Skip to main content

Advertisement

Log in

Managing soil natural capital: a prudent strategy for adapting to future risks

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated by soil organic carbon (SOC) content—that considers the mean, variance and skewness of profits from arable farming. The SOC state variable can be managed by the farmer only indirectly through the spatial and temporal allocation of land use. We model four cash crops and a grass ley that generates no market return but replenishes SOC. We find that managing soil natural capital can, not only improve farm profit while reducing the risk, but also reduce the downside risk. Prudent adaptation to future risks should therefore consider the impact of current agricultural management practices on the stock of soil natural capital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0308521X14000535/1-s2.0-S0308521X14000535-mmc3.docx/271139/html/S0308521X14000535/80b77091920d74c689cb5dcdf434d1f4/mmc3.docx.

References

  • Adler, R. F., Gu, G., Wang, J. J., Huffman, G. J., Curtis, S., & Bolvin, D. (2008). Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). Journal of Geophysical Research: Atmospheres (1984–2012). doi:10.1029/2008JD010536.

  • AghaKouchak, A., Bárdossy, A., & Habib, E. (2010). Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Advances in Water Resources, 33(6), 624–634.

    Article  Google Scholar 

  • Agriwise. (2011). Agriwise—Data book for production planning and regional enterprise budgets. Uppsala: Department of Economics, Swedish University of Agricultural Sciences (SLU).

  • Ajayi, O., Franzel, S., Kuntashula, E., & Kwesiga, F. (2003). Adoption of improved fallow technology for soil fertility management in Zambia: Empirical studies and emerging issues. Agroforestry Systems, 59(3), 317–326.

    Article  Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1), 19–31.

    Article  Google Scholar 

  • Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64(2), 269–285.

    Article  Google Scholar 

  • Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., & Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems, 94(1), 13–25. doi:10.1016/j.agsy.2005.08.011.

    Article  Google Scholar 

  • Boardman, J., & Poesen, J. (2006). Soil erosion in Europe. New York: Wiley.

    Book  Google Scholar 

  • Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230–238.

    Article  Google Scholar 

  • Brady, M., Hedlund, K., Cong, R.-G., Hemerik, L., Hotes, S., Machado, S., et al. (2015). Valuing supporting soil ecosystem services in agriculture: A natural capital approach. Agronomy Journal, 107(5), 1809–1821. doi:10.2134/agronj14.0597.

    Article  Google Scholar 

  • Burt, O. R. (1981). Farm level economics of soil conservation in the Palouse area of the Northwest. American Journal of Agricultural Economics, 63(1), 83–92.

    Article  Google Scholar 

  • Capriel, P. (2013). Trends in organic carbon and nitrogen contents in agricultural soils in Bavaria (south Germany) between 1986 and 2007. European Journal of Soil Science, 64(4), 445–454.

    Article  Google Scholar 

  • Carlgren, K., & Mattsson, L. (2001). Swedish soil fertility experiments. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 51(2), 49–76.

    Google Scholar 

  • Choi, J.-S., & Helmberger, P. G. (1993). How sensitive are crop yields to price changes and farm programs? Journal of Agricultural and Applied Economics, 25(01), 237–244.

    Article  Google Scholar 

  • Christensen, B. T., Rasmussen, J., Eriksen, J., & Hansen, E. M. (2009). Soil carbon storage and yields of spring barley following grass leys of different age. European Journal of Agronomy, 31(1), 29–35.

    Article  Google Scholar 

  • Cong, R.-G., & Brady, M. (2012a). How to design a targeted agricultural subsidy system: Efficiency or equity? PloS One. doi:10.1371/journal.pone.0041225.

  • Cong, R.-G., & Brady, M. (2012b). The interdependence between rainfall and temperature: copula analyses. The Scientific World Journal, 2012. doi:10.1100/2012/405675.

  • Cong, R.-G., Hedlund, K., Andersson, H., & Brady, M. (2014a). Managing soil natural capital: an effective strategy for mitigating future agricultural risks? Agricultural Systems, 129, 30–39.

  • Cong, R.-G., Smith, H. G., Olsson, O., & Brady, M. (2014b). Managing ecosystem services for agriculture: Will landscape-scale management pay? Ecological Economics, 99, 53–62.

    Article  Google Scholar 

  • Dai, A., Trenberth, K. E., & Karl, T. R. (1999). Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. Journal of Climate, 12(8), 2451–2473.

    Article  Google Scholar 

  • de Ruiter, P. C., Neutel, A.-M., Moore, J. (2005). The balance between productivity and food web structure in soil ecosystems. In R. D. Bardgett, M. B. Usher, D. W. Hopkins (eds.), Biological diversity and Function in Soils (pp. 139–153), Cambridge: Cambridge University Press.

  • De Wit, Ad, Boogaard, H., & Van Diepen, C. (2005). Spatial resolution of precipitation and radiation: The effect on regional crop yield forecasts. Agricultural and Forest Meteorology, 135(1), 156–168.

