Skip to main content
Log in

Diversity of payment contracts in a decentralized assembly system

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Conventional wisdom views that in an assembly system, suppliers have to accept a unified payment contract when transacting with a manufacturer. However, in practice, the implementation of a payment contract is clearly more dependent on the channel power of the supplier in the supply chain. This paper considers an assembly system consisting of two suppliers with different channel powers, and identifies three payment contracts, namely, on-delivery payment, on-agreed-time payment, and ready-to-assemble payment. We investigate the equilibrium delivery and timing decisions of firms under three different cases distinguished by the combinations of different payment contracts in the system. Based on both theoretical and quantitative analyses, three major results are obtained. First, the delivery times of suppliers are cost-driven and time-related. Second, the buffer time of the manufacturer can balance the production lead times of the supplier. Third, the supply chain achieves the lowest cost when the core supplier chooses an on-agreed-time payment contract, and the general supplier adopts a ready-to-assemble payment contract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chu, H., Wang, J., Jin, Y., & Suo, H. S. (2006). Decentralized inventory control in a two-component assembly system. International Journal of Production Economics, 102(2), 255–264.

    Article  Google Scholar 

  • Gerchak, Y., Wang, Y., & Yano, C. A. (1994). Lot sizing in assembly systems with random component yields. IIE Transactions, 26(2), 19–24.

    Article  Google Scholar 

  • Granot, D., & Yin, S. (2008). Competition and cooperation in decentralized push and pull assembly systems. Management Science, 54(4), 733–747.

    Article  Google Scholar 

  • Guan, X., Li, G., & Yin, Z. (2014). The implication of time-based payment contract in the decentralized assembly system. Annals of Operation Research. doi:10.1007/s10479-014-1579-5.

  • Guan, X., & Liu, M. Q. (2013). Coordination in the decentralized assembly system with dual supply modes. Discrete Dynamics in Nature and Society, 1–9. doi:10.1155/2013/381987.

  • Güler, M. G. (2015). Coordinating decentralized assembly systems with random yield and random demand. International Journal of Production Research, 53(3), 886–896.

    Article  Google Scholar 

  • Güler, M. G., & Bilgic, T. (2009). On coordinating an assembly system under random yield and random demand. European Journal of Operational Research, 196(1), 342–350.

    Article  Google Scholar 

  • Gurnani, H., & Gerchak, Y. (2007). Coordination in decentralized assembly systems with uncertain component yields. European Journal of Operational Research, 176(3), 1559–1576.

    Article  Google Scholar 

  • Haibatolah, S., Ahmad, M., & Mehdi, H. (2013). Determining the periodicity and planned lead time in serial-production systems with dependent demand and uncertain lead time. Uncertain Supply Chain Management, 1(2), 87–98.

  • Hayya, J. C., Harrison, T. P., & James He, X. (2011). The impact of stochastic lead time reduction on inventory cost under order crossover. European Journal of Operational Research, 211(2), 274–281.

    Article  Google Scholar 

  • He, Y., & Wang, S. Y. (2012). Analysis of production-inventory system for deteriorating items with demand disruption. International Journal of Production Research, 50(16), 4580–4592.

    Article  Google Scholar 

  • Hnaien, F., Delorme, X., & Dolgui, A. (2010). Multi-objective optimization for inventory control in two-level assembly systems under uncertainty of lead times. Computers & Operations Research, 37(11), 1835–1843.

    Article  Google Scholar 

  • Hoa, J. W., & Fang, C. C. (2013). Production capacity planning for multiple products under uncertain demand conditions. International Journal of Production Economics, 141(2), 593–604.

    Article  Google Scholar 

  • Hoque, M. (2013). A vendor–buyer integrated production-inventory model with normal distribution of lead time. International Journal of Production Economics, 144(2), 409–417.

  • Inderfurth, K., & Kiesmüller, G.P. (2015). Exact and heuristic linear-inflation policies for an inventory model with random yield and arbitrary lead times. European Journal of OperationalResearch, 245(1), 109–120.

  • Jiang, L., & Wang, Y. Z. (2010). Supplier Competition in decentralized assembly systems with price-sensitive and uncertain demand. Manufacturing & Service Operations Management, 12(1), 93–101.

    Article  Google Scholar 

  • Karmarkar, U. S. (1993). Manufacturing lead times, order release and capacity loading. Handbooks in Operations Research and Management Science, 4, 287–329.

