Skip to main content

Advertisement

Log in

Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review

  • S.I.: OR in Transportation
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The current global interest in improving the use of ever-scarcer natural resources calls for the re-alignment of supply chain operations to include not only economic factors, but environmental and social factors as well. Two of the most important supply chain activities that logistics managers have to deal with are the planning and improvement of the packing and distribution of products. Although the optimization of these two activities has been thoroughly studied by means of Vehicle Routing Problems and Packing Problems, their analysis is often done separately and, in most cases, they consider only the economic decisions. Independent optimization of these two operations may overlook the structural dependencies between them, resulting in impractical solutions; while the consideration of only the economic criteria can overlook the environmental and social impacts of distribution activities, in the scope of sustainable supply chains. With the objective of improving distribution logistics, the aim of this review is to provide an overview of recent optimization developments for integrating packing and routing problems, in order to propose a simple classification scheme for re-aligning the optimization criteria and operational constraints, taking into consideration the issues of sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACO:

Ant Colony Optimization

APH:

Author Proposed Heuristic

B&B:

Branch and Bound

B&C:

Branch and Cut

B&P:

Branch and Price

BCA:

Bee Colony Algorithm

BPP:

Bin Packing Problem

BS:

Beam Search

CCP:

Chance Constrained Programming

CG:

Column Generation

CLP:

Container loading problem

CP:

Cutting Problem

DP:

Dynamic Programming

EA:

Evolutionary Algorithm

ELS:

Evolutionary Local Search

FFA:

Firefly Algorithm

GA:

Genetic Algorithm

GDS:

Goal Driven Search

GHG:

Green House Gas

GLS:

Guided Local Search

GRASP:

Greedy Randomized Adaptive Search Procedure

GSCM:

Green Supply Chain Management

GVRP:

Green VRP

HE:

Heterogeneous items

HO:

Homogeneous items

ILS:

Iterated Local Search

IRP:

Inventory Routing Problem

KP:

Knapsack Problem

LIFO:

Last In–First Out

LNS:

Large Neighborhood Search

LP:

Linear Programming

MA:

Memetic Algorithm

MDVRP:

Multi-Depot Vehicle Routing Problem

MIP:

Mixed Integer Programming

MPNS:

Multiple Phase Neighborhood Search

NLP:

Non-Linear Programming

PLP:

Pallet Loading Problem

PP:

Packing Problem

PR:

Path Relinking

PSO:

Particle Swarm Optimization

SA:

Simulated Annealing

SC:

Supply chain

SCM:

Supply Chain Management

SP:

Stochastic Programming

SPP:

Strip Packing Problem

SS:

Scattered Search

SSCM:

Sustainable Supply Chain Management

TBL:

Triple-Bottom-Line

TRS:

Tree Search

TS:

Tabu Search

TSP:

Traveling Salesman Problem

VNS:

Variable Neighborhood Search

VRP:

Vehicle Routing Problem

VRPLC:

Vehicle Routing Problem with Loading Constraints

References

  • Ahi, P., & Searcy, C. (2013). A comparative literature analysis of definitions for green and sustainable supply chain management. Journal of Cleaner Production, 52, 329–341. https://doi.org/10.1016/j.jclepro.2013.02.018.

    Google Scholar 

  • Ahi, P., & Searcy, C. (2015). Assessing sustainability in the supply chain: A triple bottom line approach. Applied Mathematical Modelling, 39(10), 2882–2896. https://doi.org/10.1016/j.apm.2014.10.055.

    Google Scholar 

  • Ahn, S., Yoon, K., & Park, J. (2015). A best-first branch and bound algorithm for the pallet-loading problem. International Journal of Production Research, 53(3), 835–849.

    Google Scholar 

  • Alinaghian, M., & Naderipour, M. (2016). A novel comprehensive macroscopic model for time-dependent vehicle routing problem with multi-alternative graph to reduce fuel consumption: A case study. Computers and Industrial Engineering, 99, 210–222. https://doi.org/10.1016/j.cie.2016.07.029.

    Google Scholar 

  • Allen, S. D., Burke, E. K., & Kendall, G. (2011). A hybrid placement strategy for the three-dimensional strip packing problem. European Journal of Operational Research, 209(3), 219–227. https://doi.org/10.1016/j.ejor.2010.09.023.

    Google Scholar 

  • Alonso, M. T., Alvarez-Valdes, R., Iori, M., Parreno, F., & Tamarit, J. M. (2017). Mathematical models for multicontainer loading problems. Omega-International Journal of Management Science, 66, 106–117. https://doi.org/10.1016/j.omega.2016.02.002.

    Google Scholar 

  • Alozn, A. E., Al Naimi, M. S., & Asad, O. Y. (2014). Single forward and reverse supply chain. In P. Golinska (Ed.), Logistics operations, supply chain management and sustainability (pp. 229–239). Cham: Springer. https://doi.org/10.1007/978-3-319-07287-6_15

  • Andersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial aspects and literature survey: Combined inventory management and routing. Computers & Operations Research, 37(9), 1515–1536. https://doi.org/10.1016/j.cor.2009.11.009.

    Google Scholar 

  • Araya, I., Guerrero, K., & Nuñez, E. (2017). VCS: A new heuristic function for selecting boxes in the single container loading problem. Computers & Operations Research, 82, 27–35. https://doi.org/10.1016/j.cor.2017.01.002.

