Skip to main content
Log in

Exact methods for solving the elementary shortest and longest path problems

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider in this paper the problems of finding the elementary shortest and longest paths on a graph containing negative and positive cycles. These problems are NP-hard. We propose exact algorithms based on mixed integer programming for their solution, employing different valid inequalities. Moreover, we propose decomposition techniques which are very efficient for cases with special structure. Experimental results show the efficiency of our algorithms compared with state of the art exact algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. This arc-flow formulation is presented in Sect. 2.1.

  2. We would like to thank Michael Drexl, the author of Drexl and Irnich (2012), for this information.

References

  • Achterberg, T., & Berthold, T. (2009). Hybrid branching. In Proceeding of the 6th international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 309–311).

  • Achterberg, T., Koch, T., & Martin, A. (2005). Branching rules revisited. Operations Research Letters, 33(1), 42–54.

    Article  Google Scholar 

  • Aráoz, J., Fernández, E., & Meza, O. (2007) A simple exact separation algorithm for 2-matching inequalities. Research Report DR-2007/13, EIO Departement, Technical University of Catalonia (Spain). http://www.optimization-online.org/DBHTML/2007/11/1827.html.

  • Ascheuer, N., Jünger, M., & Reinelt, G. (2000). A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints. Computational Optimization and Applications, 17(1), 61–84.

    Article  Google Scholar 

  • Balas, E., Ceria, S., & Cornuéjols, G. (1996). Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Management Science, 42(9), 1229–1246.

    Article  Google Scholar 

  • Balas, E., & Fischetti, M. (1993). A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets. Mathematical Programming, 58, 325–352.

    Article  Google Scholar 

  • Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1–6.

    Article  Google Scholar 

  • Beasley, J. E., & Christofides, N. (1989). An algorithm for the resource constrained shortest path problem. Network, 19, 379–394.

    Article  Google Scholar 

  • Belotti, P., et al. (2013). Mixed-integer nonlinear optimization. Acta Numerica, 22, 1–131.

    Article  Google Scholar 

  • Bienstock, D., et al. (1993). A note on the prize collecting traveling salesman problem. Mathematical Programming, 59, 413–420.

    Article  Google Scholar 

  • Boland, N., Dethridge, J., & Dumitrescu, I. (2006). Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Operations Research Letters, 34(1), 58–68.

    Article  Google Scholar 

  • Comet Tutorial. Dynamic Decision Technologies, Inc, 2010.

  • Cormen, T. H., et al. (2009). Introduction to algorithms, third edition (3rd ed.). Cambridge: The MIT Press.

    Google Scholar 

  • Costa, A. M., Cordeau, J. F., & Laporte, G. (2006). Steiner tree problems with profits. INFOR: Information Systems and Operational Research, 44, 99–116.

    Google Scholar 

  • Dell’Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize-collecting tours and the asymmetric travelling salesman problem. International Transactions in Operational Research, 38, 1073–1079.

    Google Scholar 

  • Drexl, M., & Irnich, S. (2012). Solving elementary shortest-path problems as mixed-integer programs. OR Spectrum, 36(2), 281–296.

  • Dror, M. (1994). Note on the complexity of the shortest path models for column generation in WRPTW. Operations Research, 42(5), 977–978.

    Article  Google Scholar 

  • Edmonds, J. (1965). Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of the National Bureau of Standards B, 69, 125–130.

    Article  Google Scholar 

  • Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits. Transportation Science, 39, 188–205.

    Article  Google Scholar 

  • Feillet, D., et al. (2004). An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3), 216–229.

  • Fischetti, M. (1991). Facets of the asymmetric traveling salesman polytope. Mathematics of Operations Research, 16(1), 42–56.

    Article  Google Scholar 

  • Fischetti, M., Lodi, A., & Toth, P. (2004). Exact methods for the asymmetric traveling salesman problem. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations (pp. 169–205). US: Springer.

  • Goemans, M. X., & Williamson, D. P. (1992). A general approximation technique for constrained forest problems. In Proceedings of the third annual ACM-SIAM symposium on discrete algorithms (pp. 307–316).

  • Gondran, M., & Minoux, M. (1995). Graphes et algorithmes, 3e édition revue et augmentée. Paris: Eyrolles.

    Google Scholar 

  • Grötschel, M., & Padberg, M. (1985). Polyhedral theory. In E. L. Lawler, J. K. Lenstra & A. H. G. Rinnooy Kan (Eds.), The traveling salesman problem: A guided tour of combinatorial optimization (pp. 251–305). Wiley.

  • Ibrahim, M. S., Maculan, N., & Minoux, M. (2009). A strong flow-based formulation for the shortest path problem in digraphs with negative cycles. International Transactions in Operational Research, 16, 361–369.

    Article  Google Scholar 

  • Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers & M. M. Solomon (Eds.), Column generation (pp. 33–65). US: Springer.

  • Jepsen, M. K., Petersen, B., & Spoorendonk, S. (2008). A branch-and-cut algorithm for the elementary shortest path problem with a capacity constraint. Technical Report, Department of Computer Science, University of Copenhagen.

