Skip to main content
Log in

Cooperation strategy of technology licensing based on evolutionary game

  • S.I.: BOM in Social Networks
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study analyzes the issue of technology-licensing cooperation between a firm with production patent technology and a firm with inferior production technology, and obtains the evolution trend of the technology-licensing deal and cooperation strategy under fixed-fee licensing and royalty licensing situation. We find that the probability of successful cooperation between the two firms increases when fixed technology-license fees and cost savings from technology licensing increase simultaneously, and change of fixed technology license fees and cost savings affects the willingness to cooperate of the firm with inferior production technology, and not the firm with production patent technology. Furthermore, modest royalty fees promote successful cooperation. In both licensing situations, for the firm with production patent technology, an increase in the market share of its products or non-licensing resource sharing cost-saving value reduces the cooperation probability. Meanwhile, for the firm with inferior production technology, an increase in the market share of its products promotes successful cooperation in the royalty licensing case, but requires conditions for fixed technology-licensing fees and cost savings lower than a certain value in the fixed-fee licensing case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Algieri, B., Aquino, A., & Succurro, M. (2013). Technology transfer offices and academic spin-off creation: The case of Italy. The Journal of Technology Transfer, 38(4), 382–400.

    Article  Google Scholar 

  • Arora, A. (1997). Patents, licensing, and market structure in the chemical industry. Research Policy, 26(4), 391–403.

    Article  Google Scholar 

  • Arora, A., Fosfuri, A., & Rønde, T. (2013). Managing licensing in a market for technology. Management Science, 59(5), 1092–1106.

    Article  Google Scholar 

  • Bagchi, A., & Mukherjee, A. (2014). Technology licensing in a differentiated oligopoly. International Review of Economics and Finance, 29(1), 455–465.

    Article  Google Scholar 

  • Carayannis, E. G., Dubina, I. N., & Ilinova, A. A. (2015). Licensing in the context of entrepreneurial university activity: An empirical evidence and a theoretical model. Journal of the Knowledge Economy, 6(1), 1–12.

    Article  Google Scholar 

  • Costa, L. A., & Dierickx, I. (2002). Licensing and bundling. International Journal of Industrial Organization, 20(2), 251–267.

    Article  Google Scholar 

  • Feldman, R., & Lemley, M. A. (2015). Does patent licensing mean innovation? SSRN 2565292.

  • Fernández, F. R., Fiestras-Janeiro, M. G., García-Jurado, I., & Puerto, J. (2005). Competition and cooperation in non-centralized linear production games. Annals of Operations Research, 137(1), 91–100.

    Article  Google Scholar 

  • Fosfuri, A. (2006). The licensing dilemma: Understanding the determinants of the rate of technology licensing. Strategic Management Journal, 27(12), 1141–1158.

    Article  Google Scholar 

  • Hagedoorn, J., Carayannis, E., & Alexander, J. (2001). Strange bedfellows in the personal computer industry: Technology alliances between IBM and Apple. Research Policy, 30(5), 837–849.

    Article  Google Scholar 

  • Hong, X., Govindan, K., Xu, L., & Du, P. (2017). Quantity and collection decisions in a closed-loop supply chain with technology licensing. European Journal of Operational Research, 256(3), 820–829.

    Article  Google Scholar 

  • Hsu, Y. W., & Lambrecht, B. M. (2007). Preemptive patenting under uncertainty and asymmetric information. Annals of Operations Research, 151(1), 5–28.

    Article  Google Scholar 

  • Hytönen, H., Jarimo, T., Salo, A., & Yli-Juuti, E. (2012). Markets for standardized technologies: Patent licensing with principle of proportionality. Technovation, 32(9), 523–535.

    Article  Google Scholar 

  • Kim, S.-L., & Lee, S.-H. (2014). Eco-technology licensing under emission tax: Royalty vs. fixed-fee. Korean Economic Review, 30(2), 273–300.

    Google Scholar 

  • Kim, Y., & Vonortas, N. S. (2006). Technology licensing partners. Journal of Economics and Business, 58(4), 273–289.

    Article  Google Scholar 

  • Kuo, P. S., Lin, Y. S., & Peng, C. H. (2016). International technology transfer and welfare. Review of Development Economics, 20(1), 214–227.

    Article  Google Scholar 

  • Lichtenthaler, U. (2012). Licensing technology to shape standards: Examining the influence of the industry context. Technological Forecasting and Social Change, 79(5), 851–861.

    Article  Google Scholar 

  • Llobet, G., & Padilla, J. (2014). The optimal scope of the royalty base in patent licensing. SSRN 2417216.

  • Moldovanu, B., & Sela, A. (2003). Patent licensing to Bertrand competitors. International Journal of Industrial Organization, 21(1), 1–13.

