Skip to main content
Log in

Inventory centralization with risk-averse newsvendors

  • S.I.: BOM in Social Networks
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the paper, we study the inventory centralization problem with risk-averse newsvendors using cooperative game theory. Pareto-optimality and collective rationality conditions are adopted to characterize the stable profit allocations among coalition members. Pareto-optimal profit allocation rules are derived for exponential and power utilities while the necessary and sufficient conditions are shown for stable profit allocations. We also show that the game model has a nonempty core when the exponential and power utilities are adopted to describe the risk-averse behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, V., & Seshadri, S. (2000). Risk intermediation in supply chains. IIE Transactions, 32(9), 819–831.

    Google Scholar 

  • Aust, G. (2015). Vertical cooperative advertising in supply chain management: A game-theoretic analysis. Cham, Switzerland: Springer.

    Book  Google Scholar 

  • Baron, D. P. (1973). Point estimation and risk preferences. Journal of the American Statistical Association, 68(344), 944–950.

    Article  Google Scholar 

  • Baton, B., & Lemaire, J. (1981). The core of a reinsurance market. Astin Bulletin, 12(1), 57–71.

    Article  Google Scholar 

  • Bernstein, D. S. (2005). Matrix mathematics: Theory, facts, and formulas with application to linear systems theory. Princeton: Princeton University Press.

    Google Scholar 

  • Bondareva, O. N. (1963). Some applications of linear programming methods to the theory of cooperative games (in Russian). Problemy Kybernetiki, 10, 119–139.

    Google Scholar 

  • Borch, K. (1960). The safety loading of reinsurance premiums. Scandinavian Actuarial Journal, 1960(3–4), 163–184.

    Article  Google Scholar 

  • Bouakiz, M., & Sobel, M. J. (1992). Inventory control with an exponential utility criterion. Operations Research, 40(3), 603–608.

    Article  Google Scholar 

  • Caron, F., & Marchet, G. (1996). The impact of inventory centralization/decentralization on safety stock for two-echelon systems. Journal of Business Logistics, 17(1), 233–257.

    Google Scholar 

  • Chen, F., & Federgruen, A. (2000). Mean-variance analysis of basic inventory models. New York: Technical Manuscript Columbia University.

    Google Scholar 

  • Chen, X. (2009). Inventory centralization games with price-dependent demand and quantity discount. Operations Research, 57(6), 1394–1406.

    Article  Google Scholar 

  • Chen, X., Gao, X., Hu, Z., & Wang, Q. (2016). Population monotonicity in newsvendor games. Working paper, University of Illinois at Urbana-Champaign.

  • Chen, X., Sim, M., Simchi-Levi, D., & Sun, P. (2007). Risk aversion in inventory management. Operations Research, 55(5), 828–842.

    Article  Google Scholar 

  • Chen, X., Shum, S., & Simchi-Levi, D. (2014). Stable and coordinating contracts for a supply chain with multiple risk-averse suppliers. Production and Operations Management, 23(3), 379–392.

    Article  Google Scholar 

  • Chen, X., & Zhang, J. (2009). A stochastic programming duality approach to inventory centralization games. Operations Research, 57(4), 840–851.

    Article  Google Scholar 

  • Chiu, C. H., & Chio, T. M. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research, 240(2), 489–507.

    Article  Google Scholar 

  • Choi, S., & Ruszczyński, A. (2011). A multi-product risk-averse newsvendor with exponential utility function. European Journal of Operational Research, 214(1), 78–84.

    Article  Google Scholar 

  • Eeckhoudt, L., Gollier, C., & Schlesinger, H. (1995). The risk-averse (and prudent) newsboy. Management Science, 41(5), 786–794.

    Article  Google Scholar 

  • Eppen, G. D. (1979). Note-effects of centralization on expected costs in a multi-location newsboy problem. Management Science, 25(5), 498–501.

    Article  Google Scholar 

  • Fang, X., & Cho, S. H. (2014). Stability and endogenous formation of inventory transhipment networks. Operations Research, 62(6), 1316–1334.

    Article  Google Scholar 

  • Gan, X., Sethi, S. P., & Yan, H. (2004). Coordination of supply chains with risk-averse agents. Production and Operations Management, 13(2), 135–149.

    Article  Google Scholar 

  • Gerber, H. U. (1974). On additive premium calculation principles. Astin Bulletin, 7(3), 215–222.

    Article  Google Scholar 

  • Gerber, H. U., & Pafum, G. (1998). Utility functions: From risk theory to finance. North American Actuarial Journal, 2(3), 74–91.

    Article  Google Scholar 

  • Gerchak, Y., & Gupta, D. (1991). On apportioning costs to customers in centralized continuous review inventory systems. Journal of Operations Management, 10(4), 546–551.

    Article  Google Scholar 

  • Goh, S. H., & Lim, B. L. (2014). Centralizing slow-moving items in a retail network - a case study. In Proceedings of the 2014 international conference on industrial engineering and operations management, Bali, Indonesia 2014: IEOM.

  • Gotoh, J., & Takano, Y. (2007). Newsvendor solutions via conditional value-at-risk minimization. European Journal of Operational Research, 179(1), 80–96.

    Article  Google Scholar 

  • Hartman, B. C., & Dror, M. (1996). Cost allocation in continuous-review inventory models. Naval Research Logistics, 43(4), 549–561.