  • Karger, D., Motwani, R., & Ramkumar, G. (1997). On approximating the longest path in a graph. Algorithmica, 18, 82–98.

    Article  Google Scholar 

  • Koch, T., & Martin, A. (1998). Solving Steiner tree problems in graphs to optimality. Networks, 32, 207–232.

    Article  Google Scholar 

  • Kulkarni, R. V., & Bhave, P. R. (1985). Integer programming formulations of vehicle routing problems. European Journal of Operational Research, 20(1), 58–67.

    Article  Google Scholar 

  • Little, J. D. C., et al. (1963). An algorithm for the traveling salesman problem. Operations Research, 11, 972–989.

    Article  Google Scholar 

  • Ljubić, I., et al. (2006). An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Mathematical Programming, 105(2), 427–449.

  • Lucena, A., & Beasley, J. E. (1998). A branch and cut algorithm for the Steiner problem in graphs. Networks, 31, 39–59.

    Article  Google Scholar 

  • Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326–329.

    Article  Google Scholar 

  • Nguyen, V. H., & Nguyen, T. T. T. (2010). Approximating the asymmetric profitable tour. Electronic Notes in Discrete Mathematics, 36, 907–914.

    Article  Google Scholar 

  • Padberg, M., & Rinaldi, G. (1987). Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Operations Research Letters, 6(1), 1–7.

    Article  Google Scholar 

  • Padberg, M., & Rinaldi, G. (1990). Facet identification for the symmetric traveling salesman polytope. Mathematical Programming, 47, 219–257.

    Article  Google Scholar 

  • Padberg, M. W., & Rao, M. R. (1982). Odd minimum cut-sets and b-matchings. Mathematics of Operations Research, 7, 67–80.

    Article  Google Scholar 

  • Padberg, M. W., & Grötschel, M. (1985). Polyhedral computation. In E. L. Lawler, J. K. Lenstra, & A. H. G. Rinnooy Kan (Eds.), The traveling salesman problem: A guided tour of combinatorial optimization (pp. 251–305). Wiley.

  • Pham, Q. D & Deville, Y. (2012) Solving the longest simple path problem with constrains-based techniques. In Proceedings of the 9th international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 292–306).

  • Portugal, D., Antunes, C. H., & Rocha, R. P. (2010). A study of genetic algorithms for approximating the longest path in generic graphs. In Systems man and cybernetics (SMC), 2010 IEEE international conference on (pp. 2539–2544).

  • Portugal, D., & Rocha, R. P. (2010) Msp algorithm: Multi-robot patrolling based on territory allocation using balanced graph partitioning. In Proceedings of the 2010 ACM symposium on applied computing (pp. 1271–1276).

  • Punnen, A. P. (2004) The traveling salesman problem: Applications, formulations and variations. In G. Gutin, & A. P. Punnen (Eds.), The Traveling salesman problem and its variations (pp. 1–28).

  • Radulescu, A., López-Ibáñez, M., & Stützle, T. (2012). Automatically improving the anytime behaviour of multiobjective evolutionary algorithms. Technical Report TR/IRIDIA/2012-019, IRIDIA, Université Libre de Bruxelles, Belgium.

  • Righini, G., & Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 3, 255–273.

    Article  Google Scholar 

  • Righini, G., & Salani, M. (2008). New dynamic programming algorithms for the resource constrained elementary shortest path problem. Network, 51, 155–170.

    Article  Google Scholar 

  • Schmidt, K., & Schmidt, E. G. (2010). A longest-path problem for evaluating the worst-case packet delay of switched ethernet. In Industrial embedded systems (SIES), 2010 international symposium on (pp. 205–208)

  • Tarjan, R. (1972). Depth-first search and linear graph algorithm. SIAM Journal on Computing, 1(2), 146–160.

  • Toth, P., & Vigo, D. (Eds.). (2002). The vehicle routing problem. SIAM monographs on discrete mathematics and applications. Philadelphia: SIAM.

  • Tseng, I. L., Chen, H. W. & Lee, C. I. (2010) Obstacle-aware longest-path routing with parallel MILP solvers. In Proceedings of the world congress on engineering and computer science (pp. 827–831).

  • Uchoa, E. (2006). Reduction tests for the prize-collecting Steiner problem. Operations Research Letters, 34(4), 437–444.

    Article  Google Scholar 

  • Volgenant, T., & Jonker, R. (1987). On some generalizations of the travelling-salesman problem. Journal of the Operational Research Society, 3, 297–308.

    Google Scholar 

  • Wong, W. Y. (2005). Information retrieval in p2p networks using genetic algorithm. In Proceedings of the 14th international world wide web conference (pp. 922–923).

Download references

Acknowledgments

We thanks the anonymous reviewers for their helpful and constructive comments. This research was partially sponsored by Vietnamese National Foundation for Science and Technology Development (project FWO.102.2013.04), and by the UCLouvain Action de Recherche Concertee ICTM22C1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Deville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, Q.T., Deville, Y. & Pham, Q.D. Exact methods for solving the elementary shortest and longest path problems. Ann Oper Res 244, 313–348 (2016). https://doi.org/10.1007/s10479-016-2116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2116-5

Keywords

Navigation