    Article  Google Scholar 

  • Kelle, P., Transchel, S., & Minner, S. (2009). Buyer–supplier cooperation and negotiation support with random yield consideration. International Journal of Production Economics, 118(1), 152–159.

    Article  Google Scholar 

  • Kutzner, S. C., & Kiesmüller, G. P. (2013). Optimal control of an inventory-production system with state-dependent random yield. European Journal of Operational Research, 227(3), 444–452.

    Article  Google Scholar 

  • Kwon, H. D., Lippman, S. A., Cardle, K. M., & Tang, C. S. (2010). Project management contracts with delayed payments. Manufacturing & Service Operations Management, 12(4), 692–707.

    Article  Google Scholar 

  • Li, G., Gao, T., Ma, S. H., & Wang, Z. H. (2011). Supply collaboration in supply chain under uncertain delivery time and BOM pay-on-produce mode. Computer Integrated Manufacturing Systems, 17(2), 369–379. (in Chinese).

  • Li, G., Liu, M. Q., Wang, Z. H., & Peng, B. Z. (2013). Supply coordination based on bonus policy in assembly under uncertain delivery time. Chinese Journal of Mechanical Engineering, 26(2), 293–393.

    Article  Google Scholar 

  • Li, G., Zhang, X., & Ma, S. H. (2010). Supply coordination model of two-suppliers and one-manufacturer system based on different delivery policies. Chinese Journal of Management Science, 18(5), 66–75. (in Chinese).

    Google Scholar 

  • Ma, S. H., Yin, Z., & Guan, X. (2013). The role of spot market in a decentralized supply chain under random yield. International Journal of Production Research, 51(21), 6410–6434.

    Article  Google Scholar 

  • Roya, A., Sana, S. S., & Chaudhuri, K. (2012). Optimal replenishment order for uncertain demand in three layer supply chain. Economic Modelling, 29(6), 2274–2282.

    Article  Google Scholar 

  • Shanthikumar, J. G., & Sumita, U. (1988). Approximations for the time spent in a dynamic job shop with applications to due date assignment. International Journal of Production Research, 26(8), 1329–1352.

    Article  Google Scholar 

  • Song, J. S., & Zipkin, P. (2003). Supply chain operations: Assemble-to-order systems. In S. Graves & R. D. Kok (Eds.), Hand books in operations research and management science (Vol. 11). Amsterdam: North Holland.

    Google Scholar 

  • Song, J. S., & Yao, D. D. (2002). Performance analysis and optimization of assemble to order with random leadtimes. Operations Research, 50(5), 889–903.

    Article  Google Scholar 

  • Tang, R., & Grubbstrom, W. (2003). The detailed coordination problem in a two-level supply chain with stochastic leadtimes. International Journal of Production Economic, 81–82, 415–429.

    Article  Google Scholar 

  • Thomas, W., & Heinrich, K. (2013). Analysis of a multi-component periodic review inventory system in an assembly environment. OR Spectrum, 35(1), 107–126.

    Article  Google Scholar 

  • Wang, Y., & Gerchak, Y. (2003). Capacity games in assembly systems with uncertain demand. Manufacturing & Service Operations Management, 5(3), 252–267.

    Article  Google Scholar 

  • Yano, C. A. (1987). Stochastic lead times in two-level assembly systems. IIE Transactions, 19(4), 371–378.

    Article  Google Scholar 

  • Yano, C. A., & Lee, H. L. (1995). Lot sizing with random yields: A review. Operations Research, 43(2), 331–334.

    Article  Google Scholar 

  • Zhang, J. L., & Chen, J. (2013). Supplier selection and procurement decisions with uncertain demand, fixed selection costs and quantity discounts. Computers & Operations Research., 40(11), 2703–2710.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Youth Foundation for Humanities and Social Sciences of Ministry of Education of China [14YJC630041]; China Postdoctoral Science special Foundation [2014T70741]; National Natural Science Foundation of China [71402126], [71102174], [71372019], [71371147], [71471057] and [71231007]; Beijing Higher Education Young Elite Teacher Project [YETP1173]; Specialized Research Fund for Doctoral Program of Higher Education of China [20111101120019]; Beijing Philosophy and Social Science Foundation of China [11JGC106].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guan.

