Skip to main content

Advertisement

Log in

Supply chain decisions with reference quality effect under the O2O environment

  • S.I.: BOM in Social Networks
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The reference quality effect is an important factor that influences consumer purchasing behavior. To investigate how firms should incorporate the reference quality effect under different business models, we focus on a supply chain consisting of a supplier and a retailer where the retailer can be an offline store, a pure online store or a combination of offline and online stores within an offline to online model. We formulate the reference quality effect with a modified Nerlove-Arrow model and use two different sales functions to reflect the fact that the reference quality effect will affect consumers in various ways when the business model varies. Utilizing differential game theory, the equilibrium decisions of the channel members are derived, and the analysis illustrates how the firms should adjust their decisions when the retailers use different retail patterns. The basic model does not allow product returns, but then this assumption is relaxed. Comparison between the two cases shows under what conditions consumers will benefit from the retailer’s allowing product returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, for the moment, we do not consider possible product returns. As an extension of the current model, we will incorporate the fact in Sect. 5 that some online consumers may return the products after purchasing.

References

  • Akçura, M. T., Ozdemir, Z. D., & Rahman, M. S. (2015). Online intermediary as a channel for selling quality-differentiated services. Decision Sciences, 46(1), 37–62.

    Article  Google Scholar 

  • Balakrishnan, A., Sundaresan, S., & Zhang, B. (2014). Browse-and-switch: Retail-online competition under value uncertainty. Production and Operations Management, 23(7), 1129–1145.

    Article  Google Scholar 

  • Basar, T., Olsder, G. J., & Clsder, G. J. (1999). Dynamic noncooperative game theory. Philadelphis, PA: SIAM.

    Google Scholar 

  • Bosman, J. (2011, December 4). Book Shopping in Stores, Then Buying Online. The New York Times.

  • Cai, G. G. (2010). Channel selection and coordination in dual-channel supply chains. Journal of Retailing, 86(1), 22–36.

    Article  Google Scholar 

  • Chen, J., & Bell, P. C. (2012). Implementing market segmentation using full-refund and no-refund customer returns policies in a dual-channel supply chain structure. International Journal of Production Economics, 136(1), 56–66.

    Article  Google Scholar 

  • Chiang, W. K., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49(1), 1–20.

    Article  Google Scholar 

  • Chiang, W. K., & Monahan, G. E. (2005). Managing inventories in a two-echelon dual-channel supply chain. European Journal of Operational Research, 162(2), 325–341.

    Article  Google Scholar 

  • Chintagunta, P. K., & Jain, D. (1992). A dynamic model of channel member strategies for marketing expenditures. Marketing Science, 11(2), 168–188.

    Article  Google Scholar 

  • De Giovanni, P. (2011). Quality improvement vs. advertising support: Which strategy works better for a manufacturer? European Journal of Operational Research, 208(2), 119–130.

    Article  Google Scholar 

  • Dumrongsiri, A., Fan, M., Jain, A., & Moinzadeh, K. (2008). A supply chain model with direct and retail channels. European Journal of Operational Research, 187(3), 691–718.

    Article  Google Scholar 

  • Erdem, T., Keane, M. P., & Sun, B. (2008). A dynamic model of brand choice when price and advertising signal product quality. Marketing Science, 27(6), 1111–1125.

    Article  Google Scholar 

  • Fogel, S., Lovallo, D., & Caringal, C. (2004). Loss aversion for quality in consumer choice. Australian Journal of Management, 29(1), 45–63.

    Article  Google Scholar 

  • Gavious, A., & Lowengart, O. (2012). Price-quality relationship in the presence of asymmetric dynamic reference quality effects. Marketing Letter, 23(1), 137–161.

    Article  Google Scholar 

  • Hardie, B. G. S., Johnson, E. J., & Fader, P. S. (1993). Modeling loss aversion and reference dependence effects on brand choice. Marketing Science, 12(4), 378–394.

    Article  Google Scholar 

  • Hellofs, L. L., & Jacobson, R. (1999). Market share and customers’ perceptions of quality: When can firms grow their way to higher versus lower quality? The Journal of Marketing, 63(1), 16–25.

    Article  Google Scholar 

  • Jørgensen, S., Sigue, S. P., & Zaccour, G. (2000). Dynamic co-op advertising in a channel. Journal of Retailing, 76(1), 71–92.