    Article  Google Scholar 

  • Del Grosso, S., Ojima, D., Parton, W., Mosier, A., Peterson, G., & Schimel, D. (2002). Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environmental Pollution, 116, S75–S83.

    Article  Google Scholar 

  • Di Falco, S., & Chavas, J.-P. (2008). Rainfall shocks, resilience, and the effects of crop biodiversity on agroecosystem productivity. Land Economics, 84(1), 83–96.

    Article  Google Scholar 

  • Di Falco, S., & Chavas, J.-P. (2009). On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. American Journal of Agricultural Economics, 91(3), 599–611.

    Article  Google Scholar 

  • Dogliotti, S., Rossing, W., & Van Ittersum, M. (2004). Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agricultural Systems, 80(3), 277–302.

    Article  Google Scholar 

  • Duquette, E., Higgins, N., & Horowitz, J. (2011). Farmer discount rates: Experimental evidence. American Journal of Agricultural Economics, 94, 451–456.

    Article  Google Scholar 

  • European Commission (2014a). Agricultural and rural development Taking care of our roots. http://ec.europa.eu/agriculture/cap-for-our-roots/index_en.htm. Accessed 07 September 2015.

  • European Commission (2014b). The Common Agriculture Policy after 2013. http://ec.europa.eu/agriculture/cap-post-2013/. Accessed 07 September 2015.

  • Figge, F. (2004). Bio-folio: Applying portfolio theory to biodiversity. Biodiversity & Conservation, 13(4), 827–849.

    Article  Google Scholar 

  • Foudi, S., & Erdlenbruch, K. (2011). The role of irrigation in farmers’ risk management strategies in France. European Review of Agricultural Economics. doi:10.1093/erae/jbr024.

  • Gardner, B. L. (1976). Futures prices in supply analysis. American Journal of Agricultural Economics, 58(1), 81–84.

    Article  Google Scholar 

  • Gill, S., Vasanthan, T., Ooraikul, B., & Rossnagel, B. (2002). Wheat bread quality as influenced by the substitution of waxy and regular barley flours in their native and extruded forms. Journal of Cereal Science, 36(2), 219–237. doi:10.1006/jcrs.2001.0458.

    Article  Google Scholar 

  • Guto, S. N., Pypers, P., Vanlauwe, B., de Ridder, N., & Giller, K. E. (2011). Tillage and vegetative barrier effects on soil conservation and short-term economic benefits in the Central Kenya highlands. Field Crops Research, 122(2), 85–94. doi:10.1016/j.fcr.2011.03.002.

    Article  Google Scholar 

  • Hao, Z., AghaKouchak, A., & Phillips, T. J. (2013). Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8(3), 034014.

    Article  Google Scholar 

  • Held, R. B., & Clawson, M. (2013). Soil conservation in perspective (Vol. 4). London: Routledge.

    Google Scholar 

  • Herrick, J. E., & Wander, M. M. (1997). Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. Boca Raton: CRC Press.

    Google Scholar 

  • Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691–19696.

    Article  Google Scholar 

  • Kareiva, P., Tallis, H., Ricketts, T. H., Daily, G. C., & Polasky, S. (2011). Natural capital: Theory and practice of mapping ecosystem services. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica: Journal of the Econometric Society, 58(1), 53–73.

  • Knutson, C., Hayes, M., & Phillips, T. (1998). How to reduce drought risk. http://drought.unl.edu/portals/0/docs/risk.pdf. Accessed 17 Nov 2015.

  • Koch, R. (2011). The 80/20 principle: The secret to achieving more with less. New York: Random House LLC.

    Google Scholar 

  • Koellner, T., & Schmitz, O. J. (2006). Biodiversity, ecosystem function, and investment risk. BioScience, 56(12), 977–985.

    Article  Google Scholar 

  • Koundouri, P., Laukkanen, M., Myyrä, S., & Nauges, C. (2009). The effects of EU agricultural policy changes on farmers’ risk attitudes. European Review of Agricultural Economics. doi:10.1093/erae/jbp003.

  • Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., & Menichetti, L. (2011). Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment, 141(1), 184–192.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

    Article  Google Scholar 

  • Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197–209.

    Article  Google Scholar 

  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.

    Article  Google Scholar 

  • Li, Y. L., McAllister, T. A., Beauchemin, K. A., He, M. L., McKinnon, J. J., & Yang, W. Z. (2011). Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: Intake, digestibility, and ruminal fermentation. Journal of Animal Science, 89(8), 2491–2501. doi:10.2527/jas.2010-3418.

    Article  Google Scholar 

  • Lien, D., & Yu, C. F. J. (2014). Production and anticipatory hedging under time-inconsistent preferences. Journal of Futures Markets, 35(10), 961–985.