    Google Scholar 

  • Araya, I., & Riff, M.-C. (2014). A beam search approach to the container loading problem. Computers & Operations Research, 43, 100–107. https://doi.org/10.1016/j.cor.2013.09.003.

    Google Scholar 

  • Ashby, A., Leat, M., & Hudson-Smith, M. (2012). Making connections: a review of supply chain management and sustainability literature. Supply Chain Management: An International Journal, 17(5), 497–516. https://doi.org/10.1108/13598541211258573.

    Google Scholar 

  • Baker, B. M., & Carreto, C. A. C. (2003). A visual interactive approach to vehicle routing. Computers & Operations Research, 30(3), 321–337. https://doi.org/10.1016/S0305-0548(01)00099-5.

    Google Scholar 

  • Baldi, M. M., Crainic, T. G., Perboli, G., & Tadei, R. (2012). The generalized bin packing problem. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1205–1220. https://doi.org/10.1016/j.tre.2012.06.005.

    Google Scholar 

  • Baldi, M. M., Crainic, T. G., Perboli, G., & Tadei, R. (2014). Branch-and-price and beam search algorithms for the Variable Cost and Size Bin Packing Problem with optional items. Annals of Operations Research, 222(1), 125–141.

    Google Scholar 

  • Baldi, M. M., Perboli, G., & Tadei, R. (2012). The three-dimensional knapsack problem with balancing constraints. Applied Mathematics and Computation, 218(19), 9802–9818. https://doi.org/10.1016/j.amc.2012.03.052.

    Google Scholar 

  • Baños, R., Ortega, J., Gil, C., Fernández, A., & de Toro, F. (2013). A Simulated Annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications, 40(5), 1696–1707. https://doi.org/10.1016/j.eswa.2012.09.012.

    Google Scholar 

  • Batista-Galván, M., Riera-Ledesma, J., & Salazar-González, J. J. (2013). The traveling purchaser problem, with multiple stacks and deliveries: A branch-and-cut approach. Computers & Operations Research, 40(8), 2103–2115. https://doi.org/10.1016/j.cor.2013.02.007.

    Google Scholar 

  • Battarra, M., Erdogan, G., Laporte, G., & Vigo, D. (2010). The traveling salesman problem with pickups, deliveries, and handling costs. Transportation Science, 44(3), 383–399.

    Google Scholar 

  • Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45(8), 1232–1250. https://doi.org/10.1016/j.trb.2011.02.004.

    Google Scholar 

  • Belloso, J., Juan, A. A., & Faulin, J. (2017). An iterative biased-randomized heuristic for the fleet size and mix vehicle-routing problem with backhauls. International Transactions in Operational Research, 1–13. https://doi.org/10.1111/itor.12379.

  • Belloso, J., Juan, A. A., Martinez, E., & Faulin, J. (2017). A biased-randomized metaheuristic for the vehicle routing problem with clustered and mixed backhauls. Networks, 69(3), 241–255. https://doi.org/10.1002/net.

    Google Scholar 

  • Bhinge, R., Moser, R., Moser, E., Lanza, G., & Dornfeld, D. (2015). Sustainability optimization for global supply chain decision-making. Procedia CIRP, 26, 323–328. https://doi.org/10.1016/j.procir.2014.07.105.

    Google Scholar 

  • Bin, W., Hong, C., & Zhi-yong, C. (2013). Artificial bee colony algorithm for two-dimensional loading capacitated vehicle routing problem. In 2013 International Conference on Management Science and Engineering (Icmse) (pp. 406–412).

  • Birgin, E. G., Martinez, J. M., Mascarenhas, W. F., & Ronconi, D. P. (2006). Method of sentinels for packing items within arbitrary convex regions. Journal of the Operational Research Society, 57(6), 735–746.

    Google Scholar 

  • Birgin, E. G., Martinez, J. M., & Ronconi, D. P. (2005). Optimizing the packing of cylinders into a rectangular container: A nonlinear approach. European Journal of Operational Research, 160(1), 19–33.

    Google Scholar 

  • Bischoff, E. E. (2006). Three-dimensional packing of items with limited load bearing strength. European Journal of Operational Research, 168(3), 952–966. https://doi.org/10.1016/j.ejor.2004.04.037.

    Google Scholar 

  • Bischoff, E. E., & Ratcliff, M. S. W. (1995). Issues in the development of approaches to container loading. Omega, 23(4), 377–390. https://doi.org/10.1016/0305-0483(95)00015-G.

    Google Scholar 

  • Black, W. R. (1996). Sustainable transportation: a US perspective. Journal of Transport Geography, 4(3), 151–159. https://doi.org/10.1016/0966-6923(96)00020-8.

    Google Scholar 

  • Bortfeldt, A. (2012). A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints. Computers & Operations Research, 39(9), 2248–2257. https://doi.org/10.1016/j.cor.2011.11.008.

    Google Scholar 

  • Bortfeldt, A., & Gehring, H. (2001). A hybrid genetic algorithm for the container loading problem. European Journal of Operational Research, 131(1), 143–161. https://doi.org/10.1016/S0377-2217(00)00055-2.

    Google Scholar 

  • Bortfeldt, A., Hahn, T., Männel, D., & Mönch, L. (2015). Hybrid algorithms for the vehicle routing problem with clustered backhauls and 3D loading constraints. European Journal of Operational Research, 243(1), 82–96. https://doi.org/10.1016/j.ejor.2014.12.001.