    Article  Google Scholar 

  • Hartman, B. C., & Dror, M. (2003). Optimizing centralized inventory operations in a cooperative game theory setting. IIE Transactions, 35(3), 243–257.

    Article  Google Scholar 

  • Hartman, B. C., & Dror, M. (2005). Allocation of gains from inventory centralization in newsvendor environments. IIE Transactions, 37(2), 93–107.

    Article  Google Scholar 

  • Hiiemaa, K. (2016). In the success stories of H&M, Zara, Ikea and Walmart, luck is not a key factor. https://erply.com/in-the-success-stories-of-hm-zara-ikea-and-walmart-luck-is-not-a-key-factor/.

  • Horowitz, I. (1970). Decision making and the theory of the firm. NY: Holt, Rinehart and Winston.

    Google Scholar 

  • Janakiraman, G., & Muckstadt, J. A. (2004). Inventory control in directed networks: A note on linear costs. Operations Research, 52(3), 491–495.

    Article  Google Scholar 

  • Kemahlioğlu-Ziya, E., & Bartholdi, J. J. (2011). Centralizing inventory in supply chains by using Shapley value to allocate the profits. Manufacturing & Service Operations Management, 13(2), 146–162.

    Article  Google Scholar 

  • Keren, B., & Pliskin, J. S. (2006). A benchmark solution for the risk-averse newsvendor problem. European Journal of Operational Research, 174(3), 1643–1650.

    Article  Google Scholar 

  • Lau, H. S. (1980). The newsboy problem under alternative optimization objectives. The Journal of the Operational Research Society, 31(6), 525–535.

    Article  Google Scholar 

  • Lemaire, J. (1973). Optimalité d’un contrat d’échange de risques entre assureurs. Cahiers du Center d’Etudes de Recherche Opérationnelle, 15, 139–156.

    Google Scholar 

  • Mathew, J., John, J., & Kumar, S. (2013). New trends in healthcare supply chain. In , POMS 24th annual conference “integrating practice in POM research and teaching”, denver, USA 2013: POMS.

  • Meca, A., Timmer, J., García-Jurado, I., & Borm, P. (2004). Inventory games. European Journal of Operational Research, 156(1), 127–139.

    Article  Google Scholar 

  • Montrucchio, L., & Scarsini, M. (2007). Large newsvendor games. Games and Economic Behavior, 58(2), 316–337.

    Article  Google Scholar 

  • Müller, A., Scarsini, M., & Shaked, M. (2002). The newsvendor game has a nonempty core. Games and Economic Behavior, 38(1), 118–126.

    Article  Google Scholar 

  • Özen, U., Fransoo, J., Norde, H., & Slikker, M. (2008). Cooperation between multiple newsvendors with warehouses. Manufacturing & Service Operations Management, 10(2), 311–324.

    Article  Google Scholar 

  • Özen, U., Sošić, G., & Slikker, M. (2012). A collaborative decentralized distribution system with demand forecast updates. European Journal of Operational Research, 216(3), 573–583.

    Article  Google Scholar 

  • Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1/2), 122–136.

    Article  Google Scholar 

  • Raiffa, H. (1970). Decision Analysis. Reading,MA: Addison-Wesly.

    Google Scholar 

  • Robinson, L. W. (1993). A comment on Gerchak and Gupta’s “on apportioning costs to customers in centralized continuous review inventory systems”. Journal of Operations Management, 11(1), 99–102.

    Article  Google Scholar 

  • Sagastizábal, C. A. (1995). A vindication of centralized controls in inventory management. Annals of Operations Research, 58(5), 361–378.

    Article  Google Scholar 

  • Sarno, D., Iannone, R., Lambiase, A., Miranda, S., & Riemma, S. (2014). Pulling drugs along the supply chain: Centralization of hospitals’ inventory. International Journal of Engineering Business Management, 6(21), 1–11.

    Google Scholar 

  • Shapley, L. S. (1967). On balanced sets and cores. Naval Research Logistics Quarterly, 14(4), 453–460.

    Article  Google Scholar 

  • Slikker, M., Fransoo, J., & Wouters, M. (2005). Cooperation between multiple news-vendors with transshipments. European Journal of Operational Research, 167(2), 370–380.

    Article  Google Scholar 

  • Tallon, W. J. (1993). The impact of inventory centralization on aggregate safety stock: The variable supply lead time case. Journal of Business Logistics, 14(1), 185–203.

    Google Scholar 

  • Toriello, A., & Uhan, N. A. (2016). Dynamic linear programming games with risk-averse players. Mathematical Programming, doi:10.1007/s10107-016-1054-y.

  • Wang, C. X., Webster, S., & Suresh, N. C. (2009). Would a risk-averse newsvendor order less at a higher selling price? European Journal of Operational Research, 196(2), 544–553.

    Article  Google Scholar 

  • Wilson, R. (1968). The theory of syndicates. Econometrica, 36(1), 119–132.

    Article  Google Scholar 

  • Wu, J., Li, J., Wang, S., & Cheng, T. (2009). Mean-variance analysis of the newsvendor model with stockout cost. Omega, 37(3), 724–730.

    Article  Google Scholar 

  • Zhao, H., Deshpande, V., & Ryan, J. K. (2005). Inventory sharing and rationing in decentralized dealer networks. Management Science, 51(4), 531–547.