Appendix

Appendix

Proof of Corollary 1

For Supplier 2, the cost under on-delivery payment condition is less than that of on-agreed-time payment. With the conclusions from Case 1, namely, \(l_1 ^{A}=T-D^{A}\) and \(F_2 (l_2 ^{A})=\frac{\beta _2 }{h_2 +\beta _2 }\), \(F_2 (l_2 ^{A})\le F_2 (T-D^{A})\) and \(F_2 (T-D^{A})\le 1\) must exist. When \(\frac{h_2 }{\beta _2 }\rightarrow 0\), \(F_2 (l_2 ^{A})=\frac{\beta _2 }{h_2 +\beta _2 }\rightarrow 1\), a ratio of \(\frac{h_2 }{\beta _2 }\) must exist, making \(l_2 ^{A}\rightarrow T-D^{A}\), which means that Supplier 2 starts production at the time of receipt of the manufacturer’s order. \(\square \)

Proof of Corollary 2

Given \(h_2 <\beta _2 \), then \(F_2 (l_2 ^{A})=\frac{\beta _2 }{h_2 +\beta _2 }>\frac{\beta _2 }{\beta _2 +\beta _2 }=\frac{1}{2}\). As \(h_2 \rightarrow \beta _2 \), \(F_2 (l_2 ^{A})\rightarrow \frac{1}{2}\), in which the closer the inventory cost and delay cost, the higher the likelihood of the supplier to reach the lower boundary. \(\square \)

Proof of Proposition 2

Expanding Eq. (5) and taking both the first-order and second-order derivative of D, we can show that

$$\begin{aligned} \frac{\partial {\textit{CM}}^{A}}{\partial D}= & {} -\beta \cdot \left[ \int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } } \right] \nonumber \\&+\,(h_1 +h_2 )\int \limits _0^{l_2 +D} {\int \limits _0^{l_1 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \end{aligned}$$
(21)

Given

$$\begin{aligned}&\int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } }\nonumber \\&\quad +\,\int \limits _0^{l_1 +D} {\int \limits _0^{l_2 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =1, \end{aligned}$$

Equation (21) can be simplified to obtain

$$\begin{aligned} \frac{\partial CM^{A}}{\partial D}= & {} -\beta \cdot [1-F_1 (l_1 +D)F_2 (l_2 +D)]+(h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D) \\= & {} (\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta \\ \end{aligned}$$

and \(\frac{\partial ^{2}CM^{A}}{\partial D^{2}}=(\beta +h_1 +h_2 )\cdot [F_1 (l_1 +D)f_2 (l_2 +D)+f_1 (l_1 +D)F_2 (l_2 +D)]>0\)

Therefore, the manufacturer’s expected cost is a convex function of buffer time.

Finding a \(D^{A}\) to meet \(\frac{\partial CM^{A}}{\partial D}=0\) is certain, enabling the manufacturer to obtain the minimum cost, namely, \((\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta =0\). \(\square \)

Proof of Proposition 3

Expanding Eq. (8) and taking both the first-order and second-order derivatives of \(l_2 \), we can show that

$$\begin{aligned} \frac{\partial {\textit{CS}}_2 ^{B}}{\partial l_2 }= & {} h_2 \cdot \left[ \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _0^{l_1 } {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \right] \nonumber \\&-\,\beta _2 \cdot \int \limits _{l_2 }^\infty {f_2 (t_2 )dt_2 } \nonumber \\= & {} h_2 \cdot \left[ \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +F_1 (l_1 )F_2 (l_2 )\right] -\beta _2 \cdot \left[ 1-F_2 (l_2 )\right] \nonumber \\= & {} h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\left[ h_2 \cdot F_1 (l_1 )+\beta _2 \right] F_2 (l_2 )-\beta _2 \nonumber \\ \frac{\partial ^{2}CS_2 ^{B}}{\partial l_2 ^{2}}= & {} h_2 \cdot \left[ \int \limits _{l_1 }^\infty {f_2 (t_1 -l_1 +l_2 )f_1 (t_1 )dt_1 } +\int \limits _0^{l_1 } {f_2 (l_2 )f_1 (t_1 )dt_1 } \right] \nonumber \\&+\,\beta _2 \cdot f_2 (l_2 )>0 \end{aligned}$$
(22)