    Article  Google Scholar 

  • Mukherjee, A., Chen, H., Hwang, H., & Shih, P. (2015). Tariffs, technology licensing and adoption. International Review of Economics and Finance, 43, 234–240. (Forthcoming).

    Google Scholar 

  • Mukherjee, A., & Mukherjee, S. (2013). Technology licensing and innovation. Economics Letters, 120(3), 499–502.

    Article  Google Scholar 

  • Mukherjee, A., & Sinha, U. B. (2014). Can cost asymmetry be a rationale for privatisation? International Review of Economics and Finance, 29(1), 497–503.

    Article  Google Scholar 

  • Mukherjee, A., & Tsai, Y. (2013). Technology licensing under optimal tax policy. Journal of Economics, 108(3), 231–247.

    Article  Google Scholar 

  • Muto, S. (1987). Possibility of relicensing and patent protection. European Economic Review, 31(4), 927–945.

    Article  Google Scholar 

  • Nabin, M., Nguyen, X., & Sgro, P. (2013). On the relationship between technology transfer and economic growth in Asian economies. The World Economy, 36(7), 935–946.

    Article  Google Scholar 

  • Oraiopoulos, N., Ferguson, M. E., & Toktay, L. B. (2012). Relicensing as a secondary market strategy. Management Science, 58(5), 1022–1037.

    Article  Google Scholar 

  • Poddar, S., & Sinha, U. B. (2004). On patent licensing in spatial competition. Economic Record, 80(249), 208–218.

    Article  Google Scholar 

  • Rostoker, M. D. (1983). A survey of corporate licensing. Idea, 24(2), 59.

    Google Scholar 

  • Sandholm, W. H. (2012). Evolutionary game theory. Computational complexity: Theory, techniques, and applications (pp. 1000–1029). New York: Springer. doi:10.1007/978-1-4614-1800-9_63.

  • Taylor, C. T., Silberston, A., & Silberston, Z. (1973). The economic impact of the patent system: A study of the British experience. Economic Journal, 84(334), 403–404.

    Google Scholar 

  • Wang, X. H. (2002). Fee versus royalty licensing in a differentiated Cournot duopoly. Journal of Economics and Business, 54(2), 253–266.

    Article  Google Scholar 

  • Wang, W., Zhang, Y., Zhang, K., Bai, T., & Shang, J. (2015). Reward-penalty mechanism for closed-loop supply chains under responsibility-sharing and different power structures. International Journal of Production Economics, 170, 178–190.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported partially by the Natural Sciences Foundation of China (Nos. 71171002, 71671001, and 71672071), the Key Project of Chinese National Social Science Fund (No. 13AZD062), the Key Project of Natural Science Research of Higher Education Institutions of Anhui Province (No. KJ2015A112), and the Key Project of the University Youth Elite Support Plan of Anhui Province (No. gxyqZD2016116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengang Gong.

Appendix

Appendix

Proof of Conclusion 1

If \(\beta \Delta _A q_A -\alpha F<0\), namely if \(q_A <\frac{\alpha F}{\beta \Delta _A }\) or \(F>\frac{\beta \Delta _A q_A }{\alpha }\), we have \(\frac{\beta \Delta _A q_A -\alpha F}{\beta \Delta _A q_A +F}<0\), there always is \(y>\frac{\pi _{1nn} -\pi _{1yn} }{\pi _{1yy} -\pi _{1ny} +\pi _{1nn} -\pi _{1yn} }\). Here, \(x=1\) is an ESS. Putting \(p_A =a-q_B -bq_A \) into \(\beta \Delta _A q_A -F<0\), we can obtain \(F>\beta \Delta _A \frac{p_B -a+q_B }{\alpha b}\). Conclusion 1 is proved.

Proof of Conclusion 2

Under \(0<\frac{\pi _{1nn} -\pi _{1yn} }{\pi _{1yy} -\pi _{1ny} +\pi _{1nn} -\pi _{1yn} }<1\) (that is \(0<\frac{\beta \Delta _A q_A -\alpha F}{\beta \Delta _A q_A +F}<1)\), if \(y>\frac{\beta \Delta _A q_A -\alpha F}{\beta \Delta _A q_A +F}\), \({F}'(x)|_{x=1} <0\) and \({F}'(x)|_{x=0} >0\), then \(x=1\) is the stable point; if \(y<\frac{\beta \Delta _A q_A -\alpha F}{\beta \Delta _A q_A +F}\), \({F}'(x)|_{x=1} >0\) and \({F}'(x)|_{x=0} <0\), then \(x=0\) is the stable point. Conclusion 2 is proved.