    Article  Google Scholar 

Download references

Acknowledgements

Jiahua Zhang’s research was supported by Fudan University Student Growth Fund Scholarship. Shu-Cherng Fang’s research was supported by US ARO Grant # W911NF-15-1-0223. Yifan Xu’s research was supported by Chinese NSFC Grant # 71372113, 71531005 and The Join Fundation of Fudan-Taida. The authors would like to thank the editor and two anonymous reviewers whose most valuable comments and suggestions have significantly improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Xu.

Appendix: Proofs of theorems and lemmas

Appendix: Proofs of theorems and lemmas

Proof of Lemma1

Since

$$\begin{aligned} v\big (\varPi (S, q)\big )=v\big (p\min \{q,D_{S}\}-cq\big ), \end{aligned}$$

we have

$$\begin{aligned} E\big [v\big (\varPi (S, q)\big )\big ]=\int _{0}^{q}v\big (px-cq\big )f_{S}(x)dx+v\big ((p-c)q\big )\cdot (1-F_{S}(q)). \end{aligned}$$

Let \(\text {I}({q\le D_{S}})\) equal 1 if \(q\le D_{S}\) and 0 otherwise.

First, we see that

$$\begin{aligned} \frac{d E\big [v\big (\varPi (S, q)\big )\big ]}{d q}= & {} \int _{0}^{q}(-c)v'\big (px-cq\big )f_{S}(x)dx\\&+\int _{q}^{+\infty } (p-c)v'\big ((p-c)q\big )f_{S}(x)dx\\= & {} -c\big [\int _{0}^{q}v'\big (px-cq\big )f_{S}(x)dx+\int _{q}^{+\infty }v'\big ((p-c)q\big )f_{S}(x)dx\big ]\\&+\int _{q}^{+\infty }pv'\big ((p-c)q\big )f_{S}(x)dx\\= & {} -c\int _{0}^{+\infty }v'\big (p\min \{x,q\}-cq\big )f_{S}(x)dx\\&+\int _{0}^{+\infty }p\text {I}(q\le x)v'\big (p\min \{q,x\}-cq\big )f_{S}(x)dx\\= & {} -cE\big [v'(p\min \{q, D_{S}\}-cq)\big ]\\&+ \,\,E\big [p\text {I}({q\le D_{S}})v'\big (p\min \{q, D_{S}\}-cq\big )\big ]\\= & {} E\big [v'(p\min \{q, D_{S}\}-cq)\cdot \big (p\text {I}({q\le D_{S}})-c\big )\big ]. \end{aligned}$$

Then, we have

$$\begin{aligned} \frac{d^{2} E\big [v\big (\varPi (S, q)\big )\big ]}{d q^{2}}= & {} c^2\int _{0}^{q}v''\big (px-cq\big )f_{S}(x)dx\\&+\int _{q}^{+\infty }(-c)(p-c)v''\big ((p-c)q\big )f_{S}(x)dx\\&+\int _{q}^{+\infty }p(p-c)v''\big ((p-c)q\big )f_{S}(x)dx-pv'\big ((p-c)q\big )f_{S}(q)\\= & {} c^2 \int _{0}^{+\infty }v''\big (p\min \{x,q\}-cq\big )f_{S}(x)dx\\&+\int _{0}^{+\infty }p^2 \text {I}({q\le x})v''\big (p\min \{x,q\}-cq\big )f_{S}(x)dx\\&- \,\,2\int _{0}^{+\infty }cp\text {I}({q\le x})v''\big (p\min \{x,q\}-cq\big )f_{S}(x)dx\\&- \,\,pv'\big ((p-c)q\big )f_{S}(q)\\= & {} E\big [v''(\varPi (S, q))\cdot \big (p\text {I}({q\le D_{S}})-c\big )^{2}\big ]-pv'\big ((p-c)q\big )f_{S}(q). \end{aligned}$$

Since v is strictly increasing and strictly concave, we have \(v'(\cdot )> 0\) and \(v''(\cdot )< 0\) for \(q\ge 0\). Hence \(\frac{d^{2} E[v(\varPi (S, q))]}{d q^{2}}< 0\) for \(q\ge 0\), which means that \(E[v(\varPi (S, q))]\) is a strictly concave function of q. \(\square \)

Proof of Theorem 1

Suppose \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of S. Then there exists an order \(q\ge 0\) such that \(\sum _{i\in S} X_{i}=\varPi (S, q)\). From Sect. 3.1, there exist \(a_{i}>0\), \(i\in S\) with \(\sum _{i\in S} a_{i}=1\) such that \((X_{i})_{i\in S}\) is the solution of (4) and (5). From Raiffa (1970), for the exponential utilities (6), we have

$$\begin{aligned} X_{i}=\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}} \varPi (S, q)-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}, \quad \textit{for}~ i\in S. \end{aligned}$$

From (6), when newsvendor \(i\in S\) has a profit \(X_{i}\), his maximum expected utility is reached at

$$\begin{aligned} \arg \max _{q\ge 0} E\Bigg [\frac{1}{\alpha _{i}}\Bigg (1-\exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\Bigg )\Bigg )\Bigg ]. \end{aligned}$$