    Google Scholar 

  • Bortfeldt, A., & Homberger, J. (2013). Packing first, routing second—a heuristic for the vehicle routing and loading problem. Computers & Operations Research, 40(3), 873–885. https://doi.org/10.1016/j.cor.2012.09.005.

    Google Scholar 

  • Bortfeldt, A., & Jungmann, S. (2012). A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint. Annals of Operations Research, 196(1), 53–71. https://doi.org/10.1007/s10479-012-1084-7.

    Google Scholar 

  • Bortfeldt, A., & Mack, D. (2007). A heuristic for the three-dimensional strip packing problem. European Journal of Operational Research, 183(3), 1267–1279. https://doi.org/10.1016/j.ejor.2005.07.031.

    Google Scholar 

  • Bortfeldt, A., & Wäscher, G. (2013). Constraints in container loading—A state-of-the-art review. European Journal of Operational Research, 229(1), 1–20. https://doi.org/10.1016/j.ejor.2012.12.006.

    Google Scholar 

  • Braekers, K., Caris, A., & Janssens, G. K. (2013). Integrated planning of loaded and empty container movements. OR Spectrum, 35(2), 457–478.

    Google Scholar 

  • Braekers, K., Caris, A., & Janssens, G. K. (2014). Bi-objective optimization of drayage operations in the service area of intermodal terminals. Transportation Research Part E: Logistics and Transportation Review, 65, 50–69. https://doi.org/10.1016/j.tre.2013.12.012.

    Google Scholar 

  • Brunetta, L., & Grégoire, P. (2005). A general purpose algorithm for three-dimensional packing. Informs Journal on Computing, 17(3), 328–338.

    Google Scholar 

  • Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2014). Rich vehicle routing problem. ACM Computing Surveys, 47(2), 1–28. https://doi.org/10.1145/2666003.

    Google Scholar 

  • Carrabs, F., Cerulli, R., & Sciomachen, A. (2014). Environmental Sustainable Fleet Planning in B2C e-Commerce Urban Distribution Networks. In Smart city: How to create public and economic value with high technology in urban space (pp. 183–192).

  • Carrabs, F., Cerulli, R., & Speranza, M. G. (2013). A branch-and-bound algorithm for the double travelling salesman problem with two stacks. Networks, 61(1), 58–75.

    Google Scholar 

  • Ceschia, S., & Schaerf, A. (2013). Local search for a multi-drop multi-container loading problem. Journal of Heuristics, 19(2), 275–294.

    Google Scholar 

  • Ceschia, S., Schaerf, A., Stützle, T., & Stuzle, T. (2013). Local search techniques for a routing-packing problem. Computers & Industrial Engineering, 66(4), 1138–1149. https://doi.org/10.1016/j.cie.2013.07.025.

    Google Scholar 

  • Ceselli, A., Righini, G., & Salani, M. (2009). A column generation algorithm for a rich vehicle-routing problem. Transportation Science, 43(1), 56–69.

    Google Scholar 

  • Che, C. H., Huang, W., Lim, A., & Zhu, W. (2011). The multiple container loading cost minimization problem. European Journal of Operational Research, 214(3), 501–511. https://doi.org/10.1016/j.ejor.2011.04.017.

    Google Scholar 

  • Cheang, B., Gao, X., Lim, A., Qin, H., & Zhu, W. (2012). Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints. European Journal of Operational Research, 223(1), 60–75. https://doi.org/10.1016/j.ejor.2012.06.019.

    Google Scholar 

  • Cherkesly, M., Desaulniers, G., & Laporte, G. (2015). A population-based metaheuristic for the pickup and delivery problem with time windows and LIFO loading. Computers & Operations Research, 62, 23–35. https://doi.org/10.1016/j.cor.2015.04.002.

    Google Scholar 

  • Cinar, D., Gakis, K., & Pardalos, P. M. (2016). A 2-phase constructive algorithm for cumulative vehicle routing problems with limited duration. Expert Systems with Applications, 56, 48–58. https://doi.org/10.1016/j.eswa.2016.02.046.

    Google Scholar 

  • Clarivate Analytics. (2017). Web of science fact book. Clarivate analytics. Retrieved from http://images.info.science.thomsonreuters.biz/Web/ThomsonReutersScience/%7Bd6b7faae-3cc2-4186-8985-a6ecc8cce1ee%7D_Crv_WoS_Upsell_Factbook_A4_FA_LR_edits.pdf

  • Cochran, J. K., & Ramanujam, B. (2006). Carrier-mode logistics optimization of inbound supply chains for electronics manufacturing. International Journal of Production Economics, 103(2), 826–840. https://doi.org/10.1016/j.ijpe.2006.01.005.

    Google Scholar 

  • Cordeau, J.-F., Dell’Amico, M., Falavigna, S., & Iori, M. (2015). A rolling horizon algorithm for auto-carrier transportation. Transportation Research Part B-Methodological, 76, 68–80. https://doi.org/10.1016/j.trb.2015.02.009.

    Google Scholar 

  • Côté, J.-F., Gendreau, M., & Potvin, J.-Y. (2012). Large neighborhood search for the pickup and delivery traveling salesman problem with multiple stacks. Networks, 60(1), 19–30. https://doi.org/10.1002/net.20448.