Proof of Conclusion 3

If \(x>\frac{\pi _{2nn} -\pi _{2ny} }{\pi _{2yy} -\pi _{2yn} +\pi _{2nn} -\pi _{2ny} }\), then \(\frac{\alpha F-\beta \Delta _B q_B }{F-(\varepsilon q_B +\beta \Delta _B q_B )}<0\) and \((\varepsilon +\beta \Delta _B )q_B<F<\frac{\beta \Delta _B q_B }{\alpha }\). Substituting \(q_B =\frac{a-q_A -p_A }{b}\) into \((\varepsilon +\beta \Delta _B )q_B<F<\frac{\beta \Delta _B q_B }{\alpha }\), we get \((\varepsilon +\beta \Delta _B )\frac{a-q_A -p_A }{b}<F<\frac{\beta \Delta _B (a-q_A -p_A )}{\alpha b}\). Therefore, when \((\varepsilon +\beta \Delta _B )q_B<F<\frac{\beta \Delta _B q_B }{\alpha }\) or \((\varepsilon +\beta \Delta _B )\frac{a-q_A -p_A }{b}<F<\frac{\beta \Delta _B (a-q_A -p_A )}{\alpha b}\), \(y=1\) is an ESS. Conclusion 3 is proved.

Proof of Conclusion 4

Under \(0<\frac{\alpha F-\beta \Delta _B q_B }{F-(\varepsilon +\beta \Delta _B )q_B }<1\), if \(x>\frac{\alpha F-\beta \Delta _B q_B }{F-(\varepsilon +\beta \Delta _B )q_B }\), we have and \(F^{\prime }(y)|_{y=0}>0\) so \(y=1\) is the stable point at this time. if \(x<\frac{\alpha F-\beta \Delta _B q_B }{F-(\varepsilon +\beta \Delta _B )q_B }\), then \({F}'(y)|_{y=0} <0\) and \({F}'(y)|_{y=1} >0\), so \(y=0\) is the stable point. Conclusion 4 is proved.

Proof of Conclusion 7

According to \(\frac{\pi _{2nn} -\pi _{2ny} }{\pi _{2yy} -\pi _{2yn} +\pi _{2nn} -\pi _{2ny} }=\frac{\gamma \alpha -\Delta _B }{\beta \Delta _B +\varepsilon -\gamma }\) and \(\varepsilon >\gamma \), just when \(\gamma <\frac{\Delta _B }{\alpha }\), then \(\frac{\gamma \alpha -\Delta _B }{\beta \Delta _B +\varepsilon -\gamma }<0\). In this situation, there is always \(x>\frac{\pi _{2nn} -\pi _{2ny} }{\pi _{2yy} -\pi _{2yn} +\pi _{2nn} -\pi _{2ny} }\). Therefore, \(y=1\) is an ESS. Conclusion 7 is proved.

Proof of Conclusion 9

For \(\frac{\partial s_F }{\partial F}=\frac{1}{2}(\frac{(1+\alpha )\beta \Delta _A q_A }{(F+\beta \Delta _A q_A )^{2}}+\frac{\alpha \varepsilon q_B +(\alpha -1)\beta \Delta _B q_B }{(F-(\varepsilon +\beta \Delta _B )q_B )^{2}})\), to make the expression more than zero, just to considering the sign of \(\frac{\alpha \varepsilon q_B +(\alpha -1)\beta \Delta _B q_B }{(F-(\varepsilon +\beta \Delta _B )q_B )^{2}}\), obtain \(\varepsilon >\frac{(1-\alpha )\beta \Delta _B }{\alpha }\), then \(\frac{\partial s_F }{\partial F}>0\). From \(\frac{\partial s_F }{\partial \varepsilon }=\frac{(\beta \Delta _B q_B -\alpha F)q_B }{2(F-(\varepsilon +\beta \Delta _B )q_B )^{2}}\),if \(F<\frac{\beta \Delta _B q_B }{\alpha }\), then \(\frac{\partial s_F }{\partial \varepsilon }>0\). From \(\frac{\partial s_F }{\partial q_B }=\frac{((1-\alpha )\beta \Delta _B -\alpha \varepsilon )F}{2(F-(\varepsilon +\beta \Delta _B )q_B )^{2}}\), if \(\varepsilon <\frac{(1-\alpha )\beta \Delta _B }{\alpha }\), then \(\frac{\partial s_F }{\partial q_B }>0\). \(\frac{\partial s_F }{\partial q_A }=-\frac{\beta \Delta _A F(1+\alpha )}{2(F+\beta \Delta _A q_A )^{2}}<0\). From \(\frac{\partial s}{\partial \beta }=\frac{1}{2}(-\frac{(1+\alpha )F\Delta _A q_A }{(F+\beta \Delta _A q_A )^{2}}+\frac{(F-\alpha F-\varepsilon qr)\Delta _B q_B }{(F-(\varepsilon +\beta \Delta _B )q_B )^{2}})\), only the second fractions in the bracket \(F-\alpha F-\varepsilon q_B <0\), that is \(F<\frac{\varepsilon q_B }{1-\alpha }\), then \(\frac{\partial s}{\partial \beta }<0\). From\(\frac{\partial s_F }{\partial \alpha }=\frac{F(\beta \Delta _B q_B +\beta \Delta _A q_A +\varepsilon q_B )}{2(F+\beta \Delta _A q_A )(-F+(\varepsilon +\beta \Delta _B )q_B )}\), when the denominator \((\varepsilon +\beta \Delta _B )q_B -F>0\), that is \(F<(\varepsilon +\beta \Delta _B )q_B \), then \(\frac{\partial s_F }{\partial \alpha }>0\). From \(\frac{\partial s_F }{\partial \Delta _B }=\frac{(F-\alpha F-\varepsilon q_B )\beta q_B }{2(F-(\varepsilon +\beta \Delta _B )q_B )^{2}}\), when \(F>\frac{\varepsilon q_B }{1-\alpha }\), \(\frac{\partial s_F }{\partial \Delta _B }>0\). \(\frac{\partial s_F }{\partial \Delta _A }=-\frac{(1+\alpha )\beta Fq_A }{2(F+\beta \Delta _A q_A )^{2}}<0\). Conclusion 9 is proved.