Since

$$\begin{aligned}&E\left[ \frac{1}{\alpha _{i}}\left( 1-\exp (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}})\right) \right] \\&\quad =\frac{1}{\alpha _{i}}-\frac{1}{\alpha _{i}}\cdot E\left[ \exp (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q))\right] \cdot \exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\Bigg ), \end{aligned}$$

we have

$$\begin{aligned}&\arg \max _{q\ge 0} E\Bigg [\frac{1}{\alpha _{i}}\Bigg (1-\exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\Bigg )\Bigg )\Bigg ]\\= & {} \arg \max _{q\ge 0} \Bigg ( -\exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)\Bigg ) \Bigg )\\= & {} \arg \max _{q\ge 0} E\Bigg [\Bigg (\sum _{j\in S}\frac{1}{\alpha _{j}}\Bigg )\Bigg (1-\exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)\Bigg )\Bigg )\Bigg ]. \end{aligned}$$

In Lemma 1, let \(v(x)=(\sum _{j\in S}\frac{1}{\alpha _{j}})(1-\exp (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}x))\), for \(x\in \mathbb {R}\). Then we see that \(E\big [(\sum _{j\in S}\frac{1}{\alpha _{j}})\big (1-\exp (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q))\big )\big ]\) is a strictly concave function of \(q\ge 0\) and, consequently,

$$\begin{aligned} \arg \max _{q\ge 0} E\Bigg [\Bigg (\sum _{j\in S}\frac{1}{\alpha _{j}}\Bigg )\Bigg (1-\exp \Bigg (-\frac{1}{\sum _{j\in S}1/\alpha _{j}}\varPi (S, q)\Bigg )\Bigg )\Bigg ] \end{aligned}$$

is unique.

Therefore, every newsvendor \(i\in S\) obtains his maximum expected utility at the same order \(q_{S}^{\star }\) given by (7). Since \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of coalition S, we have \(q=q_{S}^{\star }\) and

$$\begin{aligned} X_{i}=\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}} \varPi (S, q_{S}^{\star })-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}, \quad \textit{for}~i\in S. \end{aligned}$$

For each \(i\in S\), let \(z_{i}=-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\). Then

$$\begin{aligned} \sum _{i\in S} z_{i}= & {} \sum _{i\in S} \Bigg (-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\Bigg )\\= & {} \sum _{i\in S} \Bigg (-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}(\ln a_{i}-\ln a_{j})\Bigg )\\= & {} -\sum _{i\in S}\frac{1}{\alpha _{i}}\ln a_{i}+\sum _{j\in S}\frac{1}{\alpha _{j}}\ln a_{j}=0. \end{aligned}$$

Hence \((X_{i})_{i\in S}\) is an element of (8).

Suppose \((X_{i})_{i\in S}\) is an element of (8), i.e., there exist \(z_{i}\in \mathbb {R}\), \(i\in S\) with \(\sum _{i\in S} z_{i}=0\) such that

$$\begin{aligned} X_{i}=\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}} \varPi (S, q_{S}^{\star })+z_{i}, \quad \textit{for}~i\in S. \end{aligned}$$

From the matrix theory (Bernstein 2005), there exist \(a_{i}>0\), \(i\in S\) with \(\sum _{i\in S} a_{i}=1\) such that \(z_{i}=-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}\), for each \(i\in S\). From Sect. 3.1, corresponding to \(a_{i}\), \(i\in S\), there is a Pareto-optimal risk sharing scheme \((X_{i}')_{i\in S}\), where

$$\begin{aligned} X_{i}'=\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}} \varPi (S, q)-\frac{1/\alpha _{i}}{\sum _{j\in S}1/\alpha _{j}}\sum _{j\in S} \frac{1}{\alpha _{j}}\ln \frac{a_{i}}{a_{j}}, \end{aligned}$$

for \(i\in S\) and some \(q\ge 0\). It is not difficult to verify that \(q=q_{S}^{\star }\). Hence \(X_{i}=X_{i}'\), for \(i\in S\). Hence \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of S.

Consequently, the set of Pareto-optimal risk sharing schemes of S is given by (8). Moreover, we can see that the Pareto-optimal order of S is given by (7). \(\square \)

Proof of Lemma 2

For newsvendor \(i\in N\), let

$$\begin{aligned} T_{i}(X_{i})=-\frac{\ln \big (1-\alpha _{i}U_{i}(X_{i})\big )}{\alpha _{i}}, \end{aligned}$$

where \(X_{i}\) is the profit of i. Note that for two possible profits of newsvendor i, say, \(X_{i}\) and \(X_{i}'\), we know \(T_{i}(X_{i})\ge T_{i}(X_{i}')\) if and only if \(U_{i}(X_{i})\ge U_{i}(X_{i}')\).