    Google Scholar 

  • Côté, J.-F., Guastaroba, G., & Speranza, M. G. (2017). The value of integrating loading and routing. European Journal of Operational Research, 257(1), 89–105. https://doi.org/10.1016/j.ejor.2016.06.072.

    Google Scholar 

  • Currie, R. H., & Salhi, S. (2003). Exact and heuristic methods for a full-load, multi-terminal, vehicle scheduling problem with backhauling and time windows. Journal of the Operational Research Society, 54(4), 390–400.

    Google Scholar 

  • da Graça Costa, M., & Captivo, M. E. (2016). Weight distribution in container loading: a case study. International Transactions in Operational Research, 23(1–2), 239–263. https://doi.org/10.1111/itor.12145.

    Google Scholar 

  • da Silveira, J. L. M., Xavier, E. C., & Miyazawa, F. K. (2013). A note on a two dimensional knapsack problem with unloading constraints. Rairo-Theoretical Informatics and Applications, 47(4), 315–324.

    Google Scholar 

  • da Silveira, J. L. M., Xavier, E. C., & Miyazawa, F. K. (2014). Two-dimensional strip packing with unloading constraints. Discrete Applied Mathematics, 164, 512–521. https://doi.org/10.1016/j.dam.2013.08.019.

    Google Scholar 

  • Dahmani, N., Clautiaux, F., Krichen, S., & Talbi, E.-G. (2014). Self-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problem. Applied Soft Computing, 16, 124–136. https://doi.org/10.1016/j.asoc.2013.12.006.

    Google Scholar 

  • Davies, A. P., & Bischoff, E. E. (1999). Weight distribution considerations in container loading. European Journal of Operational Research, 114(3), 509–527. https://doi.org/10.1016/S0377-2217(98)00139-8.

    Google Scholar 

  • de Almeida, A., & Figueiredo, M. B. (2010). A particular approach for the Three-dimensional Packing Problem with additional constraints. Computers & Operations Research, 37(11), 1968–1976. https://doi.org/10.1016/j.cor.2010.01.010.

    Google Scholar 

  • de Araújo, O. C. B., & Armentano, V. A. (2007). A multi-start random constructive heuristic for the container loading problem. Pesquisa Operacional, 27(2), 311–331.

    Google Scholar 

  • de Queiroz, T. A., Hokama, P. H. D. B., Schouery, R. C. S., & Miyazawa, F. K. (2017). Two-dimensional Disjunctively Constrained Knapsack Problem: Heuristic and exact approaches. Computers & Industrial Engineering, 105, 313–328. https://doi.org/10.1016/j.cie.2017.01.015.

    Google Scholar 

  • de Queiroz, T. A., & Miyazawa, F. K. (2013). Two-dimensional strip packing problem with load balancing, load bearing and multi-drop constraints. International Journal of Production Economics, 145(2), 511–530. https://doi.org/10.1016/j.ijpe.2013.04.032.

    Google Scholar 

  • Demir, E., Bektaş, T., & Laporte, G. (2014). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), 775–793. https://doi.org/10.1016/j.ejor.2013.12.033.

    Google Scholar 

  • Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), The SAGE handbook of organizational research methods (pp. 671–689). London: SAGE Publications Ltd.

    Google Scholar 

  • Dereli, T., & Das, G. S. (2010). A hybrid simulated annealing algorithm for solving multi-objective container-loading problems. Applied Artificial Intelligence, 24(5), 463–486.

    Google Scholar 

  • Dereli, T., & Das, G. S. (2011). A hybrid “bee(s) algorithm” for solving container loading problems. Applied Soft Computing, 11(2), 2854–2862. https://doi.org/10.1016/j.asoc.2010.11.017.

    Google Scholar 

  • Derigs, U., & Pullmann, M. (2014). Solving multitrip vehicle routing under order incompatibilities: A VRP arising in supply chain management. Networks, 64(1), 29–39.

    Google Scholar 

  • Doerner, K. F., Fuellerer, G., Hartl, R. F., Gronalt, M., & Iori, M. (2007). Metaheuristics for the vehicle routing problem with loading constraints. Networks, 49(4), 294–307. https://doi.org/10.1002/net.20179.

    Google Scholar 

  • Domingo, B. M., Ponnambalam, S. G., & Kanagaraj, G. (2013). A Differential Evolution Based Algorithm for Single Container Loading Problem. In Proceedings of the 2013 Ieee Symposium on Differential Evolution (Sde).

  • Dominguez, O., Guimarans, D., Juan, A. A., & de la Nuez, I. (2016). A biased-randomised large neighbourhood search for the two-dimensional vehicle routing problem with Backhauls. European Journal of Operational Research, 255(2), 442–462. https://doi.org/10.1016/j.ejor.2016.05.002.

    Google Scholar 

  • Dominguez, O., Juan, A. A., Barrios, B., Faulin, J., & Agustin, A. (2016). Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet. Annals of Operations Research, 236(2), 383–404. https://doi.org/10.1007/s10479-014-1551-4.

    Google Scholar 

  • Dominguez, O., Juan, A. A., de la Nuez, I., & Ouelhadj, D. (2016). An ILS-biased randomization algorithm for the two-dimensional loading HFVRP with sequential loading and items rotation. Journal of the Operational Research Society, 67, 37–53. https://doi.org/10.1057/jors.2015.48.

