification, 17(2), 197–223.

    Article  Google Scholar 

  • Burkard, R. E., & Bonniger, T. (1983). A heuristic for quadratic Boolean programs with applications to quadratic assignment problems. European Journal of Operation Research, 13, 374–386.

    Article  Google Scholar 

  • Burkard, R.E., Cela, E., Karisch, S.E., & Rendl, F. (1997). QAPLIB - a quadratic assignment problem library. Journal of Global Optimization, 10, 391–403. See also at http://www.seas.upenn.edu/qaplib/.

  • Davis, L. (1985). Job-shop scheduling with Genetic Algorithms. In: Proceedings of an international conference on genetic algorithms and their applications, (pp. 136–140).

  • Deb, K. (1995). Optimization for Engineering Design: Algorithms and Examples. New Delhi, India: Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Deep, K., & Mebrahtu, H. (2011). Combined mutation operators of genetic algorithm for the travelling salesman problem. International Journal of Combinatorial Optimization Problems and Informatics, 2(3), 1–23.

    Google Scholar 

  • Drezner, Z. (2003). A new genetic algorithm for the quadratic assignment problem. Informs Journal on Computing, 15(3), 320–330.

    Article  Google Scholar 

  • Drezner, Z., Hahn, P. M., & Taillard, E. D. (2005). Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Annals of Operations Research, 139, 65–94.

    Article  Google Scholar 

  • Duman, E., & Ilhan, O. (2007). The quadratic assignment problem in the context of the printed circuit board assembly process. Computers and Operations Research, 34, 163–179.

    Article  Google Scholar 

  • Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences, 217, 65–77.

    Article  Google Scholar 

  • Elshafei, A. N. (1977). Hospital layout as a quadratic assignment problem. Operations Research Quarterly, 28(1), 167–179.

    Article  Google Scholar 

  • Erdoğan, G., & Tansel, B. (2007). A branch-and-cut algorithm for the quadratic assignment problems based on linearizations. Computers and Operations Research, 34, 1085–1106.

    Article  Google Scholar 

  • Fogel, D. (1990). A parallel processing approach to a multiple travelling salesman problem using evolutionary programming. In: Proceedings of the fourth annual symposium on parallel processing, Fullerton, California (pp. 318–326).

  • Fogel, D. B. (1988). An evolutionary approach to the travelling salesman problem. Biological Cybernetics, 60(2), 139–144.

    Article  Google Scholar 

  • Forsberg, J. H., Delaney, R. M., Zhao, Q., Harakas, G., & Chandran, R. (1994). Analyzing lanthanide-included shifts in the NMR spectra of lanthanide (III) complexes derived from 1,4,7,10-tetrakis (N, N-diethylacetamido)-1,4,7,10-tetraazacyclododecane. Inorganic Chemistry, 34, 3705–3715.

    Article  Google Scholar 

  • Gen, M., & Cheng, R. (1997). Genetic algorithm and engineering design. New York: Wiley.

    Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1976). Scheduling parallel production lines with changeover costs: Practical applications of a quadratic assignment/LP approach. Operations Research, 24, 595–610.

    Article  Google Scholar 

  • Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM Journal on Applied Mathematics, 10, 305–313.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. New York: Addison-Wesley.

    Google Scholar 

  • Goldberg, D. E., & Lingle, R. (1985). Alleles, loci and the travelling salesman problem. In: J. J. Grefenstette (Ed.), Proceedings of the \(1^{{\rm st}}\) international conference on genetic algorithms and their applications (pp. 154–159). Lawrence Erlbaum Associates, Hilladale: NJ.

  • Hahn, P. M., Hightower, W. L., Johnson, T. A., Guignard-Spielberg, M., & Roucairol, C. (2001). Tree elaboration strategies in branch and bound algorithms for solving the quadratic assignment problem. Yugoslavian Journal of Operational Research, 11(1), 41–60.

    Google Scholar 

  • Heffley, D. R. (1980). Decomposition of the Koopmans-Beckmann problem. Regional Science and Urban Economics, 10(4), 571–580.

    Article  Google Scholar 

  • Hubert, L. (1987). Assignment methods in combinatorial data analysis, statistics: Textbooks and monographs series, 73, Marcel Dekker.

  • Koopmans, T. C., & Beckmann, M. J. (1957). Assignment problems and the location of economic activities. Econometrica, 25, 53–76.

    Article  Google Scholar 

  • Krarup, J., & Pruzan, P. M. (1978). Computer-aided layout design. Mathematical Programming Study, 9, 75–94.

    Article  Google Scholar 

  • Lim, M. H., Yuan, Y., & Omatu, S. (2000). Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Computational Optimization and Applications, 15, 249–268.

    Article  Google Scholar 

  • Louis, S. J., & Tang, R. (1999). Interactive genetic algorithms for the traveling salesman problem. In: Proceedings of the genetic and evolutionary computing conference (GECCO), (pp. 385–392).

