Abstract
Many studies regarding environmental concerns in forest harvest scheduling problems deal with constraints on the maximum clearcut size. However, these constraints tend to disperse harvests across the forest and thus to generate a more fragmented landscape. When a forest is fragmented, the amount of edge increases at the expense of the core area. Highly fragmented forests can neither provide the food, cover, nor the reproduction needs of core-dependent species. This study presents a branch-and-bound procedure designed to find good feasible solutions, in a reasonable time, for forest harvest scheduling problems with constraints on maximum clearcut size and minimum core habitat area. The core area is measured by applying the concept of subregions. In each branch of the branch-and-bound tree, a partial solution leads to two children nodes, corresponding to the cases of harvesting or not a given stand in a given period. Pruning is based on constraint violations or unreachable objective values. The approach was tested with forests ranging from some dozens to more than a thousand stands. In general, branch-and-bound was able to quickly find optimal or good solutions, even for medium/large instances.







Similar content being viewed by others
References
Baskent, E. Z., & Jordan, G. A. (1995). Characterizing spatial structure of forest landscapes. Canadian Journal of Forest Research, 25(11), 1830–1849.
Caro, F., Constantino, M., Martins, I., & Weintraub, A. (2003). A 2-opt tabu search procedure for the multiperiod forest harvesting problem with adjacency, greenup, old growth, and even flow constraints. Forest Science, 49(5), 738–751.
Constantino, M., Martins, I., & Borges, J. G. (2008). A new mixed-integer programming model for harvest scheduling subject to maximum area restrictions. Operations Research, 56(3), 542–551.
Crowe, K., Nelson, J., & Boyland, M. (2003). Solving the area-restricted harvest-scheduling model using the branch and bound algorithm. Canadian Journal of Forest Research, 33(9), 1804–1814.
Davis, L. S. (1977). Understanding shape: Angles and sides. IEEE Transactions on Computers, 100(3), 236–242.
Diestel, R. (2012). Graph theory, volume 173 of graduate texts in mathematics. Berlin, Heidelberg: Springer.
Falcão, A. O., & Borges, J. (2002). Combining random and systematic search heuristic procedures for solving spatially constrained forest management scheduling models. Forest Science, 48(3), 608–621.
Franklin, J. F., & Forman, R. T. (1987). Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecology, 1(1), 5–18.
Goycoolea, M., Murray, A. T., Barahona, F., Epstein, R., & Weintraub, A. (2005). Harvest scheduling subject to maximum area restrictions: Exploring exact approaches. Operations Research, 53(3), 490–500.
Goycoolea, M., Murray, A., Vielma, J. P., & Weintraub, A. (2009). Evaluating approaches for solving the area restriction model in harvest scheduling. Forest Science, 55(2), 149–165.
Harris, L. D. (1984). The fragmented forest: Island biogeography theory and the preservation of biotic diversity. Chicago: University of Chicago press.
Hof, J., Bevers, M., Joyce, L., & Kent, B. (1994). An integer programming approach for spatially and temporally optimizing wildlife populations. Forest Science, 40(1), 177–191.
Hoganson, H., Wei, Y., & Hokans, R. (2005). Integrating spatial objectives into forest plans for Minnesota’s National Forests. Technical Report 656, USDA Forest Service—General Technical Report PNW-GTR, 10.
Kurttila, M., Pukkala, T., & Loikkanen, J. (2002). The performance of alternative spatial objective types in forest planning calculations: A case for flying squirrel and moose. Forest Ecology and Management, 166(1), 245–260.
Martins, I., Constantino, M., & Borges, J. (1999). Forest management models with spatial structure constraints. Working paper 2, CIO/Faculdade de CiÍncias de Lisboa.
Martins, I., Constantino, M., & Borges, J. G. (2005). A column generation approach for solving a non-temporal forest harvest model with spatial structure constraints. European Journal of Operational Research, 161(2), 478–498.
Martins, I., Alvelos, F., & Constantino, M. (2012). A branch-and-price approach for harvest scheduling subject to maximum area restrictions. Computational Optimization and Applications, 51(1), 363–385.