    Article  Google Scholar 

  • Jørgensen, S., Taboubi, S., & Zaccour, G. (2001). Co-op advertising in a marketing channel. Journal of Optimization Theory and Applications, 110(1), 145–158.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47(2), 263–292.

    Article  Google Scholar 

  • Karray, S., & Zaccour, G. (2005). A differential game of advertising for national and store brands. In A. Haurie & G. Zaccour (Eds.), Dynamic games: Theory and applications (pp. 213–229). Berlin: Springer.

    Chapter  Google Scholar 

  • Kihlstrom, R. E., & Riordan, M. H. (1984). Advertising as a signal. The Journal of Political Economy, 92(3), 427–450.

    Article  Google Scholar 

  • Kopalle, P. K., & Winer, R. S. (1997). A dynamic model of reference price and expected quality. Marketing Letters, 7(1), 41–52.

    Article  Google Scholar 

  • Kumar, N., & Ruan, R. (2006). On manufacturers complementing the traditional retail channel with a direct online channel. Quantitative Marketing and Economics, 4(3), 289–323.

    Article  Google Scholar 

  • Li, X., Gu, B., & Liu, H. (2013). Price dispersion and loss-leader pricing: Evidence from the online book industry. Management Science, 59(6), 1290–1308.

    Article  Google Scholar 

  • Lu, Q., & Liu, N. (2015). Effects of e-commerce channel entry in a two-echelon supply chain: A comparative analysis of single- and dual-channel distribution systems. International Journal of Production Economics, 165, 100–111.

    Article  Google Scholar 

  • Milgrom, P., & Roberts, J. (1986). Price and advertising signals of product quality. The Journal of Political Economy, 94(4), 796–821.

    Article  Google Scholar 

  • Moorthy, S., & Hawkins, S. A. (2005). Advertising repetition and quality perception. Journal of Business Research, 58(3), 354–360.

    Article  Google Scholar 

  • Nair, A., & Narasimhan, R. (2006). Dynamics of competing with quality- and advertising-based goodwill. European Journal of Operational Research, 175(1), 462–474.

    Article  Google Scholar 

  • Nelson, P. (1970). Information and consumer behavior. The Journal of Political Economy, 78(2), 311–329.

    Article  Google Scholar 

  • Nelson, P. (1974a). Advertising as information. The Journal of Political Economy, 82(4), 729–754.

    Article  Google Scholar 

  • Nelson, P. (1974b). Economic value of advertising. In Y. Brozed (Ed.), Advertising and society (pp. 109–141). New York: New York University Press.

    Google Scholar 

  • Nerlove, M., & Arrow, K. J. (1962). Optimal advertising policy under dynamic conditions. Economica, 29(14), 129–142.

    Article  Google Scholar 

  • Park, S. Y., & Keh, H. T. (2003). Modelling hybrid distribution channels: A game-theoretic analysis. Journal of Retailing and Consumer Services, 10(3), 155–167.

    Article  Google Scholar 

  • Prasad, A., & Sethi, S. P. (2004). Competitive advertising under uncertainty: A stochastic differential game approach. Journal of Optimization Theory and Applications, 123(1), 163–185.

    Article  Google Scholar 

  • Thomas, L., Shane, S., & Weigelt, K. (1998). An empirical examination of advertising as a signal of product quality. Journal of Economic Behavior & Organization, 37(4), 415–430.

    Article  Google Scholar 

  • Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of Retailing, 83(4), 393–401.

    Article  Google Scholar 

  • Weigelt, K., & Camerer, C. (1988). Reputation and corporate strategy: A review of recent theory and applications. Strategic Management Journal, 9(5), 443–454.

    Article  Google Scholar 

  • Zimmerman, A. (2012). Can retailers halt ‘showrooming’. The Wall Street Journal, 259, B1–B8.

    Google Scholar 

  • Zhang, J., Gou, Q., Liang, L., & Huang, Z. (2013). Supply chain coordination through cooperative advertising with reference price effect. Omega: The International Journal of Mangement. Science, 41(2), 345–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong Gou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 71271198, 71501059, 71110107024, and 71571174).

Appendix: Proof of Propositions 1, 2, 3, and 4

Appendix: Proof of Propositions 1, 2, 3, and 4

The analysis proceeds by backward induction, solving the retailer’s problem first.

