Skip to main content
Log in

The multiple lot sizing problem of a serial production system with interrupted geometric yields, rigid demand and Pentico’s heuristic

  • RAOTA-2016
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the optimal lot sizing decision problem for a serial production system with the interrupted geometric yields and rigid demand. Such decisions are well-known for analytical difficulty due to often complicated cost expressions and necessity of deciding optimal lotsizes to stages/machines in the system. Pentico proposed a simple and effective heuristic that all usable items exiting a stage will be processed at the next stage till the end of the system. Pentico’s heuristic requires only the decision on the initial lot size. Based on Pentico’s heuristic, Bez-Zvi and Grosfeld-Nir considered the optimal “P-policies” to yield an optimal initial lot size so as to minimize the expected cost of the system while fulfilling the order. They showed the optimal initial lot size is always smaller than or equal to the outstanding demand. In this paper, we provide a finite upper bound and narrow searching range for the optimal initial lot sizes. It is well known that the worst case for minimizing the expected cost is to have an optimal initial lotsize equal to 1 for any outstanding demand. We characterize conditions in terms of the average expected costs for the worst case of the production system. An efficient algorithm for finding the optimal initial lot size is given which utilizes the recursive feature among the expected cost elements. For intellectual curiosity, we study a two-stage serial production system with a uniform yield in stage 1 and an interrupted geometric yield in stage 2. We propose an algorithm to derive an optimal initial lot size to enter this two-stage problem under Pentico’s heuristic. We show that for small outstanding demands (equal to 1 or 2) the optimal initial lot sizes are often greater than the outstanding demands. We prove that for large outstanding demands the optimal initial lot sizes are smaller than or equal to the outstanding demands. We also prove the existence of a finite upper bound for all optimal initial lot sizes. Our numerical example illustrates the existence of a threshold such that if the demand is smaller (greater) than it then the optimal lot size is larger (smaller) than the demand. Our analysis and numerical observation are very interesting to contrast with the most commonly seen binomial or uniform yield settings that the optimal lot size is always larger than the outstanding demand while for interrupted geometric yield the optimal lot size is always smaller than the outstanding demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. By assuming an unbounded cost function \(C(N)=\alpha +\sum ^N_{i=1}\beta _i\) and constant hazard rate, Anily et al. (2002) provided a rigorous proof for the convergence of \(F_D-F_{D-1}\). Furthermore, they also showed \(\lim _{D\rightarrow \infty }N_D\) coincide with the minimizer of \(\min \{\frac{C(N)}{E(Y^N_S)}: N\ge 1\}\)

References

  • Anily, S. (1995). Single machine lot-sizing with uniform yields and rigid demands: Robustness of the optimal solution. IIE Transactions, 27, 625–633.

    Article  Google Scholar 

  • Anily, S., Beja, A., & Mendel, A. (2002). Optimal lot sizes with geometric production yield and rigid demand. Operations Research, 50(3), 424–432.

    Article  Google Scholar 

  • Beja, A. (1977). Optimal reject allowance with constant marginal production efficiency. Naval Research Logistics Quarterly, 24, 21–33.

    Article  Google Scholar 

  • Ben-Zvi, T., & Grosfeld-Nir, A. (2007). Serial production systems with random yield and rigid demand: a heuristic. Operations Research Letters, 35, 235–244.

    Article  Google Scholar 

  • Cheng, D., & Shanthikumar, J. (1996). Customization with random yield: A general characterization of the mlpo problem. Technical report, Department of Statistics and Operations Research, New York University.

  • Grosfeld-Nir, A., & Gerchak, Y. (1990). Multiple lot-sizing with random common-cause yield and rigid demand. Operations Research Letters, 9, 383–388.

    Article  Google Scholar 

  • Grosfeld-Nir, A., & Gerchak, Y. (1996). Production to order with random yields: Single-stage multiple lot-sizing. IIE Transactions, 28, 669–676.

    Article  Google Scholar 

  • Grosfeld-Nir, A., & Gerchak, Y. (2004). Multiple lotsizing in production to order with random yields: Review of recent advances. Annals of Operations Research, 126, 43–69.

    Article  Google Scholar 

  • Grosfeld-Nir, A., & Ronen, B. (1993). A single bottleneck system with binomial yield and rigid demand. Management Science, 39, 650–653.

    Article  Google Scholar 

  • Guu, S. M. (1999). Properties of the multiple lot-sizing problem with rigid demand, general cost structures, and interrupted geometric yield. Operations Research Letters, 25, 59–65.

    Article  Google Scholar 

  • Guu, S. M., & Liou, F. R. (1999). An algorithm for the multiple lot sizing problem with rigid demand and interrupted geometric yield. Journal of Mathematical Analysis and Applications, 234, 567–579.

    Article  Google Scholar 

  • Guu, S. M., & Zhang, A. X. (2003). The finite multiple lot sizing problem with interrupted geometric yield and holding costs. European Journal of Operational Research, 145, 635–644.

    Article  Google Scholar 

  • Hsu, H. M., Su, T. S., Wu, M. C., & Luang, L. C. (2009). Multiple lot-sizing decisions with an interrupted geometric yield and variable production time. Computers and Industrial Engineering, 57(3), 699–706.

    Article  Google Scholar 

  • Pentico, D. (1994). Multistage production systems with random yield: Heuristics and optimality. International Journal of Production Research, 32, 2455–2462.

    Article  Google Scholar 

  • Porteus, E. (1986). Optimal lot sizing, process quality improvement and setup cost reduction. Operations Research, 34, 137–144.

    Article  Google Scholar 

  • Porteus, E. (1990). The impact of inspection delay on process and inspection lot-sizing. Management Science, 36, 999–1007.

    Article  Google Scholar 

  • Rosenblatt, M., & Lee, H. (1986). Economic production cycles with imperfect production processes. IIE Transactions, 18, 48–55.

    Article  Google Scholar 

  • Ross, S. (1971). Quality control under markovian deterioration. Management Science, 17, 587–596.

    Article  Google Scholar 

  • Sepehri, M., Silver, E., & New, C. (1986). A heuristic for multiple lot sizing for an order under variable yield. IIE Transactions, 18, 63–69.

    Article  Google Scholar 

  • Wu, M. C., Huang, L. C., Hsu, H. M., & Su, T. S. (2010). Multiple lotsizing decisions in a two-stage production with an interrupted geometric yield and non-rigid demand. Journal of the Operational Research Society, 62, 1075–1084.

    Article  Google Scholar 

  • Yano, C., & Lee, H. (1995). Lot sizing with random yields: A review. Operations Research, 43, 311–334.

    Article  Google Scholar 

  • Zhang, A., & Guu, S. (1997). Properties of the multiple lot sizing problem with rigid demand and general yield distributions. Computers & Mathematics with Applications, 33(5), 55–65.

    Article  Google Scholar 

  • Zhang, A., & Guu, S. (1998). The multiple lot sizing problem with rigid demand and interrupted geometric yield. IIE Transactions, 30, 427–431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yi Lin.

Additional information

This research was supported by the Grants of NSC 100-2221-E-155-027-MY2 and BMRP017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guu, SM., Lin, CY. The multiple lot sizing problem of a serial production system with interrupted geometric yields, rigid demand and Pentico’s heuristic. Ann Oper Res 269, 167–183 (2018). https://doi.org/10.1007/s10479-017-2558-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2558-4

Keywords

Navigation