Thus, the expected cost of Supplier 2 is a convex function of its lead time. When \(l_2 =0\), \(\frac{\partial CS_2 ^{B}}{\partial l_2 }=h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } -\beta _2 \cdot \int \limits _{l_2 }^\infty {f_2 (t_2 )dt_2 } =h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } -\beta _2 <h_2 -\beta _2 <0\), while \(l_2 \rightarrow \infty \), \(\frac{\partial CS_2 ^{B}}{\partial l_2 }=h_2 \cdot [\int \limits _{l_1 }^\infty {f_1 (t_1 )dt_1 } +\int \limits _0^{l_1 } {f_1 (t_1 )dt_2 } ]>0\). Hence, you can find a proper \(l_2 ^{B}\) that makes \(\frac{\partial CS_2 ^{B}}{\partial l_2 }=0\).

When \(l_2 ^{B}\) meets \(h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +[h_2 \cdot F_1 (l_1 )+\beta _2 ]F_2 (l_2 )-\beta _2 =0\), Supplier 2 reaches the minimum value of expected cost.

Proof of Proposition 4

Expanding Eq. (10) and taking both the first-order and second-order derivative of D, we can show that

$$\begin{aligned} \frac{\partial {\textit{CM}}^{B}}{\partial D}= & {} -\beta \cdot \left[ \int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } } \right] \nonumber \\&+\,h_1 \cdot \int \limits _0^{l_2 +D} {\int \limits _0^{l_1 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \nonumber \\&+\,h_2 \cdot \left\{ \int \limits _{l_1 }^{l_1 +D} {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 }^{l_2 +D} {\int \limits _0^{t_2 -l_2 +l_1 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } }\right. \nonumber \\&\left. +\,\int \limits _0^{l_1 } {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \right\} \end{aligned}$$
(23)

Given

$$\begin{aligned}&\int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } } \nonumber \\&\quad +\,\int \limits _0^{l_1 +D} {\int \limits _0^{l_2 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =1 \end{aligned}$$

and

$$\begin{aligned}&\int \limits _{l_1 }^{l_1 +D} {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 }^{l_2 +D} {\int \limits _0^{t_2 -l_2 +l_1 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \nonumber \\&\quad +\,\int \limits _0^{l_1 } {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =\int \limits _0^{l_2 +D} {\int \limits _0^{l_1 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } , \end{aligned}$$

Equation (23) can be simplified as

$$\begin{aligned} \frac{\partial {\textit{CM}}^{B}}{\partial D}= & {} -\beta \cdot [1-F_1 (l_1 +D)F_2 (l_2 +D)]+(h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D) \\= & {} (\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta \end{aligned}$$

and \(\frac{\partial ^{2}CM^{A}}{\partial D^{2}}=(\beta +h_1 +h_2 )\cdot [F_1 (l_1 +D)f_2 (l_2 +D)+f_1 (l_1 +D)F_2 (l_2 +D)]>0\)

Therefore, as proven in Proposition 2, the expected cost of the manufacturer is a convex function of buffer time, and we can find \(D^{B}\) satisfying \(\frac{\partial CM^{B}}{\partial D}=0\), enabling the manufacturer to obtain the minimum cost in Case 2, namely, \((\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta =0\). \(\square \)

Proof of Proposition 5

Similar to Propositions 2 and 4, we expand Eq. (16) and taking both the first-order and second-order derivative of D, we can show that

$$\begin{aligned} \frac{\partial CM^{C}}{\partial D}= & {} -\beta \cdot \left[ \int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } } \right] \nonumber \\&+\,h_1 \cdot \int \limits _0^{l_2 +D} {\int \limits _0^{l_1 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \nonumber \\&+\,h_2 \cdot \left\{ \int \limits _{l_1 }^{l_1 +D} {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 }^{l_2 +D} {\int \limits _0^{t_2 -l_2 +l_1 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \right. \nonumber \\&\left. +\int \limits _0^{l_1 } {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \right\} \end{aligned}$$
(24)

Given

$$\begin{aligned}&\int \limits _{l_1 +D}^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 +D}^\infty {\int \limits _0^{t_2 -l_2 +l_1 } {f_1 (t_1 )f_2 (t_2 )dt_1 dt_2 } } \nonumber \\&\quad +\,\int \limits _0^{l_1 +D} {\int \limits _0^{l_2 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =1 \end{aligned}$$

and

$$\begin{aligned}&\int \limits _{l_1 }^{l_1 +D} {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +\int \limits _{l_2 }^{l_2 +D} {\int \limits _0^{t_2 -l_2 +l_1 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } \nonumber \\&\quad +\int \limits _0^{l_1 } {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =\int \limits _0^{l_2 +D} {\int \limits _0^{l_1 +D} {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } , \end{aligned}$$