The retailer’s objective is

$$\begin{aligned} V_R (G)=\mathop {\hbox {max}}\limits _{p\ge 0} \int _0^\infty {e^{-\rho t}} (p-w)[a-bp+\lambda kq+(\theta -\lambda k\xi )G]dt \end{aligned}$$
(36)

s.t. \(\dot{G}(t)=\alpha q+\beta u-\delta G,G(0)=G_0 \ge 0.\)

First, observe that p occurs only in the integrand and not in the dynamics of the goodwill, which allows us first to derive the best response retail \(\hat{{p}}(G\left| {w,u,q)} \right. \) by maximizing the integrand in (36) with respect to p. It is evident that the result will be independent of u(G). We can thus denote by \(\hat{{p}}(G\left| {w,q)} \right. \) the retailer’s best response retail price. It satisfies the first-order condition (FOC) of maximizing

$$\begin{aligned} (p-w)[a-bp+\lambda kq+(\theta -\lambda k\xi )G]. \end{aligned}$$

The FOC for a maximum is

$$\begin{aligned} -2bp+a+\lambda kq+(\theta -\lambda k\xi )G+bw=0, \end{aligned}$$
(37)

which gives

$$\begin{aligned} \hat{{p}}(G\left| {w,q)} \right. =\frac{a+\lambda kq+(\theta -\lambda k\xi )G+bw}{2b}. \end{aligned}$$
(38)

Here, we get Proposition 1.

We substitute \(\hat{{p}}(G\left| {w,q)} \right. \) into the supplier’s problem (13) and obtain the following problem:

$$\begin{aligned} V_S (G)=\mathop {\hbox {max}}\limits _{w,u,q\ge 0} \int _0^\infty {e^{-\rho t}} \left\{ \frac{w[a+\lambda kq+(\theta -\lambda k\xi )G-bw]}{2}-\frac{1}{2}u^{2}-q^{2}\right\} dt, \end{aligned}$$
(39)

s.t. \(\dot{G}(t)=\alpha q+\beta u-\delta G,G(0)=G_0 \ge 0.\)

Note that the wholesale price does not enter the dynamics of goodwill, and can therefore be solved for separately. The optimal wholesale price \(\hat{{w}}(G|q)\) satisfies the FOC

$$\begin{aligned} -2bw+a+\lambda kq+(\theta -\lambda k\xi )G, \end{aligned}$$
(40)

which gives

$$\begin{aligned} \hat{{w}}(G|q)=\frac{a+\lambda kq+(\theta -\lambda k\xi )G}{2b}. \end{aligned}$$
(41)

Inserting \(\hat{{w}}(G|q)\) in (41) into (38) gives

$$\begin{aligned} \hat{{p}}(G\left| {q)} \right. =\frac{3[a+\lambda kq+(\theta -\lambda k\xi )G]}{4b}. \end{aligned}$$
(42)

We substitute \(\hat{{w}}(G|q)\) into the supplier’s problem in (39) and then we can rewrite the supplier’s objective function as

$$\begin{aligned} V_S (G)=\mathop {\hbox {max}}\limits _{u,q\ge 0} \int _0^\infty {e^{-\rho t}} \left\{ \frac{[a+\lambda kq+(\theta -\lambda k\xi )G]^{2}}{8b}-\frac{1}{2}u^{2}-q^{2}\right\} dt, \end{aligned}$$
(43)

The Hamilton–Jacobi–Bellman (HJB) equation for the supplier can be written as

$$\begin{aligned} \rho V_S =\mathop {\hbox {max}}\limits _{u,q\ge 0} \left\{ \frac{[a+\lambda kq+(\theta -\lambda k\xi )G]^{2}}{8b}-\frac{1}{2}u^{2}-q^{2}+\frac{\partial V_S }{\partial G}(\alpha q+\beta u-\delta G)\right\} . \end{aligned}$$
(44)

We can derive the best advertising level \(u^{*}(G)\) and quality level \(q^{*}(G)\) by maximizing the right-hand side in (A.9) with respect to u and q, which gives

$$\begin{aligned} u^{*}(G)= & {} \beta (\partial V_S /\partial G), \end{aligned}$$
(45)
$$\begin{aligned} q^{*}(G)= & {} \frac{\lambda k[a+(\theta -\lambda k\xi )G]+4b\alpha (\partial V_S /\partial G)}{8b-(\lambda k)^{2}} \end{aligned}$$
(46)