Proof of Conclusion 10

According to \(\frac{\partial s_R }{\partial \gamma }=\frac{\Delta _B -\alpha \beta \Delta _B -\alpha \varepsilon }{(\beta \Delta _B +\varepsilon -\gamma )^{2}}+\frac{(1+\alpha )\beta \Delta _A q_A q_B }{(\beta \Delta _A q_A +q_B \gamma )}\), we find that as long as the first fraction of the molecule is greater than zero, namely \(\varepsilon <\frac{\Delta _B -\alpha \beta \Delta _B }{\alpha }\), \(\frac{\partial s_R }{\partial \gamma }\) is constant higher than zero; according to \(\frac{\partial s_R }{\partial \varepsilon }=\frac{\alpha \gamma -\Delta _B }{(\beta \Delta _B +\varepsilon -\gamma )^{2}}>0\), just when \(\gamma >\frac{\Delta _B }{\alpha }\), \(\frac{\partial s_R}{\partial \varepsilon }\) is constant higher than zero; \(\frac{\partial s_R }{\partial q_B }=\frac{(1+\alpha )\beta \Delta _A q_A \gamma }{(\beta \Delta _A q_A +q_B \gamma )^{2}}>0\); \(\frac{\partial s_R }{\partial q_A }=-\frac{(1+\alpha )\beta \Delta _A q_B \gamma }{(\beta \Delta _A q_A +q_B \gamma )^{2}}<0\); from \(\frac{\partial s_R }{\partial \alpha }=\frac{q_B \gamma }{\beta \Delta _A q_A +q_B \gamma }-\frac{\gamma }{\beta \Delta _B +\varepsilon -\gamma }\), it is easy to get that when \(\gamma <\frac{\varepsilon q_B +\beta \Delta _B q_B -\beta \Delta _A q_A }{2q_B }\), \(\frac{\partial s_R }{\partial \alpha }>0\); for \(\frac{\partial s_R }{\partial \beta }=\frac{\Delta _B (\alpha \gamma -\Delta _B )}{(\beta \Delta _B +\varepsilon -\gamma )^{2}}-\frac{(1+\alpha )\gamma \Delta _A q_A q_B }{(\beta \Delta _A q_A +q_B \gamma )}\), as long as the front fraction of the molecule is less than zero, that is when \(\gamma <\frac{\Delta _B }{\alpha }\), it can guarantee that \(\frac{\partial s_R}{\partial \beta }\) is less than zero constantly; we also obtain that \(\frac{\partial s_R }{\partial \Delta _B }=\frac{\varepsilon +(-1+\alpha \beta )\gamma }{(\beta \Delta _B +\varepsilon -\gamma )^{2}}>0\) and \(\frac{\partial s_R }{\partial \Delta _A }=\frac{-(1+\alpha )\gamma \beta q_A q_B }{(\beta \Delta _A q_A +q_B \gamma )^{2}}<0\). Conclusion 10 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Gong, B. & Li, B. Cooperation strategy of technology licensing based on evolutionary game. Ann Oper Res 268, 387–404 (2018). https://doi.org/10.1007/s10479-017-2461-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2461-z

Keywords

Navigation