Equation (24) can be simplified to obtain

$$\begin{aligned} \frac{\partial CM^{C}}{\partial D}= & {} -\beta \cdot \left[ 1-F_1 (l_1 +D)F_2 (l_2 +D)\right] +(h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D) \\= & {} (\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta \end{aligned}$$

and \(\frac{\partial ^{2}CM^{A}}{\partial D^{2}}=(\beta +h_1 +h_2 )\cdot \left[ F_1 (l_1 +D)f_2 (l_2 +D)+f_1 (l_1 +D)F_2 (l_2 +D)\right] >0\)

Therefore, as is proven in Propositions 2 and 4, the expected cost of the manufacturer is a convex function of buffer time, and we can find \(D^{C}\) satisfying \(\frac{\partial CM^{C}}{\partial D}=0\), enabling the manufacturer to obtain the minimum cost in Case 3, namely, \((\beta +h_1 +h_2 )\cdot F_1 (l_1 +D)F_2 (l_2 +D)-\beta =0\). \(\square \)

Proof of Corollary 3

First, we certify \(l_2 ^{A}>l_2 ^{B}\). The optimal decision variables of Supplier 2 in two cases satisfy Eqs. (4) and (9), that is, \(\left( {h_2 +\beta _2 } \right) F_2 (l_2 ^{A})-\beta _2 =0\) and \(h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +[h_2 \cdot F_1 (l_1 ^{B})+\beta _2 ]F_2 (l_2 ^{B})-\beta _2 =0\).

With \(h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } >h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } =h_2 [1-F_1 (l_1 )]F_2 (l_2 )\), thus

$$\begin{aligned}&h_2 \cdot \int \limits _{l_1 }^\infty {\int \limits _0^{t_1 -l_1 +l_2 } {f_2 (t_2 )f_1 (t_1 )dt_2 dt_1 } } +[h_2 \cdot F_1 (l_1 ^{B})+\beta _2 ]F_2 (l_2 ^{B})-\beta _2 \nonumber \\&\quad >\,h_2 [1-F_1 (l_1 ^{B})]F_2 (l_2 ^{B})+[h_2 \cdot F_1 (l_1 ^{B})+\beta _2 ]F_2 (l_2 ^{B})-\beta _2 \nonumber \\&\quad =\,(h_2 +\beta _2 )F_2 (l_2 ^{B})-\beta _2 \end{aligned}$$
(25)

In both cases, \(l_2 \) meets the condition that the first-order derivation of the cost of Supplier 2 equals 0. Therefore, when the first part of Eq. (4) is narrowed to the right side of Equation (25), \((h_2 +\beta _2 )F_2 (l_2 ^{B})-\beta _2 <0\) must exist, that is, \(F_2 (l_2 ^{A})=\frac{\beta _2 }{h_2 +\beta _2 }\) and \(F_2 (l_2 ^{B})<\frac{\beta _2 }{h_2 +\beta _2 }\), so we can see that \(l_2 ^{A}>l_2 ^{B}\) .

We then prove \(D^{A}<D^{B}\). The optimal decisions of the manufacturer meet Equations (5) and (10), namely, \(F_1 (l_1 ^{A}+D^{A})F_2 (l_2 ^{A}+D^{A})=F_1 (l_1 ^{B}+D^{B})F_2 (l_2 ^{B}+D^{B})=\frac{\beta }{h_1 +h_2 +\beta }\). For \(l_1 ^{A}+D^{A}=l_1 ^{B}+D^{B}\), \(l_2 ^{A}+D^{A}=l_2 ^{B}+D^{B}\) must exist. \(\square \)

Proof of Corollary 4

Given \(l_1 ^{A}+D^{A}=l_1 ^{B}+D^{B}=T\), \(l_2 ^{A}+D^{A}=l_2 ^{B}+D^{B}\), we gain the following equation: \(l_1 ^{A}-l_2 ^{A}=l_1 ^{B}-l_2 ^{B}\). The total costs of the system in Case 1 and Case 2 depend on two overall lead times and the difference between optimal lead times. Hence, the expected costs of the system equal each other in these two cases. \(\square \)