Substituting \(q^{*}(G)\) in (46) into (41) and (42), we get

$$\begin{aligned} w^{*}(G)= & {} 2\frac{2[a+(\theta -\lambda k\xi )G]\hbox {+}\alpha \lambda k(\partial V_S /\partial G)}{8b-(\lambda k)^{2}}. \end{aligned}$$
(47)
$$\begin{aligned} p^{*}(G)= & {} 3\frac{2[a+(\theta -\lambda k\xi )G]\hbox {+}\alpha \lambda k(\partial V_S /\partial G)}{8b-(\lambda k)^{2}}. \end{aligned}$$
(48)

Inserting \(u^{*}(G)\), \(q^{*}(G)\) in (45) and (46) into the HJB equation in (44), we get

$$\begin{aligned} \rho V_S= & {} \frac{[a+(\theta -\lambda k\xi )G]^{2}}{8b-(\lambda k)^{2}}+\frac{\lambda k[a+(\theta -\lambda k\xi )G-bc](\partial V_S /\partial G)}{8b-(\lambda k)^{2}} \nonumber \\&+\frac{2b(\partial V_S /\partial G)^{2}}{8b-(\lambda k)^{2}}+\frac{1}{2}\beta ^{2}(\partial V_S /\partial G)^{2}-\delta G(\partial V_S /\partial G) \end{aligned}$$
(49)

Let \(V_S =\kappa _1 G^{2}+\omega _1 G+\varepsilon _1 \). Then, \(\partial V_S /\partial G=2\kappa _1 G+\omega _1 \). Substituting these into expressions (45)–(49), the equilibrium feedback advertising, quality, and price policies become

$$\begin{aligned} u^{*}(G)= & {} 2\beta \kappa _1 G+\beta \omega _1 , \end{aligned}$$
(50)
$$\begin{aligned} q^{*}(G)= & {} \frac{\lambda ka+4b\alpha \omega _1 }{8b-(\lambda k)^{2}}+\frac{\lambda k(\theta -\lambda k\xi )+8b\alpha \kappa _1 }{8b-(\lambda k)^{2}}G, \end{aligned}$$
(51)
$$\begin{aligned} w^{*}(G)= & {} 2\frac{2a+\alpha \lambda k\omega _1 }{8b-(\lambda k)^{2}}+4\frac{\theta -\lambda k\xi +\alpha \lambda k\kappa _1 }{8b-(\lambda k)^{2}}G, \end{aligned}$$
(52)
$$\begin{aligned} p^{*}(G)= & {} 3\frac{2a\hbox {+}\alpha \lambda k\omega _1 }{8b-(\lambda k)^{2}}+6\frac{\theta -\lambda k\xi \hbox {+}\alpha \lambda k\kappa _1 }{8b-(\lambda k)^{2}}G. \end{aligned}$$
(53)

Equating like powers of G in the HJB equation, we can express all the unknowns in terms of \(\kappa _1 \), which itself can be explicitly solved. That is,

$$\begin{aligned} \kappa _1= & {} \frac{M-\sqrt{M^{2}-8(\theta -\lambda k\xi )^{2}N}}{4N},\nonumber \\ \omega _1= & {} \frac{2a(\theta -\lambda k\xi +\alpha \lambda k\kappa _1 )}{(\rho +\delta )[8b-(\lambda k)^{2}]-\alpha \lambda k(\theta -\lambda k\xi )-2N\kappa _1 },\\ \sigma _1= & {} \frac{2a^{2}+2\alpha \lambda ka\omega _1 +N\omega _1 ^{2}}{2\rho [8b-(\lambda k)^{2}]},\nonumber \end{aligned}$$
(54)

where \(M=(\rho +2\delta )[8b-(\lambda k)^{2}]-2(\theta -\lambda k\xi )\alpha \lambda k\) and \(N=4b(\alpha ^{2}+2\beta ^{2})-(\beta \lambda k)^{2}\).

The sufficient conditions for \(u^{*}(G)\ge 0\), \(q^{*}(G)\ge 0\), \(w^{*}(G)\ge 0\), \(p^{*}(G)\ge 0\) are given by \(a>0\), \(8b-(\lambda k)^{2}>0\), \(\theta -\lambda k\xi \ge 0\), \(\kappa _1 \ge 0\), and \(\omega _1 \ge 0\).

The sufficient conditions for \(\kappa _1 \ge 0\) are given by \(8b-(\lambda k)^{2}>0\) and \((\rho +2\delta )[8b-(\lambda k)^{2}]-2\alpha \lambda k(\theta -\lambda k\xi )>0.\)

The sufficient conditions for \(\omega _1 \ge 0\) are given by \(a\ge 0\), \(8b-(\lambda k)^{2}>0\), \(\theta -\lambda k\xi \ge 0\), and \(\kappa _1 \ge 0\).

