Skip to main content

Advertisement

Log in

A dynamic discrete network design problem for maintenance planning in traffic networks

  • S.I.: LOT
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We propose a dynamic model for network maintenance planning by extending the Discrete Network Design Problem. The leader decides which road in the network is maintained in which period and the follower, as in the Discrete Network Design Problem, optimizes its own path through the network. The non-linear bilevel problem is first linearized and then transformed into a single-level mixed-integer program by using the Karush–Kuhn–Tucker conditions. This model is solved with Benders Decomposition. The numerical study shows that this method finds better solutions faster compared to solving the mixed-integer formulation directly and using a genetic algorithm. Furthermore, we show the benefit of this approach compared to simple greedy heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bard, J. F. (1998). Practical bilevel optimization: Algorithms and applications. Berlin: Springer.

    Book  Google Scholar 

  • Ben-Ayed, O., & Blair, C. E. (1990). Computational difficulties of bilevel linear programming. Operations Research, 38(3), 556–560.

    Article  Google Scholar 

  • Ben-Ayed, O., Blair, C. E., Boyce, D. E., & LeBlanc, L. J. (1992). Construction of a real-world bilevel linear programming model of the highway network design problem. Annals of Operations Research, 34(1), 219–254.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Braess, D., Nagurney, A., & Wakolbinger, T. (2005). On a paradox of traffic planning. Transportation Science, 39(4), 446–450.

    Article  Google Scholar 

  • Bundesministerium für Verkehr und digitale Infrastruktur (BMVI). (2014). Sonderprogramm brückenmodernisierung. http://www.bmvi.de/DE/VerkehrUndMobilitaet/Verkehrstraeger/Strasse/SicherheitVonBruecken/systematische-brueckenertuechtigung_node.html. Visited on Jan 20, 2015.

  • Bureau of Public Roads. (1964). Traffic assignment manual. U.S. Department of Commerce, Urban Planning Devision. Washington, DC.

  • Cao, D., & Chen, M. (2006). Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach. European Journal of Operational Research, 169(1), 97–110.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153(1), 235–256.

    Article  Google Scholar 

  • DB Mobility Networks Logistics (DB) (2014). Bahn startet größtes modernisierungsprogramm der infrastruktur. http://www.deutschebahn.com/de/presse/presseinformationen/pi_it/8577046/ubd20141208.html?start=0&itemsPerPage=20. Visited on Jan 20, 2015.

  • Dempe, S. (2002). Foundations of bilevel programming. Berlin: Springer.

    Google Scholar 

  • Dempe, S., Kalashnikov, V., Pérez-Valdés, G. A., & Kalashnykova, N. (2015). Bilevel programming problems: Theory, algorithms and applications to energy networks. Berlin: Springer.

    Book  Google Scholar 

  • Edmunds, T. A., & Bard, J. F. (1992). An algorithm for the mixedinteger nonlinear bilevel programming problem. Annals of Operations Research, 34(1), 149–162.

    Article  Google Scholar 

  • Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban transportation network design problems. European Journal of Operational Research, 229(2), 281–302.

    Article  Google Scholar 

  • Farvaresh, H., & Sepehri, M. M. (2011). A single-level mixed integer linear formulation for a bi-level discrete network design problem. Transportation Research Part E: Logistics and Transportation Review, 47(5), 623–640.

    Article  Google Scholar 

  • Farvaresh, H., & Sepehri, M. M. (2013). A branch and bound algorithm for bi-level discrete network design problem. Networks and Spatial Economics, 13(1), 67–106.

    Article  Google Scholar 

  • Fontaine, P., & Minner, S. (2014). Benders decomposition for discrete-continuous linear bilevel problems with application to traffic network design. Transportation Research Part B: Methodological, 70, 163–172.

    Article  Google Scholar 

  • Gao, Z., Wu, J., & Sun, H. (2005). Solution algorithm for the bi-level discrete network design problem. Transportation Research Part B: Methodological, 39(6), 479–495.

    Article  Google Scholar 

  • Imamoto, A., & Tang, B. (2008). Optimal piecewise linear approximation of convex functions. In Proceedings of the World Congress on Engineering and Computer Science, (pp. 1191–1194). Citeseer.

  • LeBlanc, L. J. (1975). An algorithm for the discrete network design problem. Transportation Science, 9(3), 183–199.

    Article  Google Scholar 

  • Luathep, P., Sumalee, A., Lam, William H. K., Li, Zhi-Chun, & Lo, Hong. (2011). Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach. Transportation Research Part B: Methodological, 45(5), 808–827.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization (Vol. 18). New York: Wiley.

    Google Scholar 

  • Ng, Man Wo, Lin, Dung Ying, & Waller, S. Travis. (2009). Optimal long-term infrastructure maintenance planning accounting for traffic dynamics. Computer-Aided Civil and Infrastructure Engineering, 24(7), 459–469.

    Article  Google Scholar 

  • Nguyen, S. (1974). An algorithm for the traffic assignment problem. Transportation Science, 8(3), 203.

    Article  Google Scholar 

  • Poorzahedy, H., & Rouhani, O. M. (2007). Hybrid meta-heuristic algorithms for solving network design problem. European Journal of Operational Research, 182(2), 578–596.

    Article  Google Scholar 

  • Poorzahedy, H., & Turnquist, M. A. (1982). Approximate algorithms for the discrete network design problem. Transportation Research Part B: Methodological, 16(1), 45–55.

    Article  Google Scholar 

  • Schneeweiß, C. (2003). Distributed Decision Making (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. USA: Prentice-Hall, Inc.

    Google Scholar 

  • TomTom International B.V. (2014). TomTom European Traffic Index 2013. http://www.tomtom.com/en_gb/trafficindex/. Visited on Jan 20, 2015.

  • Völklein, M. (2015). Baustellen in münchen. http://www.sueddeutsche.de/muenchen/baustellen-in-muenchen-hier-stehen-sie-im-stau-1.2287759. Visited on Jan 20, 2015.

  • Wang, S., Meng, Q., & Yang, H. (2013). Global optimization methods for the discrete network design problem. Transportation Research Part B: Methodological, 50, 42–60.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor and two anonymous referees for their helpful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirmin Fontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, P., Minner, S. A dynamic discrete network design problem for maintenance planning in traffic networks. Ann Oper Res 253, 757–772 (2017). https://doi.org/10.1007/s10479-016-2171-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2171-y

Keywords

Navigation