Proof of Proposition 6

In centralized decision making, the cost of the system can be expressed as follows:

$$\begin{aligned} {\textit{TC}}^{0}= & {} \beta \cdot \left[ \int \limits _{L_1 }^\infty {\int \limits _0^{t_1 -L_1 +L_2 } {\left( {t_1 -L_1 } \right) f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 \right. \nonumber \\&\left. +\,\int \limits _{L_2 }^\infty {\int \limits _0^{t_2 -L_2 +L_1 } {\left( {t_2 -L_2 } \right) f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 \right] \\&+\,h_1 \cdot \left\{ \int \limits _{L_2 }^\infty {\int \limits _0^{t_2 -L_2 +L_1 } {\left[ {\left( {t_2 -L_2 } \right) -\left( {t_1 -L_1 } \right) } \right] f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 \right. \nonumber \\&\left. +\,\int \limits _0^{L_2 } {\int \limits _0^{L_1 } {\left( {L_1 -t_1 } \right) f_2 (t_2 )f_1 (t_1 )} dt_2 dt_1 } \right\} \\&+\,h_2 \cdot \left\{ \int \limits _{L_1 }^\infty {\int \limits _0^{t_1 -L_1 +L_2 } {\left[ {\left( {t_1 -L_1 } \right) -\left( {t_2 -L_2 } \right) } \right] f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 \right. \nonumber \\&\left. +\,\int \limits _0^{L_2 } {\int \limits _0^{L_1 } {\left( {L_2 -t_2 } \right) f_2 (t_2 )f_1 (t_1 )} dt_2 dt_1 } \right\} \\ \end{aligned}$$

Taking both the first-order and second-order derivative of \(L_1 \) and \(L_2 \), we can have

$$\begin{aligned} \frac{\partial {\textit{TC}}^{0}}{\partial L_1 }= & {} h_1 \cdot \left[ {\int \limits _{L_2 }^\infty {\int \limits _0^{t_2 -L_2 +L_1 } {f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 +F_1 (L_1 )F_2 (L_2 )} \right] \nonumber \\&-\left( {\beta +h_2 } \right) \cdot \int \limits _{L_1 }^\infty {\int \limits _0^{t_1 -L_1 +L_2 } {f_1 (t_1 )f_2 (t_2 )} } dt_2 dt_1\\ \frac{\partial {\textit{TC}}^{0}}{\partial L_2 }= & {} h_2 \cdot \left[ {\int \limits _{L_1 }^\infty {\int \limits _0^{t_1 -L_1 +L_2 } {f_1 (t_1 )f_2 (t_2 )} } dt_1 dt_2 +F_1 (L_1 )F_2 (L_2 )} \right] \nonumber \\&-\left( {\beta +h_1 } \right) \cdot \int \limits _{L_2 }^\infty {\int \limits _0^{t_2 -L_2 +L_1 } {f_1 (t_1 )f_2 (t_2 )} } dt_2 dt_1\\ \frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_1 ^{2}}= & {} \left( {h_1 +h_2 +\beta } \right) \cdot \left[ {\int \limits _{L_1 }^\infty {f_1 (t_1 )f_2 (t_1 -L_1 +L_2 )dt_1 } +\int \limits _0^{L_2 } {f_1 (L_1 )f_2 (t_2 )} dt_2 } \right] \\ \frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_2 ^{2}}= & {} \left( {h_1 +h_2 +\beta } \right) \cdot \left[ {\int \limits _{L_2 }^\infty {f_2 (t_2 )f_1 (t_2 -L_2 +L_1 )dt_2 } +\int \limits _0^{L_1 } {f_2 (L_2 )f_1 (t_1 )} dt_1 } \right] \\ \frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_1 \partial L_2 }= & {} -\left( {h_1 +h_2 +\beta } \right) \cdot \int \limits _{L_2 }^\infty {f_2 (t_2 )f_1 (t_2 -L_2 +L_1 )dt_2 } ,\\ \frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_2 \partial L_1 }= & {} -\left( {h_1 +h_2 +\beta } \right) \cdot \int \limits _{L_2 }^\infty {f_2 (t_2 )f_1 (t_2 -L_2 +L_1 )dt_2 } \end{aligned}$$
Table 3 Comparison of decision variables and the costs of system in three cases

