Skip to main content
Log in

Semidefinite relaxations for partitioning, assignment and ordering problems

  • SI: 4OR Surveys
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Semidefinite optimization is a strong tool in the study of NP-hard combinatorial optimization problems. On the one hand, semidefinite optimization problems are in principle solvable in polynomial time (with fixed precision), on the other hand, their modeling power allows to naturally handle quadratic constraints. Contrary to linear optimization with the efficiency of the Simplex method, the algorithmic treatment of semidefinite problems is much more subtle and also practically quite expensive. This survey-type article is meant as an introduction for a non-expert to this exciting area. The basic concepts are explained on a mostly intuitive level, and pointers to advanced topics are given. We provide a variety of semidefinite optimization models on a selection of graph optimization problems and give a flavour of their practical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://plato.asu.edu/bench.

  2. http://www.seas.upenn.edu/qaplib/.

  3. http://dimacs.rutgers.edu/Challenges/.

References

  • Anjos, M. F. (2005). Semidefinite optimization approaches to satisfiability and maximum-satisfiability problems. Journal of Satisfiability, Boolean Modeling and Computation, 1, 1–47.

    Google Scholar 

  • Anjos, M. F., & Lasserre, J. B. (Eds.). (2012). Handbook on semidefinite, conic and polynomial optimization., International series in Operations Research and Management Science Berlin: Springer.

    Google Scholar 

  • Anjos, M. F., Kennings, A., & Vanelli, A. (2005). A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optimization, 2, 113–122.

    Article  Google Scholar 

  • Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling salesman problem., A Computational Study Princeton: Princeton University Press.

    Google Scholar 

  • Barahona, F., Grötschel, M., & Mahjoub, A. (1985). Facets of the bipartite subgraph polytope. Mathematics of Operations Research, 10, 340–358.

    Article  Google Scholar 

  • Barahona, F., Jünger, M., & Reinelt, G. (1989). Experiments in quadratic 0–1 programming. Mathematical Programming, 44, 127–137.

    Article  Google Scholar 

  • Barahona, F., & Mahjoub, A. (1986). On the cut polytope. Mathematical Programming, 36, 157–173.

    Article  Google Scholar 

  • Blekherman, G., Parillo, P. A., & Thomas, R. (2013). Semidefinite optimization and convex algebraic geometry. MOS-SIAM Series in Optimization.

  • Buchheim, C., Wiegele, A., & Zheng, L. (2009). Exact algorithms for the quadratic linear ordering problem. INFORMS Journal on Computing, 22, 168–177.

    Article  Google Scholar 

  • Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Philadelphia: SIAM.

    Book  Google Scholar 

  • Chimani, M., Hungerländer, P., Jünger, M., & Mutzel, P. (2011). An SDP approach to multi-level crossing minimization. In Proceedings of algorithm engineering and experiments [ALENEX’2011].

  • de Klerk, E. (2002). Aspects of semidefinite programming: Interior point algorithms and selected applications. Alphen aan den Rijn: Kluwer Academic Publishers.

    Book  Google Scholar 

  • de Klerk, E., Pasechnik, D. V., & Warners, J. P. (2004). On approximate graph colouring and max-\(k\)-cut algorithms based on the \(\vartheta \)-function. Journal of Combinatorial Optimization, 8(3), 267–294.

    Article  Google Scholar 

  • Delorme, C., & Poljak, S. (1993). Laplacian eigenvalues and the maximum cut problem. Mathematical Programming, 62, 557–574.

    Article  Google Scholar 

  • De Simone, C. (1990). The cut polytope and the Boolean quadric polytope. Discrete Mathhematics, 79(1), 71–75.

    Article  Google Scholar 

  • Deza, M., Grishukhin, V. P., & Laurent, M. (1993). The hypermetric cone is polyhedral. Combinatorica, 13, 397–411.

    Article  Google Scholar 

  • Duffin, R. J. (1956). Infinite programs. Annals of Mathematics Studies, 38, 157–170.

    Google Scholar 

  • Fischer, I., Gruber, G., Rendl, F., & Sotirov, R. (2006). Computational experience with a bundle method for semidefinite cutting plane relaxations of max-cut and equipartition. Mathematical Programming, 105, 451–469.