Let \((X_{i})_{i\in N}\) be a Pareto-optimal risk sharing scheme of N and \(t_{i}=T_{i}(X_{i})\), \(i\in N\). Then, by Theorem 1, there exist \(z_{i}\in \mathbb {R}\), \(i\in N\), with \(\sum _{i\in N}z_{i}=0\) such that

$$\begin{aligned} X_{i}=-\frac{1}{\alpha _{i}} \ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ]+z_{i},\quad i\in N. \end{aligned}$$

Therefore,

$$\begin{aligned} \sum \limits _{i\in N} T_{i}(X_{i})=-\frac{1}{\alpha _{N}}\ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ]. \end{aligned}$$

Suppose that (10) is not true, i.e., that \(\sum \limits _{i\in S} t_{i}< -\frac{1}{\alpha _{S}}\ln E[\exp (-\alpha _{S} \varPi (S, q_{S}^{\star }))]\) holds for some \(\emptyset \ne S\subseteq N\). Then, from Lemma 4 of (Baton and Lemaire, 1981), there exist \(t_{i}'\in \mathbb {R}\), \(i\in S\), such that \(t_{i}<t_{i}'\) and

$$\begin{aligned} \sum \limits _{i\in S}t_{i}'= -\frac{1}{\alpha _{S}}\ln E[\exp (-\alpha _{S} \varPi (S, q_{S}^{\star }))]. \end{aligned}$$

For \(i\in S\), we define

$$\begin{aligned} z_{i}'=t_{i}'+\frac{1}{\alpha _{i}} \ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ] \end{aligned}$$

and

$$\begin{aligned} X_{i}'=\frac{\alpha _{S}}{\alpha _{i}} \varPi (S, q_{S}^{\star })+z_{i}'. \end{aligned}$$

Then, we have \(T_{i}(X_{i}')=t_{i}'>t_{i}=T_{i}(X_{i})\) for \(i\in S\). Consequently, \(U_{i}(X_{i}')>U_{i}(X_{i})\) for \(i\in S\). This means \((X_{i})_{i\in N}\) is not Pareto-optimal, which leads to a contradiction. This completes the proof of sufficiency.

Now, let \(t_{i}\), \(i\in N\), be real numbers that satisfy (9) and (10). For \(i\in N\), define

$$\begin{aligned} X_{i}=\frac{\alpha _{N}}{\alpha _{i}}\varPi (N, q_{N}^{\star })+z_{i} \end{aligned}$$

and

$$\begin{aligned} z_{i}=t_{i}+\frac{1}{\alpha _{i}} \ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ]. \end{aligned}$$

Then, \((X_{i})_{i\in N}\) is a Pareto-optimal risk sharing scheme of N. Suppose that \((X_{i})_{i\in N}\) is not stable, then there is a coalition \(S\subseteq N\) such that \((X_{i}')_{i\in S}\) is a Pareto-optimal risk sharing scheme of S that dominates \((X_{i})_{i\in N}\), i.e., \(U_{i}(X_{i}')>U_{i}(X_{i})\) for \(i\in S\). Consequently, \(T_{i}(X_{i}')>T_{i}(X_{i})\) for \(i\in S\) and \(\sum \limits _{i\in S} T_{i}(X_{i}')>\sum \limits _{i\in S} T_{i}(X_{i})\). Since \((X_{i}')_{i\in S}\) is a Pareto-optimal risk sharing scheme of S, we have

$$\begin{aligned} \sum \limits _{i\in S} T_{i}(X_{i}')=-\frac{1}{\alpha _{S}}\ln E[\exp (\alpha _{S} \varPi (S, q_{S}^{\star }))]. \end{aligned}$$

By calculation, we obtain \(T_{i}(X_{i})=t_{i}\) for \(i\in S\). Therefore,

$$\begin{aligned} -\frac{1}{\alpha _{S}}\ln E[\exp (-\alpha _{S} \varPi (S, q_{S}^{\star }))]>\sum \limits _{i\in S} t_{i}, \end{aligned}$$

which leads to a contradiction. Therefore, \((X_{i})_{i\in N}\) must be stable. This completes the proof of necessity. \(\square \)

Proof of Theorem 2

From Lemma 2, the core is nonempty if and only if the following system has a feasible solution:

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{i\in N} t_{i}=-\frac{1}{\alpha _{N}}\ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ],\\ \sum \limits _{i\in S} t_{i}\ge -\frac{1}{\alpha _{S}} \ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ],\quad \forall ~\emptyset \ne S\subseteq N, \end{array}\right. } \end{aligned}$$
(17)

where \(t_{i}\in \mathbb {R}\), for \(i\in N\). From the Bondareva–Shapley Theorem (Bondareva 1963; Shapley 1967) , (17) has a feasible solution if and only if

$$\begin{aligned} \sum \limits _{\emptyset \ne S\subseteq N} \lambda (S)\Big (-\frac{1}{\alpha _{S}}\ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ]\Big )\le -\frac{1}{\alpha _{N}}\ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ].\nonumber \\ \end{aligned}$$
(18)

for all possible functions \(\lambda {:}\,2^{N}\setminus \emptyset \rightarrow \mathbb {R}_{+}\) with \(\sum \limits _{\begin{array}{c} S: i\in S, \emptyset \ne S\subseteq N \end{array}}\lambda (S)=1\), for \(i\in N\), where \(\mathbb {R}_{+}\) is the set of nonnegative real numbers.