From the Hessian matrix:

$$\begin{aligned}&\frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_1 ^{2}}\cdot \frac{\partial ^{2}{\textit{TC}}^{0}}{\partial L_2 ^{2}}-\frac{\partial ^{2}TC^{0}}{\partial L_1 \partial L_2 }\cdot \frac{\partial ^{2}TC^{0}}{\partial L_2 \partial L_1 } =\left( {h_1 +h_2 +\beta } \right) ^{2}\cdot \left\{ \left[ {\int \limits _0^{L_2 } {f_1 (L_1 )f_2 (t_2 )} dt_2 } \right] ^{2}\right. \\&\quad \left. +2\cdot \int \limits _0^{L_2 } {f_1 (L_1 )f_2 (t_2 )} dt_2 \cdot \int \limits _{L_2 }^\infty {f_2 (t_2 )f_1 (t_2 -L_2 +L_1 )dt_2 } \right\} >0 \end{aligned}$$

Therefore, the cost of the centralized system is a joint convex function of the lead time of two suppliers, during which the optimal lead times satisfy

$$\begin{aligned} \frac{\partial TC^0 }{\partial L_i }= & {} h_i \cdot \left[ \int \limits _{L_j }^\infty {\int \limits _0^{t_j -L_j +L_i } {f_i (t_i )f_j (t_j )} } dt_i dt_j +F_i (L_i )F_j (L_j )\right] \nonumber \\&-\,(\beta +h_j )\cdot \int \limits _{L_i }^\infty {\int \limits _0^{t_i -L_i +L_j } {f_i (t_i )f_j (t_j )} } dt_j dt_i =0\,\,\,(i,j=1,2,i\ne j) \end{aligned}$$

Then we obtain \(F_i (L_i )F_j (L_j )=A_i \beta /h_j (A_i =\int \limits _{L_j }^\infty {\int \limits _0^{t_j -L_j +L_i } {f_i (t_i )f_j (t_j )} } dt_i dt_j )\), which derives the suppliers’ optimal decision. \(\square \)

Proof of Corollary 5

Propositions 2, 4, and 5 show that the decision variables of Case 1 and Case 2 meet \(F_1 (l_1^A +D^{A})F_2 (l_2^A +D^{A})=F_1 (l_1^B +D^{B})F_2 (l_2^B +D^{B})\). Case 1 and Case 2 share that \(l_1^A +D^{A}=l_1^B +D^{B}=T\), while \(L_1 \le T\) exists in centralized decision-making. Hence, \(l_1^{A/B} +D^{A/B}\ge L_1 \), which infers that supplier 1 in a decentralized assembly system has an early starting time. According to Proposition 6, we have \(A_1 =\frac{h_2 }{h_1 +h_2 +\beta },A_2 =\frac{h_1 }{h_1 +h_2 +\beta }\), when \(F_1 (L_1 )F_2 (L_2 )=F_1 (l_1^A +D^{A})F_2 (l_2^A +D^{A})=F_1 (l_1^B +D^{B})F_2 (l_2^B +D^{B})\). If \(A_1 \ge \frac{h_2 }{h_1 +h_2 +\beta }\) (suppose \(\beta \) is large), \(F_1 (L_1 )F_2 (L_2 )\ge F_1 (l_1^A +D^{A})F_2 (l_2^A +D^{A})=F_1 (l_1^B +D^{B})F_2 (l_2^B +D^{B})\). For \(F_1 (l_1^A +D^{A})=F_1 (l_1^B +D^{B})\), we have \(L_2 \ge l_2 ^{A}+D^{A}=l_2 ^{B}+D^{B}\), which implies that Supplier 2 in a centralized assembly system has an earlier starting time. While \(A_1 <\frac{h_2 }{h_1 +h_2 +\beta }\) (suppose \(\beta \) is small), \(F_1 (L_1 )F_2 (L_2 )<F_1 (l_1^A +D^{A})F_2 (l_2^A +D^{A})=F_1 (l_1^B +D^{B})F_2 (l_2^B +D^{B})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Liu, M. & Guan, X. Diversity of payment contracts in a decentralized assembly system. Ann Oper Res 257, 613–639 (2017). https://doi.org/10.1007/s10479-015-1966-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1966-6

Keywords

Navigation