We can conclude that the sufficient conditions for \(u^{*}(G)\ge 0\), \(q^{*}(G)\ge 0\), \(w^{*}(G)\ge 0\), \(p^{*}(G)\ge 0\) are given by

  1. (1)

    \(a>0\);

  2. (2)

    \(\theta -\lambda k\xi \ge 0\);

  3. (3)

    \(0\le k<2[\sqrt{\alpha ^{2}\theta ^{2}+8b(\rho +2\delta )(\rho +2\varphi )}-\alpha \theta ]/(\rho +2\varphi )\);

  4. (4)

    \(k<\sqrt{8b}/\lambda \).

Thus, we get Proposition 2.

Under the above four conditions, substituting \(u^{*}(G)\) and \(q^{*}(G)\) into Equation (3), we have

$$\begin{aligned} \dot{G}(t)= & {} \frac{\alpha \lambda ka}{8b-(\lambda k)^{2}}+\left[ \frac{4b\alpha ^{2}}{8b-(\lambda k)^{2}}+\beta ^{2} \right] \omega _1 \nonumber \\&+\left\{ \frac{\alpha \lambda k(\theta -\lambda k\xi )}{8b-(\lambda k)^{2}} +2\left[ \frac{4b\alpha ^{2}}{8b-(\lambda k)^{2}}+\beta ^{2}\right] \kappa _1 -\delta \right\} G \end{aligned}$$
(55)

The general solution of (55) is

$$\begin{aligned} G^{*}(t)=G_{\textit{ss}} +(G_0 -G_{\textit{ss}} )e^{-mt} \end{aligned}$$
(56)

where

$$\begin{aligned} m=-\frac{1}{2}\rho +\frac{\sqrt{M^{2}-8(\theta -\lambda k\xi )^{2}N}}{2[8b-(\lambda k)^{2}]} \end{aligned}$$

and

$$\begin{aligned} G_{\textit{ss}} =\frac{a[\alpha \lambda k(\rho +\delta )+2(\alpha ^{2}+2\beta ^{2})(\theta -\lambda k\xi )]}{[8b-(\lambda k)^{2}]m(m+\rho )}. \end{aligned}$$

Here, we get Proposition 3.

Substituting \(G^{*}(t)\) in Eq. (56) into Eqs. (50)–(53), we get

$$\begin{aligned} u^{*}(t)= & {} u_{\textit{ss}} +2\beta \kappa _1 (G_0 -G_{\textit{ss}} )e^{-mt}, \\ q^{*}(t)= & {} q_{\textit{ss}} +\frac{(\theta -\lambda k\xi )\lambda k+8b\alpha \kappa _1 }{8b-(\lambda k)^{2}}(G_0 -G_{\textit{ss}} )e^{-mt}, \\ w^{*}(t)= & {} w_{\textit{ss}} +4\frac{\theta -\lambda k\xi +\alpha \lambda k\kappa _1 }{8b-(\lambda k)^{2}}(G_0 -G_{\textit{ss}} )e^{-mt},\\ p^{*}(t)= & {} p_{\textit{ss}} +6\frac{\theta -\lambda k\xi +\alpha \lambda k\kappa _1 }{8b-(\lambda k)^{2}}(G_0 -G_{\textit{ss}} )e^{-mt}, \end{aligned}$$

where

$$\begin{aligned} u_{\textit{ss}}= & {} \frac{2\beta \delta (a-bc)(\theta -\lambda k\xi )}{[8b-(\lambda k)^{2}]m(m+\rho )},\\ q_{\textit{ss}}= & {} \frac{a\delta [\lambda k(\rho +\varphi )+\alpha \theta ]}{[8b-(\lambda k)^{2}]m(m+\rho )},\\ w_{\textit{ss}}= & {} \frac{4a\delta (\rho +\delta )}{[8b-(\lambda k)^{2}]m(m+\rho )},\\ p_{\textit{ss}}= & {} \frac{6a\delta (\rho +\delta )}{[8b-(\lambda k)^{2}]m(m+\rho )}. \end{aligned}$$

Thus, Proposition 4 is proved.

Proofs for Proposition 56 and 7 are similar to those above and are omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhang, J., Gou, Q. et al. Supply chain decisions with reference quality effect under the O2O environment. Ann Oper Res 268, 273–292 (2018). https://doi.org/10.1007/s10479-016-2224-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2224-2

Keywords

Navigation