To verify (18), we need the inequality

$$\begin{aligned} \sum \limits _{i=1}^{m}t_{i}\ln E \big [\exp (Z_{i})\big ]\ge \ln E \Bigg [\exp \Bigg (\sum \limits _{i=1}^{m}t_{i}Z_{i}\Bigg )\Bigg ], \end{aligned}$$

where \(t_{i}>0\), \(\sum \limits _{i=1}^{m}t_{i}=1\), m is a positive integer, and \(Z_{i}\) is a random variable for each \(1\le i\le m\). Note that

$$\begin{aligned} \sum \limits _{i=1}^{m}t_{i}\ln \big (E \big [\exp (Z_{i})\big ]\big )= & {} \ln \big (\varPi _{i=1}^{m}(E \big [\exp (Z_{i})\big ])^{t_{i}}\big )\\= & {} \ln \big (\varPi _{i=1}^{m} E \big [\exp (\frac{1}{t_{i}}t_{i}Z_{i})\big ]^{t_{i}}\big )\\\ge & {} \ln \big (E \big [\varPi _{i=1}^{m} \exp (t_{i}Z_{i}) \big ] \big )~~(\textit{H}\ddot{o}{} \textit{lder Inequality})\\= & {} \ln \big (E \big [ \exp (\sum \limits _{i=1}^{m}t_{i}Z_{i} ) \big ] \big ) \end{aligned}$$

Consequently,

$$\begin{aligned}&\sum \limits _{\emptyset \ne S\subseteq N}\lambda (S)\Big (-\frac{1}{\alpha _{S}}\ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ]\Big )\\&\quad =\sum \limits _{\emptyset \ne S\subseteq N}\lambda (S)\sum \limits _{i\in S}\Big (-\frac{1}{\alpha _{i}}\Big ) \ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ]\\&\quad =\sum \limits _{i\in N}\sum \limits _{\emptyset \ne S\subseteq N: i\in S} \lambda _{S}\Big (-\frac{1}{\alpha _{i}}\Big ) \ln E\big [\exp (-\alpha _{S}\varPi (S, q_{S}^{\star }))\big ]\\&\quad =\sum \limits _{i\in N}\Big (-\frac{1}{\alpha _{i}}\Big )\sum \limits _{\emptyset \ne S\subseteq N: i\in S} \lambda _{S} \ln E\Bigg [\exp \Bigg (-\alpha _{S}\varPi (S, q_{S}^{\star })\Bigg )\Bigg ]\\&\quad \le \sum \limits _{i\in N}\Big (-\frac{1}{\alpha _{i}}\Big ) \cdot \ln E\Bigg [\exp \Bigg (\sum \limits _{\emptyset \ne S\subseteq N: i\in S}-\alpha _{S}\varPi (S, q_{S}^{\star })\lambda _{S}\Bigg )\Bigg ]\\&\quad =-\frac{1}{\alpha _{N}}\sum \limits _{i\in N} \frac{\alpha _{N}}{\alpha _{i}} \ln E\Bigg [\exp \Bigg (-\sum \limits _{\emptyset \ne S\subseteq N: i\in S} \alpha _{S}\lambda _{S}\varPi (S, q_{S}^{\star })\Bigg )\Bigg ]\\&\quad \le -\frac{1}{\alpha _{N}}\ln E\Bigg [\exp \Bigg (-\sum \limits _{i\in N} \frac{\alpha _{N}}{\alpha _{i}}\cdot \sum \limits _{\emptyset \ne S\subseteq N: i\in S} \alpha _{S}\lambda _{S}\varPi (S, q_{S}^{\star })\Bigg )\Bigg ]\\&\quad =-\frac{1}{\alpha _{N}} \ln E\Bigg [\exp \Bigg (-\alpha _{N}\sum \limits _{\emptyset \ne S\subseteq N}\sum \limits _{i\in S}\lambda _{S}\varPi (S, q_{S}^{\star })\Bigg )\Bigg ]\\&\quad \le -\frac{1}{\alpha _{N}} \ln E\big [\exp (-\alpha _{N}\varPi (N, q_{N}^{\star }))\big ]. \end{aligned}$$

This finishes the proof. \(\square \)

Proof of Theorem 3

Suppose \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of S. Then there exists an order \(q\ge 0\) such that \(\sum _{i\in S} X_{i}=\varPi (S, q)\). From Sect. 3.1, there exist \(a_{i}>0\), \(i\in S\) with \(\sum _{i\in S} a_{i}=1\) such that \((X_{i})_{i\in S}\) is the solution of (4) and (5). From Gerber and Pafum (1998), for the power utilities (11), we have

$$\begin{aligned} X_{i}=\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}} \varPi (S, q)+s_{i}-\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}}\sum _{j=1}^{n}s_{j}, \quad \textit{~for~}i\in S. \end{aligned}$$

From (11), when newsvendor \(i\in S\) has a profit \(X_{i}\), his maximum expected utility is reached at

$$\begin{aligned} \arg \max _{q\ge 0} -E\big [\sum _{j\in S}s_{j}-\varPi (S, q)\big ]^{b+1}. \end{aligned}$$

Since we do not assume a specific distribution for the demand of each newsvendor, there is no explicit expression for \(\arg \max \limits _{q\ge 0} -E\big [\sum _{j\in S}s_{j}-\varPi (S, q)\big ]^{b+1}\). In Lemma 1, let \(v(x)=-(\sum _{i\in S}s_{i}-x)^{b+1}\), for \(x<\sum _{i\in S}s_{i}\). Then we can see that \(-E\big [\sum _{i\in S}s_{i}-\varPi (S, q)\big ]^{b+1}\) is a strictly concave function of q, for \(q\ge 0\). Therefore,

$$\begin{aligned} \arg \max _{q\ge 0}-E\big [\sum _{j\in S}s_{j}-\varPi (S, q)\big ]^{b+1} \end{aligned}$$

is unique.