    Article  Google Scholar 

  • Frieze, A., & Jerrum, M. (1997). Improved approximation algorithms for Max \(k\)-cut and max bisection. Algorithmica, 18(1), 67–81.

    Article  Google Scholar 

  • Ghaddar, B., Anjos, M. F., & Liers, F. (2011). A branch-and-cut algorithm based on semidefinite programming for the minimum \(k\)-partition problem. Annals of Operations Research, 188, 155–174.

    Article  Google Scholar 

  • Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42, 1115–1145.

    Article  Google Scholar 

  • Goemans, M. X., & Williamson, D. P. (2004). Approximation algorithms for max-3-cut and other problems via complex semidefinite programming. Journal of Computer and System Sciences, 68(2), 442–470.

    Article  Google Scholar 

  • Halperin, E., & Zwick, U. (2002). A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Structures and Algorithms, 20, 382–402.

    Article  Google Scholar 

  • Hastad, J. (1997). Some optimal inapproximability results. In Proceedings 29th symposium on the theory of computing (pp. 1–10).

  • Helmberg, C. (2000). Fixing variables in semidefinite relaxations. SIAM Journal on Matrix Analysis and Applications, 21(3), 952–969.

    Article  Google Scholar 

  • Helmberg, C. (2002). Semidefinite programming. European Journal of Operational Research, 137, 461–482.

    Article  Google Scholar 

  • Helmberg, C., & Rendl, F. (1998). Solving quadratic (0,1)-problems by semidefinite programming and cutting planes. Mathematical Programming, 82, 291–315.

    Google Scholar 

  • Helton, J. W., & Nie, J. (2010). Semidefinite representation of convex sets. Mathematical Programming (A), 122, 21–64.

    Article  Google Scholar 

  • Hungerländer, P. (2012). Semidefinite approaches to ordering problems. PhD thesis, Alpen-Adria University Klagenfurt, Austria.

  • Hungerländer, P., & Rendl, F. (2013). Semidefinite relaxations of ordering problems. Mathematical Programming (B), 140, 77–97.

    Article  Google Scholar 

  • Jäger, G., & Srivastav, A. (2005). Improved approximation algorithms for maximum graph partition problems. Journal of Combinatorial Optimization, 10, 133–167.

    Article  Google Scholar 

  • Jünger, M., Lee, E. K., Mutzel, P., & Odenthal, T. (1997). A polyhedral approach to the multi-layer crossing minimization problem. In GD ’97: Proceedings of the 5th international symposium on graph drawing (pp. 13–24). Springer-Verlag.

  • Jünger, M., & Mutzel, P. (1997). 2-Layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1, 1–25.

    Article  Google Scholar 

  • Karisch, S. E., & Rendl, F. (1998). Semidefinite programming and graph equipartition. Fields Institute Communications, 18, 77–95.

    Google Scholar 

  • Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In R. E. Miller & J. W. Thather (Eds.), Complexity of computer computation (pp. 85–103). Berlin: Plenum Press.

    Chapter  Google Scholar 

  • Keil, J. M., & Brecht, T. B. (1991). The complexity of clustering in planar graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 9, 155–159.

    Google Scholar 

  • Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49, 291–307.

    Article  Google Scholar 

  • Khot, S. (2010). On the unique games conjecture. In Proceedings of the 25th IEEE conference on computational complexity (pp. 99–121).

  • Lasserre, J. B. (2010). Moments, positive polynomials and their applications. London: Imperial College Press.

    Google Scholar 

  • Laurent, M., & Rendl, F. (2005). Semidefinite Programming and Integer Programming. In K. Aardal, G. L. Nemhauser, & R. Weismantel (Eds.), Discrete Optimization (pp. 393–514). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Lee, J., & Leyffer, S. (Eds.). (2012). Mixed integer nonlinear programming., IMA Volumes in Applied Mathematics and its Applications Berlin: Springer.

    Google Scholar 

  • Lovász, L. (1979). On the Shannon capacity of a graph. IEEE Transaction on Information Theory, 25, 1–7.