McDermott, C., Cashore, B. W., & Kanowski, P. (2010). Global environmental forest policies: An international comparison. Earthscan.
McDill, M. E., Rebain, S. A., & Braze, J. (2002). Harvest scheduling with area-based adjacency constraints. Forest Science, 48(4), 631–642.
McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E.: FRAGSTATS: Spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst, 2002. URL http://www.umass.edu/landeco/research/fragstats/fragstats.html.
Moellering, H., & Rayner, J. N. (1981). The harmonic analysis of spatial shapes using dual axis fourier shape analysis (dafsa). Geographical Analysis, 13(1), 64–77.
Murray, A. T., & Weintraub, A. (2002). Scale and unit specification influences in harvest scheduling with maximum area restrictions. Forest Science, 48(4), 779–789.
Neto, T., Constantino, M., Martins, I., & Pedroso, J. P. (2013). A branch-and-bound procedure for forest harvest scheduling problems addressing aspects of habitat availability. International transactions in operational research, 20(5), 689–709.
Öhman, K. (2000). Creating continuous areas of old forest in long-term forest planning. Canadian Journal of Forest Research, 30(11), 1817–1823.
Öhman, K., & Eriksson, L. O. (1998). The core area concept in forming contiguous areas for long-term forest planning. Canadian Journal of Forest Research, 28(7), 1032–1039.
Öhman, K., & Lämås, T. (2005). Reducing forest fragmentation in long-term forest planning by using the shape index. Forest Ecology and Management, 212(1), 346–357.
Öhman, K., & Wikström, P. (2008). Incorporating aspects of habitat fragmentation into long-term forest planning using mixed integer programming. Forest Ecology and Management, 255(3), 440–446.
Öhman, K., Pukkala, T., et al. (2002). Spatial optimisation in forest planning: A review of recent swedish research. Multi-objective forest planning (Vol. 6, pp. 153–172).
Paradis, G., & Richards. E. (2001). Flg: A forest landscape generator. CORS-SCRO Bulletin, 35(3), 28–31.
Rebain, S., & McDill, M. E. (2003a). Can mature patch constraints mitigate the fragmenting effects of harvest opening size restrictions? International Transactions in Operational Research, 10(5), 499–513.
Rebain, S., & McDill, M. E. (2003b). A mixed-integer formulation of the minimum patch size problem. Forest Science, 49(4), 608–618.
Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2), 91–103.
Tóth, S. F., McDill, M. E., & Rebain, S. (2006). Finding the efficient frontier of a bi-criteria, spatially explicit, harvest scheduling problem. Forest Science, 52(1), 93–107.
Vielma, J. P., Murray, A. T., Ryan, D. M., & Weintraub, A. (2007). Improving computational capabilities for addressing volume constraints in forest harvest scheduling problems. European Journal of Operational Research, 176(2), 1246–1264.
Wei, Y., & Hoganson, H. M. (2007). Scheduling forest core area production using mixed integer programming. Canadian Journal of Forest Research, 37(10), 1924–1932.
Wei, Y., & Hoganson, H. M. (2008). Tests of a dynamic programming-based heuristic for scheduling forest core area production over large landscapes. Forest Science, 54(3), 367–380.
Wentz, E. A. (2000). A shape definition for geographic applications based on edge, elongation, and perforation. Geographical Analysis, 32(2), 95–112.
Xia, L. (1996). Technical note: A method to improve classification with shape information. International Journal of Remote Sensing, 17(8), 1473–1481.
Yoshimoto, A., & Brodie, J. D. (1994). Comparative analysis of algorithms to generate adjacency constraints. Canadian Journal of Forest Research, 24(6), 1277–1288.
Zhang, H., Constantino, M., & Falcão, A. (2011). Modeling forest core area with integer programming. Annals of Operations Research, 190(1), 41–55.
Acknowledgments
This work was partly funded by FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within projects UID/EEA/50014/2013 and UID/MAT/04561/2013. We would like to thank four anonymous reviewers for their constructive comments on a previous version of this paper.