Moreover,

$$\begin{aligned} \arg \max _{q\ge 0}-E\Bigg [\sum _{j\in S}s_{j}-\varPi (S, q)\Bigg ]^{b+1}= & {} \arg \max _{q\ge 0}E\Bigg [-\Bigg (\sum _{j\in S}s_{j}-\varPi (S, q)\Bigg )^{b+1}\Bigg ]\\= & {} \arg \max \limits _{q\ge 0} E\Bigg [{s_{i}^{b+1}-\Bigg (\sum _{i\in S}s_{i}-\varPi (S, q)\Bigg )^{b+1}}\Bigg ]\\= & {} \arg \max \limits _{q\ge 0} E\Bigg [\frac{s_{i}^{b+1}-\big (\sum _{i\in S}s_{i}-\varPi (S, q)\big )^{b+1}}{(b+1)s_{i}^{b}}\Bigg ]. \end{aligned}$$

Therefore, every newsvendor \(i\in S\) obtains his maximum expected utility at the same order \(q_{S}^{\star \star }\) given by (12). Since \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of coalition S, we have \(q=q^{\star \star }\) and

$$\begin{aligned} X_{i}=\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}} \varPi (S, q_{S}^{\star \star })+s_{i}-\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}}\sum _{j=1}^{n}s_{j}, \quad \textit{~for~}i\in S. \end{aligned}$$

For each \(i\in S\), let \(z_{i}=\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}}\), for \(i\in S\). It is obvious that \(\sum _{i\in S} z_{i}=1\). Hence \((X_{i})_{i\in S}\) is an element of (13).

Suppose \((X_{i})_{i\in S}\) is an element of (13), i.e., there exist \(z_{i}>0\), \(i\in S\), with \(\sum _{i\in S} z_{i}=1\) such that

$$\begin{aligned} X_{i}=z_{i}\varPi (S, q_{S}^{\star \star })+s_{i}-z_{i}\sum _{j\in S}s_{j}, \quad ~\textit{for}~i\in S. \end{aligned}$$

It is easy to verify that there exist \(a_{i}>0\), \(i\in S\), with \(\sum _{i\in S} a_{i}=1\) such that \(z_{i}=\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}}\), for \(i\in S\). From Sect. 3.1, corresponding to \(a_{i}>0\), \(i\in S\), there is a Pareto-optimal risk sharing scheme \((X_{i}')_{i\in S}\), where

$$\begin{aligned} X_{i}'=\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}} \varPi (S, q)+s_{i}-\frac{\frac{s_{i}}{a_{i}^{1/b}}}{\sum _{j\in S}\frac{s_{j}}{a_{j}^{1/b}}}\sum _{j=1}^{n}s_{j}, \end{aligned}$$

for \(i\in S\) and some \(q\ge 0\). We can verify that \(q=q_{S}^{\star \star }\). Hence \(X_{i}=X_{i}'\), for \(i\in S\), and \((X_{i})_{i\in S}\) is a Pareto-optimal risk sharing scheme of S.

Consequently, the set of Pareto-optimal risk sharing schemes of S is given by (13). Moreover, the Pareto-optimal order of S is given by (12). \(\square \)

Proof of Lemma 3

For newsvendor \(i\in N\), let

$$\begin{aligned} T_{i}(X_{i})=-\big (s_{i}^{b+1}-(b+1)s_{i}^{b}U(X_{i})\big )^{\frac{1}{b+1}}, \end{aligned}$$

where \(X_{i}\) is the profit of i. Note that for two possible profits of newsvendor i, \(X_{i}\) and \(X_{i}'\), we know \(T_{i}(X_{i})\ge T_{i}(X_{i}')\) if and only if \(U_{i}(X_{i})\ge U_{i}(X_{i}')\).

Let \((X_{i})_{i\in N}\) be a Pareto-optimal risk sharing scheme in N and let \(t_{i}=T_{i}(X_{i})\), for \(i\in N\). Then, by Theorem 3, there exist \(z_{i}>0\), \(i\in N\), with \(\sum _{i\in N}z_{i}=1\) such that

$$\begin{aligned} X_{i}=z_{i}\varPi (N, q_{N}^{\star \star })+s_{i}-z_{i}\sum _{j\in N}s_{j},\quad i\in N. \end{aligned}$$

Consequently, we have

$$\begin{aligned} \sum \limits _{i\in N} T_{i}(X_{i})=-\Bigg (E\Bigg [\sum _{i\in N}s_{i}-\varPi (N, q_{N}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}. \end{aligned}$$

Suppose (15) is not true, i.e., that \(\sum \nolimits _{i\in S} t_{i}< -\big (E\big [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\big ]^{b+1}\big )^{\frac{1}{b+1}}\) holds for some \(\emptyset \ne S\subseteq N\). Then, from Lemma 4 of (Baton and Lemaire, 1981), there exist \(t_{i}'\in \mathbb {R}\), \(i\in S\), such that \(t_{i}<t_{i}'\) for \(i\in S\) and

$$\begin{aligned} \sum \limits _{i\in S}t_{i}'= -\Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}. \end{aligned}$$

For \(i\in S\), define

$$\begin{aligned} z_{i}'=-\frac{t_{i}'}{\big (E\big [\sum _{i\in N}s_{i}-\varPi (N, q_{N}^{\star \star })\big ]^{b+1}\big )^{\frac{1}{b+1}}} \end{aligned}$$

and

$$\begin{aligned} X_{i}'=z_{i}'\varPi (S,q_{S}^{\star \star })+s_{i}-z_{i}'\sum _{j\in S}s_{j}. \end{aligned}$$

Therefore, \(T_{i}(X_{i}')=t_{i}'>t_{i}=T_{i}(X_{i})\), for \(i\in S\). Consequently, \(U_{i}(X_{i}')>U_{i}(X_{i})\), for \(i\in S\), and \((X_{i})_{i\in N}\) is not a Pareto-optimal risk sharing scheme, which leads to a contradiction. This finishes the proof of sufficiency.