    Google Scholar 

  • Dominguez, O., Juan, A. A., & Faulin, J. (2014). A biased-randomized algorithm for the two-dimensional vehicle routing problem with and without item rotations. International Transactions in Operational Research, 21(3), 375–398. https://doi.org/10.1111/itor.12070.

    Google Scholar 

  • Duhamel, C., Lacomme, P., Quilliot, A., & Toussaint, H. (2011). A multi-start evolutionary local search for the two-dimensional loading capacitated vehicle routing problem. Computers & Operations Research, 38(3), 617–640. https://doi.org/10.1016/j.cor.2010.08.017.

    Google Scholar 

  • Egeblad, J., Garavelli, C., Lisi, S., & Pisinger, D. (2010). Heuristics for container loading of furniture. European Journal of Operational Research, 200(3), 881–892. https://doi.org/10.1016/j.ejor.2009.01.048.

    Google Scholar 

  • Egeblad, J., & Pisinger, D. (2009). Heuristic approaches for the two- and three-dimensional knapsack packing problem. Computers & Operations Research, 36(4), 1026–1049. https://doi.org/10.1016/j.cor.2007.12.004.

    Google Scholar 

  • Eglese, R., & Bektaş, T. (2014). Green vehicle routing. In P. Toth & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications (2nd ed., pp. 437–458). MOS-SIAM Series on Optimization. https://doi.org/10.1007/978-3-319-17175-3

  • Ehmke, J. F., Campbell, A. M., & Thomas, B. W. (2016). Vehicle routing to minimize time-dependent emissions in urban areas. European Journal of Operational Research, 251(2), 478–494. https://doi.org/10.1016/j.ejor.2015.11.034.

    Google Scholar 

  • Eley, M. (2002). Solving container loading problems by block arrangement. European Journal of Operational Research, 141(2), 393–409. https://doi.org/10.1016/S0377-2217(02)00133-9.

    Google Scholar 

  • Eley, M. (2003). A bottleneck assignment approach to the multiple container loading problem. OR Spectrum, 25(1), 45–60.

    Google Scholar 

  • Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: an optimization-oriented review. Omega, 54, 11–32. https://doi.org/10.1016/j.omega.2015.01.006.

    Google Scholar 

  • European-Commission. (2006). Road transport policy: Open roads across Europe. Brussels. Retrieved from http://ec.europa.eu/transport/road/doc/road_transport_policy_en.pdf

  • Fanslau, T., & Bortfeldt, A. (2010). A tree search algorithm for solving the container loading problem. Informs Journal on Computing, 22(2), 222–235.

    Google Scholar 

  • Faulin, J., Juan, A., Lera, F., & Grasman, S. (2011). Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: A case study. Procedia—Social and Behavioral Sciences, 20, 323–334. https://doi.org/10.1016/j.sbspro.2011.08.038.

    Google Scholar 

  • Felipe, A., Ortuno, M. T., & Tirado, G. (2009a). New neighborhood structures for the Double Traveling Salesman Problem with Multiple Stacks. Top, 17(1), 190–213. https://doi.org/10.1007/s11750-009-0080-9.

    Google Scholar 

  • Felipe, A., Ortuno, M. T., & Tirado, G. (2009b). The double traveling salesman problem with multiple stacks: A variable neighborhood search approach. Computers & Operations Research, 36(11), 2983–2993. https://doi.org/10.1016/j.cor.2009.01.015.

  • Fernández, A., Gil, C., Baños, R., & Montoya, M. G. (2013). A parallel multi-objective algorithm for two-dimensional bin packing with rotations and load balancing. Expert Systems with Applications, 40(13), 5169–5180. https://doi.org/10.1016/j.eswa.2013.03.015.

    Google Scholar 

  • Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview. European Journal of Operational Research, 155(1), 1–21. https://doi.org/10.1016/S0377-2217(03)00274-1.

    Google Scholar 

  • Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2009). Ant colony optimization for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 36(3), 655–673. https://doi.org/10.1016/j.cor.2007.10.021.

    Google Scholar 

  • Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2010). Metaheuristics for vehicle routing problems with three-dimensional loading constraints. European Journal of Operational Research, 201(3), 751–759.

    Google Scholar 

  • Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a routing and container loading problem. Transportation Science, 40(3), 342–350. https://doi.org/10.1287/trsc.1050.0145.

    Google Scholar 

  • Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2008). A Tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints. Networks, 51(1), 4–18.

    Google Scholar 

  • Gendreau, M., Potvin, J.-Y., Bräysy, O., Hasle, G., & Løkketangen, A. (2008). Metaheuristics for the vehicle routing problem and its extensions: A categorized bibliography. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The vehicle routing problem: Latest advances and new challenges (pp. 143–170). New York: Springer. https://doi.org/10.1007/978-0-387-77778-8_7

  • Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81–99. https://doi.org/10.1016/j.ejor.2015.01.049.

    Google Scholar 

  • Gonçalves, R. F., & de Queiroz, T. A. (2014). The knapsack problem with three practical constraints. In 2014 International conference on computational science (Vol. 29, pp. 2192–2200). https://doi.org/10.1016/j.procs.2014.05.204.