  • Liu, C., Allan, R. P., & Huffman, G. J. (2012). Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophysical Research Letters. doi:10.1029/2012GL052093.

  • Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 27(1), 19–26.

    Article  Google Scholar 

  • Mao, J. C. (1970). Survey of capital budgeting: Theory and practice. The Journal of Finance, 25(2), 349–360.

    Article  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A., & Swift, M. (1997). Agricultural intensification and ecosystem properties. Science, 277(5325), 504–509.

    Article  Google Scholar 

  • Mitra, S., & Boussard, J. M. (2012). A simple model of endogenous agricultural commodity price fluctuations with storage. Agricultural Economics, 43(1), 1–15.

    Article  Google Scholar 

  • Nandwa, S. (2001a). Soil organic carbon (SOC) management for sustainable productivity of cropping and agro-forestry systems in Eastern and Southern Africa. Managing organic matter in tropical soils: Scope and limitations (pp. 143–158). Berlin: Springer.

    Chapter  Google Scholar 

  • Nandwa, S. (2001b). Soil organic carbon (SOC) management for sustainable productivity of cropping and agro-forestry systems in Eastern and Southern Africa. In C. Martius, H. Tiessen, & P. L. G. Vlek (Eds.), Managing organic matter in tropical soils: Scope and limitations. Developments in Plant and Soil Sciences (Vol. 93, pp. 143–158). Netherlands: Springer.

    Google Scholar 

  • Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., et al. (2012). Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental Sustainability, 4(5), 529–538.

    Article  Google Scholar 

  • Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1), 27–41.

    Article  Google Scholar 

  • Reeves, D. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43(1), 131–167.

    Article  Google Scholar 

  • Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17(1), 182–190.

    Article  Google Scholar 

  • Samuelson, P. A. (1970). The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments. The Review of Economic Studies, 37(4), 537–542.

  • Saxton, K., & Rawls, W. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5), 1569–1578.

    Article  Google Scholar 

  • SCB. (2012). Jordbrukstatistik årsbok 2012 (Yearbook of agricultural statistics 2012). Örebro: Statistics Sweden.

    Google Scholar 

  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598.

    Article  Google Scholar 

  • Singh, S. K., Singh, A. K., Sharma, B. K., & Tarafdar, J. C. (2007). Carbon stock and organic carbon dynamics in soils of Rajasthan, India. Journal of Arid Environments, 68(3), 408–421. doi:10.1016/j.jaridenv.2006.06.005.

    Article  Google Scholar 

  • Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change, 7(1), 85–114.

    Article  Google Scholar 

  • Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 16(3), 282–292.

    Article  Google Scholar 

  • Snapp, S., Blackie, M., & Donovan, C. (2003). Realigning research and extension to focus on farmers’ constraints and opportunities. Food Policy, 28(4), 349–363.

    Article  Google Scholar 

  • Thrupp, L. A. (2000). Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs, 76(2), 283–297.

    Article  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

    Article  Google Scholar 

  • Trenberth, K. E., & Shea, D. J. (2005). Relationships between precipitation and surface temperature. Geophysical Research Letters. doi:10.1029/2005GL022760.

  • Weitzman, M. L. (2000). Economic profitability versus ecological entropy. Quarterly Journal of Economics, 115(1), 237–263.

  • West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America Journal, 66(6), 1930–1946.

    Article  Google Scholar 

  • Zdruli, P., Calabrese, J., Ladisa, G., & Otekhile, A. (2014). Impacts of land cover change on soil quality of manmade soils cultivated with table grapes in the Apulia Region of south-eastern Italy. Catena, 121, 13–21. doi:10.1016/j.catena.2014.04.015.

    Article  Google Scholar 

  • Zdruli, P., Eswaran, H., & Kimble, J. (1995). Organic carbon content and rates of sequestration in soils of Albania. Soil Science Society of America Journal, 59(6), 1684–1687.

    Article  Google Scholar 

  • Zhu, Y., Ghosh, S. K., & Goodwin, B. K. (2008). Modeling dependence in the design of whole-farm insurance contract: A copula-based model approach. In Annual meetings of the American Agricultural Economics Association, Orlando, FL, 2008 (pp. 27–29).

Download references

Acknowledgments

This research is supported by the European Commission through the EcoFINDERS Project (FP7-264465), the Swedish Research Council Formas through the projects “Biodiversity and Ecosystem Services in a Changing Climate (BECC)” and “Sustainable Agriculture for the Production of Ecosystem Services (SAPES)”. We are grateful to the Swedish University of Agricultural Sciences (SLU) for access to data from the Scanian long-term field experiments that made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Gang Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, RG., Termansen, M. & Brady, M.V. Managing soil natural capital: a prudent strategy for adapting to future risks. Ann Oper Res 255, 439–463 (2017). https://doi.org/10.1007/s10479-015-2066-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2066-3

Keywords

Navigation