    Article  Google Scholar 

  • Lovász, L. (2003). Semidefinite Programs and Combinatorial Optimization. In B. A. Reed & C. L. Sales (Eds.), Recent advances in algorithms and combinatorics (pp. 137–194). Springer: CMS books in Mathematics.

  • Lovász, L., & Schrijver, A. (1991). Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on Optimization, 1, 166–190.

    Article  Google Scholar 

  • Malick, J., & Roupin, F. (2012). Solving k-cluster problems to optimality with semidefinite programming. Mathematical Programming (B), 136, 279–300.

    Article  Google Scholar 

  • Marti, R., & Reinelt, G. (2011). The linear ordering problem: Exact and heuristic methods in combinatorial optimization., Applied Mathematical Sciences Springer: Berlin.

    Book  Google Scholar 

  • Nesterov, Y. (1997). Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report, CORE.

  • Nesterov, Y., & Nemirovski, A. S. (1994). Interior point polynomial algorithms in convex programming. Philadelphia: SIAM Publications. SIAM.

    Book  Google Scholar 

  • Padberg, M. (1989). The quadric Boolean polytope: Some characteristics, facets and relatives. Mathematical Programming, 45, 139–172.

    Article  Google Scholar 

  • Pardalos, P. M., & Rodgers, G. P. (1990). Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing, 45, 131–144.

    Article  Google Scholar 

  • Rendl, F. (2009). Semidefinite Relaxations for Integer Programming. In M. Jünger, Th M Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 years of integer programming 1958–2008 (pp. 687–726). Berlin: Springer.

    Google Scholar 

  • Rendl, F. (2012). Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR-Quarterly Journal on Operations Research, 10, 321–346.

    Article  Google Scholar 

  • Rendl, F., Rinaldi, G., & Wiegele, A. (2010). Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Mathematical Programming, 212, 307–335.

    Article  Google Scholar 

  • Rendl, F., & Sotirov, R. (2007). Bounds for the quadratic assignment problem using the bundle method. Mathematical Programming (B), 109, 505–524.

    Article  Google Scholar 

  • Roupin, F. (2004). From linear to semidefinite programming: An algorithm to obtain semidefinite relaxations for bivalent quadratic problems. Journal of Combinatorial Optimization, 8, 469–493.

    Article  Google Scholar 

  • Schrijver, A. (2003). Combinatorial optimization. Polyhedra and efficiency A (Vol. 24)., Algorithms and Combinatorics Berlin: Springer.

    Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3), 411–430.

    Article  Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1994). A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics, 52(1), 83–106.

    Article  Google Scholar 

  • Shor, N. Z. (1987). An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika, 5, 102–106.

    Google Scholar 

  • Tunçel, L. (2010). Polyhedral and semidefinite programming methods in combinatorial optimization., Fields Institute Monographs American Mathematical Society: Providence.

    Google Scholar 

  • Vallentin, F. (2008). Lecture notes: semidefinite programs and harmonic analysis. Technical report, Tilburg University, Netherlands.

  • Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38, 49–95.

    Article  Google Scholar 

  • Wolkowicz, H., Saigal, R., & Vandenberghe, L. (Eds.). (2000). Handbook of semidefinite programming. Alphen aan den Rijn: Kluwer.

    Google Scholar 

  • Zhao, Q., Karisch, S. E., Rendl, F., & Wolkowicz, H. (1998). Semidefinite programming relaxations for the quadratic assignment problem. Journal of Combinatorial Optimization, 2, 71–109.

    Article  Google Scholar 

  • Zhao, X., Sun, D., & Toh, K. (2010). A Newton CG augmented Lagrangian method for semidefinite programming. SIAM Journal on Optimization, 20, 1737–1765.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Miguel Anjos and an anonymous referee for giving numerous suggestions to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rendl.

Additional information

This is an updated version of the paper that appeared in 4OR, 10, 321–346, (2012), see Rendl (2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rendl, F. Semidefinite relaxations for partitioning, assignment and ordering problems. Ann Oper Res 240, 119–140 (2016). https://doi.org/10.1007/s10479-015-2015-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2015-1

Keywords

Navigation