  • Gonzalez-Barbosa, J. J., Delgado-Orta, J. F., Cruz-Reyes, L., Fraire-Huacuja, H. J., & Ramirez-Saldivar, A. (2010). Comparative analysis of hybrid techniques for an ant colony system algorithm applied to solve a real-world transportation problem. Soft Computing for Recognition Based on Biometrics, 312, 365–385.

    Google Scholar 

  • Gonzalez, Y., Miranda, G., & Leon, C. (2016). Multi-objective multi-level filling evolutionary algorithm for the 3D cutting stock problem. In Knowledge-based and intelligent information & engineering systems: Proceedings of the 20th international conference Kes-2016 (Vol. 96, pp. 364–373). https://doi.org/10.1016/j.procs.2016.08.148.

  • Guimarans, D., Dominguez, O., Juan, A. A., & Martinez, E. (2016). A multi-start simheuristic for the stochastic two-dimensional vehicle routing problem. In 2016 Winter simulation conference (Wsc) (pp. 2326–2334).

  • Gutierrez-Jarpa, G., Marianov, V., & Obreque, C. (2009). A single vehicle routing problem with fixed delivery and optional collections. IIE Transactions, 41(12), 1067–1079.

    Google Scholar 

  • Halvorsen-Weare, E. E., & Savelsbergh, M. W. P. (2016). The bi-objective mixed capacitated general routing problem with different route balance criteria. European Journal of Operational Research, 251(2), 451–465. https://doi.org/10.1016/j.ejor.2015.11.024.

    Google Scholar 

  • He, K., & Huang, W. (2010a). A caving degree based flake arrangement approach for the container loading problem. Computers & Industrial Engineering, 59(2), 344–351. https://doi.org/10.1016/j.cie.2010.05.007.

  • He, K., & Huang, W. (2010b). A quasi-human algorithm for solving the three-dimensional rectangular packing problem. Science China-Information Sciences, 53(12), 2389–2398. https://doi.org/10.1007/s11432-010-4112-8.

    Google Scholar 

  • He, K., & Huang, W. (2011). An efficient placement heuristic for three-dimensional rectangular packing. Computers & Operations Research, 38(1), 227–233. https://doi.org/10.1016/j.cor.2010.04.015.

    Google Scholar 

  • Hokama, P., Miyazawa, F. K., & Xavier, E. C. (2016). A branch-and-cut approach for the vehicle routing problem with loading constraints. Expert Systems with Applications, 47, 1–13. https://doi.org/10.1016/j.eswa.2015.10.013.

    Google Scholar 

  • Hsu, C.-I., Hung, S.-F., & Li, H.-C. (2007). Vehicle routing problem with time-windows for perishable food delivery. Journal of Food Engineering, 80(2), 465–475. https://doi.org/10.1016/j.jfoodeng.2006.05.029.

    Google Scholar 

  • Hu, N.-Z., Li, H.-L., & Tsai, J.-F. (2012). Solving packing problems by a distributed global optimization algorithm. Mathematical Problems in Engineering, 931092.

  • Hu, Z.-H., Zhao, Y., Tao, S., & Sheng, Z.-H. (2015). Finished-vehicle transporter routing problem solved by loading pattern discovery. Annals of Operations Research, 234(1), 37–56. https://doi.org/10.1007/s10479-014-1777-1.

    Google Scholar 

  • Huang, W., & He, K. (2009a). A caving degree approach for the single container loading problem. European Journal of Operational Research, 196(1), 93–101. https://doi.org/10.1016/j.ejor.2008.02.024.

    Google Scholar 

  • Huang, W., & He, K. (2009b). A new heuristic algorithm for cuboids packing with no orientation constraints. Computers & Operations Research, 36(2), 425–432. https://doi.org/10.1016/j.cor.2007.09.008.

    Google Scholar 

  • Huang, Y.-H., Hwang, F. J., & Lu, H.-C. (2016). An effective placement method for the single container loading problem. Computers & Industrial Engineering, 97, 212–221. https://doi.org/10.1016/j.cie.2016.05.008.

    Google Scholar 

  • International Standard Organization. (2010). Guidance on social responsibility—ISO 26000:2010 (Vol. 2010).

  • Iori, M., & Martello, S. (2010). Routing problems with loading constraints. Top, 18(1), 4–27.

    Google Scholar 

  • Iori, M., & Riera-Ledesma, J. (2015). Exact algorithms for the double vehicle routing problem with multiple stacks. Computers & Operations Research, 63, 83–101. https://doi.org/10.1016/j.cor.2015.04.016.

    Google Scholar 

  • Iori, M., Salazar-González, J.-J., & Vigo, D. (2007). An exact approach for the vehicle routing problem with two-dimensional loading constraints. Transportation Science, 41(2), 253–264. https://doi.org/10.1287/trsc.1060.0165.

    Google Scholar 

  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of working groups I, II and III to the Fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland.

  • Irnich, S., Toth, P., & Vigo, D. (2014). The family of vehicle routing problems. In P. Toth & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications (2nd ed., pp. 1–33). MOS-SIAM Series on Optimization. https://doi.org/10.1137/1.9781611973594.ch1.

  • Islam, D. M. Z., Fabian Meier, J., Aditjandra, P. T., Zunder, T. H., & Pace, G. (2013). Logistics and supply chain management. Research in Transportation Economics, 41(1), 3–16. https://doi.org/10.1016/j.retrec.2012.10.006.