Let \(t_{i}\), \(i\in N\), be real numbers that satisfy (14) and (15). For \(i\in N\), define

$$\begin{aligned} z_{i}=-\frac{t_{i}}{\big (E\big [\sum _{i\in N}s_{i}-\varPi (N, q_{N}^{\star \star })\big ]^{b+1}\big )^{\frac{1}{b+1}}} \end{aligned}$$

and

$$\begin{aligned} X_{i}=z_{i}\varPi (N,q_{N}^{\star \star })+s_{i}-z_{i}\sum _{j\in N}s_{j}. \end{aligned}$$

Then, \((X_{i})_{i\in N}\) is a Pareto-optimal risk sharing scheme. Suppose that \((X_{i})_{i\in N}\) is not stable, then there is a coalition \(S\subseteq N\) such that \((X_{i}')_{i\in S}\) is a Pareto-optimal risk sharing scheme of S and \((X_{i}')_{i\in S}\) dominates \((X_{i})_{i\in N}\), i.e., \(U_{i}(X_{i}')>U_{i}(X_{i})\), for \(i\in S\). Consequently, \(T_{i}(X_{i}')>T_{i}(X_{i})\), for \(i\in S\), and \(\sum \limits _{i\in S} T_{i}(X_{i}')>\sum \limits _{i\in S} T_{i}(X_{i})\). Since \((X_{i}')_{i\in S}\) is a Pareto-optimal risk sharing scheme in S, we have

$$\begin{aligned} \sum \limits _{i\in S} T_{i}(X_{i}')=-\Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}. \end{aligned}$$

By calculation, we have \(T_{i}(X_{i})=t_{i}\), for \(i\in S\). Therefore,

$$\begin{aligned} -\Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}>\sum \limits _{i\in S} t_{i}, \end{aligned}$$

which leads to a contradiction. Hence \((X_{i})_{i\in N}\) must be stable. This finishes the proof of necessity. \(\square \)

Proof of Theorem 3

From Lemma 3, \(\mathcal {C}\big (N, \varPi (\cdot , \cdot , \cdot ), \varvec{u}(\cdot )\big )\ne \emptyset \) if and only if the following system has a solution:

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{i\in N} t_{i}=-\Bigg (E\Bigg [\sum _{i\in N}s_{i}-\varPi (S, q_{N}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}},\\ \sum \limits _{i\in S} t_{i}\ge -\Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (N, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}},\quad \forall ~\emptyset \ne S\subseteq N, \end{array}\right. } \end{aligned}$$
(19)

where \(t_{i}<0\) \(i\in N\), are variables.

From the Bondareva–Shapley Theorem, system (19) has a solution if and only if

$$\begin{aligned} \sum \limits _{\emptyset \ne S\subseteq N} \lambda (S) \Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}{\ge } \Bigg (E\Bigg [\sum _{i\in N}s_{i}-\varPi (N, q_{N}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}},\qquad \end{aligned}$$
(20)

for all possible functions \(\lambda {:}\,2^{N}\setminus \emptyset \rightarrow \mathbb {R}_{+}\) with \(\sum \nolimits _{\begin{array}{c} S: i\in S, \emptyset \ne S\subseteq N \end{array}}\lambda (S)=1\), for \(i\in N\).

Using the Minkowski Inequality, we have

$$\begin{aligned}&\sum \limits _{\emptyset \ne S\subseteq N} \lambda (S) \Bigg (E\Bigg [\sum _{i\in S}s_{i}-\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}\\&\quad =\sum \limits _{\emptyset \ne S\subseteq N} \Bigg (E\Bigg [\lambda (S)\sum _{i\in S}s_{i}-\lambda (S)\varPi (N, q_{N}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}\\&\quad \ge \Bigg (E\sum \limits _{\emptyset \ne S\subseteq N} \Bigg [\lambda (S)\sum _{i\in S}s_{i}-\lambda (S)\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}\\&\quad =\Bigg (E\Bigg [\sum _{i\in N}s_{i}-\sum \limits _{\emptyset \ne S\subseteq N}\lambda (S)\varPi (S, q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}\\&\quad \ge \Bigg (E\Bigg [\sum _{i\in N}s_{i}-\varPi (N, \sum \limits _{\emptyset \ne S\subseteq N}\lambda (S)q_{S}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}\\&\quad \ge \Bigg (E\Bigg [\sum _{i\in N}s_{i}-\varPi (N, q_{N}^{\star \star })\Bigg ]^{b+1}\Bigg )^{\frac{1}{b+1}}. \end{aligned}$$

Thus inequality (20) is satisfied and the proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fang, SC. & Xu, Y. Inventory centralization with risk-averse newsvendors. Ann Oper Res 268, 215–237 (2018). https://doi.org/10.1007/s10479-017-2578-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2578-0

Keywords

Navigation