Skip to main content
Log in

The time-dependent orienteering problem with time windows: a fast ant colony system

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper proposes a fast ant colony system based solution method to solve realistic instances of the time-dependent orienteering problem with time windows within a few seconds of computation time. Orienteering problems occur in logistic situations where an optimal combination of locations needs to be selected and the routing between these selected locations needs to be optimized. For the time-dependent problem, the travel time between two locations depends on the departure time at the first location. The main contribution of this paper is the design of a fast and effective algorithm for this problem. Numerous experiments on realistic benchmark instances with varying size confirm the state-of-the-art performance and practical relevance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbaspour, A., & Samadzadegan, F. (2011). Time-dependent personal tour planning and scheduling in metropolises. Expert Systems with Applications, 38, 12,439–12,452.

    Article  Google Scholar 

  • Aghezzaf, E. H., Zhong, Y., Raa, B., & Mateo, M. (2012). Analysis of the single-vehicle cyclic inventory routing problem. International Journal of Systems Science, 43(11), 2040–2049.

    Article  Google Scholar 

  • Balseiro, S., Loisea, I., & Ramonet, J. (2011). An ant colony algorithm hybridized with insertion heuristic for the time dependent vehicle routing problem with time windows. Computers and Operations Research, 38(6), 954–966.

    Article  Google Scholar 

  • Be-Mobile (2014) Be-mobile: Floating vehicle data. http://www.be-mobile.be

  • Chao, I., Golden, B., & Wasil, E. (1996). Theory and methodology a fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88, 475–489.

    Article  Google Scholar 

  • Chen, H., Hsueh, C., & Chang, M. (2006). The real-time time-dependent vehicle routing problem. Transportation Research Part E, 42, 383–408.

    Article  Google Scholar 

  • Donati, A., Montemanni, R., Casagrande, N., Rizzoli, A., & Gambardella, L. (2008). Time dependent vehicle routing problem with a multi ant colony system. European Journal of Operational Research, 185, 1174–1191.

    Article  Google Scholar 

  • Evers, L., Glorie, K., van der Ster, S., Barros, A., & Monsuur, H. (2012). The orienteering problem under uncertainty stochastic programming and robust optimization compared. Tech. Rep. Econometric Institute Report EI 2012-21, Erasmus University, Econometric Institute, http://hdl.handle.net/1765/37193

  • Fomin, F., & Lingas, A. (2002). Approximation algorithms for time-dependent orienteering. Information Processing Letters, 83, 57–62.

    Article  Google Scholar 

  • Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., & Linaza, M. (2013). Integrating public transportation in personalised electronic tourist guides. Computers and Operations Research, 40, 758–774.

    Article  Google Scholar 

  • Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2014). Efficient heuristics for the time dependent team orienteering problem with time windows. In: Gupta, P., Zaroliagis, C. (Eds.), Applied Algorithms, Lecture Notes in Computer Science, vol 8321, Springer International Publishing, (pp. 152–163).

  • Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for the time dependent team orienteering problem: Application to tourist route planning. Computers and Operations Research, 62, 36–50.

    Article  Google Scholar 

  • Golden, B., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34, 307–318.

    Article  Google Scholar 

  • Gunawan, A., Lau, H., & Vansteenwegen, P. (2016). Orienteering problem: a survey of recent variants, solution approaches and applications. European Journal of Operational Research (Accepted).

  • Haghani, A., & Jung, S. (2005). A dynamic vehicle routing problem with time-dependent travel times. Computers and Operations Research, 32, 2959–2986.

    Article  Google Scholar 

  • Hashimoto, H., Yagiurab, M., & Ibaraki, T. (2008). An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discrete Optimization, 5, 434–456.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J. Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144, 379–396.

    Article  Google Scholar 

  • Kantor, M., & Rosenwein, M. (1992). The orienteering problem with time windows. Journal of Operational Research Society, 43(6), 629–635.

    Article  Google Scholar 

  • Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem. Computers and Industrial Engineering, 54, 648–665.

    Article  Google Scholar 

  • Kok, A. L., Hans, E. W., & Schutten, J. M. J. (2012). Vehicle routing under time-dependent travel times: The impact of congestion avoidance. Computers and Operations Research, 39(5), 910–918.