    Google Scholar 

  • Iwasawa, H., Hu, Y., Hashimoto, H., Imahori, S., & Yagiura, M. (2016). A heuristic algorithm for the container loading problem with complex loading constraints. Journal of Advanced Mechanical Design Systems and Manufacturing, 10(3), 1–12. https://doi.org/10.1299/jamdsm.2016jamdsm0041.

    Google Scholar 

  • Jamrus, T., & Chien, C.-F. (2016). Extended priority-based hybrid genetic algorithm for the less-than-container loading problem. Computers & Industrial Engineering, 96, 227–236. https://doi.org/10.1016/j.cie.2016.03.030.

    Google Scholar 

  • Jin, Z., Ito, T., & Ohno, K. (2003). The three-dimensional bin packing problem and its practical algorithm. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 46(1), 60–66.

    Google Scholar 

  • Jozefowiez, N., Semet, T., & Talbi, E.-G. (2008). From single-objective to multi-objective vehicle routing problems: Motivations, case studies, and methods. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The vehicle routing problem: Latest advances and new challenges (pp. 445–471). New York: Springer. https://doi.org/10.1007/978-0-387-77778-8_20.

  • Juan, A. A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2011). Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research Part C: Emerging Technologies, 19(5), 751–765. https://doi.org/10.1016/j.trc.2010.09.007.

    Google Scholar 

  • Junqueira, L., & Morabito, R. (2015). Heuristic algorithms for a three-dimensional loading capacitated vehicle routing problem in a carrier. Computers & Industrial Engineering, 88, 110–130. https://doi.org/10.1016/j.cie.2015.06.005.

    Google Scholar 

  • Junqueira, L., Morabito, R., & Yamashita, D. S. (2012a). MIP-based approaches for the container loading problem with multi-drop constraints. Annals of Operations Research, 199(1), 51–75.

    Google Scholar 

  • Junqueira, L., Morabito, R., & Yamashita, D. S. (2012b). Three-dimensional container loading models with cargo stability and load bearing constraints. Computers & Operations Research, 39(1), 74–85. https://doi.org/10.1016/j.cor.2010.07.017.

    Google Scholar 

  • Junqueira, L., Oliveira, J. F., Carravilla, M. A., & Morabito, R. (2013). An optimization model for the vehicle routing problem with practical three-dimensional loading constraints. International Transactions in Operational Research, 20(5), 645–666.

    Google Scholar 

  • Kang, K., Moon, I., & Wang, H. (2012). A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem. Applied Mathematics and Computation, 219(3), 1287–1299. https://doi.org/10.1016/j.amc.2012.07.036.

    Google Scholar 

  • Karoonsoontawong, A., & Heebkhoksung, K. (2015). A modified wall-building-based compound approach for the knapsack container loading problem. Maejo International Journal of Science and Technology, 9(1), 93–107.

    Google Scholar 

  • Khebbache-Hadji, S., Prins, C., Yalaoui, A., & Reghioui, M. (2013). Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows. Central European Journal of Operations Research, 21(2), 307–336. https://doi.org/10.1007/s10100-011-0204-9.

    Google Scholar 

  • Kramer, R., Subramanian, A., Vidal, T., & Cabral, L. dos A. F. (2015). A matheuristic approach for the Pollution-Routing Problem. European Journal of Operational Research, 243(2), 523–539. https://doi.org/10.1016/j.ejor.2014.12.009.

    Google Scholar 

  • Kritikos, M. N., & Ioannou, G. (2010). The balanced cargo vehicle routing problem with time windows. International Journal of Production Economics, 123(1), 42–51. https://doi.org/10.1016/J.IJPE.2009.07.006.

    Google Scholar 

  • Kritikos, M. N., & Ioannou, G. (2013). The heterogeneous fleet vehicle routing problem with overloads and time windows. International Journal of Production Economics, 144(1), 68–75. https://doi.org/10.1016/j.ijpe.2013.01.020.

    Google Scholar 

  • Kucukoglu, I., Ene, S., Aksoy, A., & Ozturk, N. (2015). A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environmental Science and Pollution Research, 22(5), 3279–3297.

    Google Scholar 

  • Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 59(1), 157–165. https://doi.org/10.1016/j.cie.2010.03.012.

    Google Scholar 

  • Kuo, Y., & Wang, C.-C. (2012). A variable neighborhood search for the multi-depot vehicle routing problem with loading cost. Expert Systems with Applications, 39(8), 6949–6954. https://doi.org/10.1016/j.eswa.2012.01.024.

    Google Scholar 

  • Lacomme, P., Toussaint, H., & Duhamel, C. (2013). A GRASP x ELS for the vehicle routing problem with basic three-dimensional loading constraints. Engineering Applications of Artificial Intelligence, 26(8), 1795–1810.

    Google Scholar 

  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416. https://doi.org/10.1287/trsc.1090.0301.

    Google Scholar 

  • Lee, C.-G., Epelman, M. A., White, C. C., & Bozer, Y. A. (2006). A shortest path approach to the multiple-vehicle routing problem with split pick-ups. Transportation Research Part B: Methodological, 40(4), 265–284. https://doi.org/10.1016/j.trb.2004.11.004.

    Google Scholar 

  • Leung, S. C. H., Zhang, Z., Zhang, D., Hua, X., & Lim, M. K. (2013). A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints. European Journal of Operational Research, 225(2), 199–210.