Author information
Authors and Affiliations
Corresponding author
Apendix: Determining core area
Apendix: Determining core area
To determine core area, the forest is classified into subregions with the geographic information system ArcGis 9.2. A surrounding impact zone of a given width for each stand is created, using the tool Buffer, available in ArcToolbox \(\setminus \) Analysis Tools \(\setminus \) Proximity. Then, subregions are provided by ArcToolbox \(\setminus \) Analysis Tools \(\setminus \) Overlay. For each subregion, the defining set and the area are displayed by default. Centroids, useful to distinguish subregions with the same defining set and the same area (see subregions \(C_4\) and \(C_5\) in Fig. 8 and Example 2), are also computed, using the tools Feature to Point and Add XY Coordinates from ArcToolbox \(\setminus \) Data Management Tools \(\setminus \) Features.
Example 2
Figure 8 provides another example of a mature forest with three stands, A, B and C, before and after intersecting the stands and impact zones. The sets of stands determining if subregions \(C_4, C_5\) are core area are: \(\mathcal {I}_{C_4} = \mathcal {I}_{C_5}=\{C,A,B\}\).
The choice of harvesting a stand (a left branch in the branch-and-bound tree) requires updating the total area and the total core area of habitats. For node k, let \(H^k_t\) be a list that contains the existing habitats in period t. Let \(\tau _{h}\) be the total area and \(\gamma _{h}\) be the total core area of habitats \(h \in H^k_t\). At node \(k+1\), where stand \(i_k\) is selected to be harvested in period \(t_k\), updates to \(H^k_{t_k}\), \(\tau _{t_k}^k\) and \(\gamma _{t_k}^k\) are done according to the following three possibilities:
-
(a)
Stand \(i_k\) belongs to a habitat \(h \in H^k_{t_k}\) and harvesting \(i_k\) leads to one smaller patch \(h'\) (Fig. 9a). Let \( \textsf {s} _{i_k}\) be the area of \(i_k\) and R be the amount of core area removed, i.e., the core area of h that was inside \(i_k\) plus the new edge in \(h'\) caused by harvesting \(i_k\); then:
-
If \(h'\) meets the minimum core area \( \textsf {C} ^ \textsf {min} \) requirement for a habitat, then:
$$\begin{aligned}&H^{k+1}_{t_k} = H^{k}_{t_k} \setminus \{h\} \cup \{h'\} \\&\gamma _{h'} = \gamma _{h} - R \\&\tau _{h'} = \tau _{h} - \textsf {s} _{i_k} \end{aligned}$$ -
Otherwise, h is removed: \(H^{k+1}_{t_k} = H^{k}_{t_k} \setminus \{h\}\).
-
-
(b)
Stand \(i_k\) belongs to habitat \(h \in H^{k}_{t_k}\) and harvesting \(i_k\) splits up h into a set of new patches \(N = \{h_1, \ldots , h_m\}\) (Fig. 9 b). In this case, it is necessary to calculate the area and the core area of each new patch \(h' \in N\), as in (a).
-
New habitats are the newly formed patches that meet the requirement for a habitat:
$$\begin{aligned} H^{k+1}_{t_k} = H^{k}_{t_k} \setminus \{h\} \cup \{h' \in N : \gamma _{h'} \ge \textsf {C} ^ \textsf {min} \} \end{aligned}$$
-
-
(c)
Stand \(i_k\) (belonging or not to a habitat \(h \in H^{k}_{t_k}\)) causes edge effects on other habitats \(h_1,\ldots ,h_m\) (Fig. 9c). In this case, the core area of each affected habitat \(h'\) is updated by subtracting the new edge caused by harvesting \(i_k\).
-
Each \(h'\) that becomes non-habitat is removed from \(H^{k+1}_{t_k}\).
-
Rights and permissions
About this article
Cite this article
Neto, T., Constantino, M., Martins, I. et al. Forest harvest scheduling with clearcut and core area constraints. Ann Oper Res 258, 453–478 (2017). https://doi.org/10.1007/s10479-016-2313-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-016-2313-2