    Article  Google Scholar 

  • Kritzinger, S., Tricoire, F., Doerner, K., & Hartl, R. (2011). Variable neighborhood search for the time-dependent vehicle routing problem with soft time windows. In C. Coello (Ed.), Learning and Intelligent Optimization (Vol. 6683, pp. 61–75), Lecture Notes in Computer Science. Berlin: Springer.

  • Lecluyse, C., Van Woensel, T., & Peremans, H. (2009). Vehicle routing with stochastic time-dependent travel times. 4OR: Quarterly journal of Operational Research, 7, 363–377.

    Article  Google Scholar 

  • Li, J. (2011). Model and algorithm for time-dependent team orienteering problem. In S. Lin & X. Huang (Eds.), Advanced research on computer education, simulation and modeling, communications in computer and information science (Vol. 175, pp. 1–7). Berlin: Springer.

    Google Scholar 

  • Li, J., Wu, Q., Li, X., & Zhu, D. (2010). Study on the time-dependent orienteering problem. In: International conference on E-Product E-Service and E-Entertainment (ICEEE), (pp. 1 – 4).

  • Mufalli, F., Batta, R., & Nagi, R. (2012). Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans. Computers and Operations Research, 39(11), 2787–2799.

    Article  Google Scholar 

  • Potvin, J., Xu, Y., & Benyahia, I. (2006). Vehicle routing and scheduling with dynamic travel times. Computers and Operations research, 33, 1129–1137.

    Article  Google Scholar 

  • Royset, J. O., & Reber, D. N. (2009). Optimized routing of unmanned aerial systems for the interdiction of improvised explosive devices. Military Operations Research, 14(4), 5–19.

    Article  Google Scholar 

  • Schilde, M., Doerner, K., Hartl, R., & Kiechle, G. (2009). Metaheuristics for the biobjective orienteering problem. Swarm Intelligence, 3, 179–201.

    Article  Google Scholar 

  • Soler, D., Albiach, J., & Martinez, E. (2009). A way to optimally solve a time-dependent vehicle routing problem with time windows. Operations Research Letters, 37, 37–42.

    Article  Google Scholar 

  • Sörensen, K., Sevaux, M., & Schittekat, P. (2008). Adaptive and multilevel metaheuristics, Lecture Notes in Economics and Mathematical Systems, vol 136, Springer, London, chap Multiple neighbourhood search in commercial VRP packages: evolving towards self-adaptive methods, (pp. 239–253).

  • Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G., & Van Oudheusden, D. (2008). A personalised tourist trip design algorithm for mobile tourist guides. Applied Artificial Intelligence, 22, 964–985.

    Article  Google Scholar 

  • Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational Research Society, 35(9), 797–809.

    Article  Google Scholar 

  • Van Woensel, T., Kerbache, L., Peremans, H., & Vandaele, N. (2008). Vehicle routing with dynamic travel times: A queueing approach. European Journal of Operational Research, 186, 990–1007.

    Article  Google Scholar 

  • Vansteenwegen, P., & Van Oudheusden, D. (2007). The mobile tourist guide: An OR opportunity. OR Insights, 20(3), 21–27.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011a). The orienteering problem: A survey. European Journal of Operational Research, 209, 1–10.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Van Oudheusden, D. (2011b). The city trip planner: A tourist expert system. Expert Systems with Applications, 38, 6540–6546.

    Article  Google Scholar 

  • Verbeeck, C., Sörensen, K., Aghezzaf, E. H., & Vansteenwegen, P. (2014). A fast solution method for the time-dependent orienteering problem. European Journal of Operational Research, 236(2), 419–432.

    Article  Google Scholar 

  • Wang, X., Golden, B. L., & Wasil, E. A. (2008). The vehicle routing problem: latest advances and new challenges, Springer US, Boston, MA, chap Using a Genetic Algorithm to Solve the Generalized Orienteering Problem (pp. 263–274).

Download references

Acknowledgements

This research was funded by the Agency for Innovation by Science and Technology in Flanders (IWT). The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, the Hercules Foundation and the Flemish Government—department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Verbeeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbeeck, C., Vansteenwegen, P. & Aghezzaf, EH. The time-dependent orienteering problem with time windows: a fast ant colony system. Ann Oper Res 254, 481–505 (2017). https://doi.org/10.1007/s10479-017-2409-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2409-3

Keywords

Navigation