  • Merz, P., & Freisleben, B. (2000). Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation, 4, 337–352.

    Article  Google Scholar 

  • Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Migkikh, V. V., Topchy, A. A., Kureichik, V. M., & Tetelbaum, A. Y. (1996). Combined genetic and local search algorithm for the quadratic assignment problem. In: Proceedings of the first international conference on evolutionary computation and its applications (EVCA’96), (pp. 335–341). Moscow: Presidium of the Russian Academy of Sciences.

  • Mills, P., Tsang, E., & Ford, J. (2003). Applying an extended guided local search to the quadratic assignment problem. Annals of Operations Research, 118(1–4), 121–135.

    Article  Google Scholar 

  • Miranda, G., Luna, H. P. L., Mateus, G. R., & Ferreira, R. P. M. (2005). A performance guarantee heuristic for electronic components placement problems including thermal effects. Computers and Operations Research, 32, 2937–2957.

    Article  Google Scholar 

  • Misevicius, A. (2004). An improved hybrid optimization algorithm for the quadratic assignment problem. Mathematical Modelling and Analysis, 9(2), 149–168.

    Google Scholar 

  • Misevicius, A., & Kilda, B. (2005). Comparison of crossover operators for the quadratic assignment problem. Information Technology and Control, 34(2), 109–119.

    Google Scholar 

  • Misevicius, A., & Rubliauskas, D. (2005). Performance of hybrid genetic algorithm for the grey pattern problem. Information Technology and Control, 34(1), 15–24.

    Google Scholar 

  • Oliver, I. M., Smith, D. J., & Holland, J. R. C. (1987). A study of permutation crossover operators on the travelling salesman problem. In: J. J. Grefenstette (Ed.), Genetic algorithms and their applications, proceedings of the \(2^{{\rm nd}}\) international conference on genetic algorithms (pp. 224–230). Lawrence Erlbaum Associates, Hilladale: NJ.

  • Oliveira, C. A. S., Pardalos, M. P., & Resende, M. G. G. (2004). GRASP with path relinking for the quadratic assignment problem. In: Experimental and efficient algorithms, third international workshop (WEA 2004), Brazil, LNCS, 3059, (pp. 356–368). Springer.

  • Paul, G. (2011). An efficient implementation of the robust tabu search heuristic for sparse quadratic assignment problems. European Journal of Operational Research, 209(3), 215–218.

    Article  Google Scholar 

  • Pollatschek, M. A., Gershoni, N., & Radday, Y. T. (1976). Optimization of the typewriter keyboard by simulation. AngewandteI Informatik, 17, 438–439.

    Google Scholar 

  • Puchinger, J., & Raidl, G. R. (2005). Combining metaheuristics and exact algorithms in combinatorial optimization: A Survey and Classification. In: J. Mira and J. R. ’Alvarez (Eds.), IWINAC 2005, LNCS 3562, (pp. 41–53).

  • Sahni, S., & Gonzales, T. (1976). P-complete approximation problems. Journal of the Association for Computing Machinery, 23, 555–565.

    Article  Google Scholar 

  • Serpell, M., & Smith, J. E. (2010). Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Evolutionary Computation, 18(3), 491–514.

    Article  Google Scholar 

  • Steinberg, L. (1961). The backboard wiring problem: A placement algorithm. SIAM Review, 3, 37–50.

    Article  Google Scholar 

  • Taillard, E. (1995). Comparison of iterative searches for the quadratic assignment problem. Location Sciences, 3, 87–105.

    Article  Google Scholar 

  • Tate, D. E., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers and Operations Research, 22, 73–83.

    Article  Google Scholar 

  • Vázquez, M., & Whitley, L. D. (2000). A hybrid genetic algorithm for the quadratic assignment problem. In L. D. Whitley, D. E. Goldberg, E. CantúPaz, et al. (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO’00) (pp. 135–142). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Wilhelm, M. R., & Ward, T. L. (1987). Solving quadratic assignment problems by simulated annealing. IEEE Transactions, 19, 107–119.

    Article  Google Scholar 

  • Zhang, H., Beltran-Royo, C., & Ma, L. (2013). Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers. Annals of Operations Research, 207, 261–278.

    Article  Google Scholar 

Download references

Acknowledgments

The author is very much thankful to the honorable reviewers for their comments and constructive suggestions which helped the author to improve the paper. This research was supported by the NSTIP strategic technologies program number (10) in the Kingdom of Saudi Arabia vide Award No.11-INF1788-08.The author is very much thankful to the NSTIP for its financial and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakir Hussain Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, Z.H. Experimental analysis of crossover and mutation operators on the quadratic assignment problem. Ann Oper Res 247, 833–851 (2016). https://doi.org/10.1007/s10479-015-1848-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1848-y

Keywords

Navigation