    Google Scholar 

  • Leung, S. C. H., Zheng, J., Zhang, D., & Zhou, X. (2010). Simulated annealing for the vehicle routing problem with two-dimensional loading constraints. Flexible Services and Manufacturing Journal, 22(1–2), 61–82.

    Google Scholar 

  • Leung, S. C. H., Zhou, X., Zhang, D., & Zheng, J. (2011). Extended guided tabu search and a new packing algorithm for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 38(1), 205–215.

    Google Scholar 

  • Li, H.-L., Tsai, J.-F., & Hu, N.-Z. (2003). A distributed global optimization method for packing problems. Journal of the Operational Research Society, 54(4), 419–425.

    Google Scholar 

  • Li, H., Yuan, J., Lv, T., & Chang, X. (2016). The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems considering carbon dioxide emissions. Transportation Research Part D-Transport and Environment, 49, 231–245. https://doi.org/10.1016/j.trd.2016.10.002.

    Google Scholar 

  • Li, J., Lu, Q., & Fu, P. (2015). Carbon footprint management of road freight transport under the carbon emission trading mechanism. Mathematical Problems in Engineering, 13. https://doi.org/10.1155/2015/814527.

  • Li, K., & Tian, H. (2016). A two-level self-adaptive variable neighborhood search algorithm for the prize-collecting vehicle routing problem. Applied Soft Computing, 43, 469–479. https://doi.org/10.1016/j.asoc.2016.02.040.

    Google Scholar 

  • Li, X., & Zhang, K. (2015). A hybrid differential evolution algorithm for multiple container loading problem with heterogeneous containers. Computers & Industrial Engineering, 90, 305–313. https://doi.org/10.1016/j.cie.2015.10.007.

    Google Scholar 

  • Lim, A., Ma, H., Qiu, C., & Zhu, W. (2013). The single container loading problem with axle weight constraints. International Journal of Production Economics, 144(1), 358–369. https://doi.org/10.1016/j.ijpe.2013.03.001.

    Google Scholar 

  • Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138. https://doi.org/10.1016/j.eswa.2013.07.107.

    Google Scholar 

  • Lin, J.-L., Chang, C.-H., & Yang, J.-Y. (2006). A study of optimal system for multiple-constraint multiple-container packing problems. Advances in Applied Articial Intelligence, Proceedings, 4031, 1200–1210.

    Google Scholar 

  • Lin, J., Zhou, W., & Wolfson, O. (2016). Electric vehicle routing problem. Ninth International Conference on City Logistics, 12, 508–521. https://doi.org/10.1016/j.trpro.2016.02.007.

    Google Scholar 

  • Lin, M.-H., Tsai, J.-F., & Chang, S.-C. (2017). A superior linearization method for signomial discrete functions in solving three-dimensional open-dimension rectangular packing problems. Engineering Optimization, 49(5), 746–761. https://doi.org/10.1080/0305215X.2016.1211403.

    Google Scholar 

  • Liu, D. S., Tan, K. C., Huang, S. Y., Goh, C. X., & Ho, W. K. (2008). On solving multiobjective bin packing problems using evolutionary particle swarm optimization. European Journal of Operational Research, 190(2), 357–382.

    Google Scholar 

  • Liu, J., Smith, A. E., & Qian, D. (2016). The vehicle loading problem with a heterogeneous transport fleet. Computers & Industrial Engineering, 97, 137–145. https://doi.org/10.1016/j.cie.2016.04.021.

    Google Scholar 

  • Liu, J., Yue, Y., Dong, Z., Maple, C., & Keech, M. (2011). A novel hybrid tabu search approach to container loading. Computers & Operations Research, 38(4), 797–807. https://doi.org/10.1016/j.cor.2010.09.002.

    Google Scholar 

  • Lodi, A., Martello, S., & Vigo, D. (2002). Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123(1–3), 379–396. https://doi.org/10.1016/S0166-218X(01)00347-X.

    Google Scholar 

  • Mack, D., & Bortfeldt, A. (2012). A heuristic for solving large bin packing problems in two and three dimensions. Central European Journal of Operations Research, 20(2), 337–354. https://doi.org/10.1007/s10100-010-0184-1.

    Google Scholar 

  • Mahvash, B., Awasthi, A., & Chauhan, S. (2017). A column generation based heuristic for the capacitated vehicle routing problem with three-dimensional loading constraints. International Journal of Production Research, 55(6), 1730–1747. https://doi.org/10.1080/00207543.2016.1231940.

    Google Scholar 

  • Malapert, A., Guéret, C., & Jussien, N. (2008). Two-dimensional pickup and delivery routing problem with loading constraints. In CPAIOR’08 1st Workshop on Bin Packing and Placement Constraints (BPPC’08) (pp. 1–6). Retrieved from http://www.emn.fr/jussien/publications/CIRRELT-2008-37.pdf.

  • Männel, D., & Bortfeldt, A. (2016). A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints. European Journal of Operational Research, 254(3), 840–858. https://doi.org/10.1016/j.ejor.2016.04.016.

    Google Scholar 

  • Marinakis, Y., Iordanidou, G.-R., & Marinaki, M. (2013). Particle swarm optimization for the vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4), 1693–1704. https://doi.org/10.1016/j.asoc.2013.01.007.

    Google Scholar 

  • Martins, G. H. A., & Dell, R. F. (2007). The minimum size instance of a Pallet Loading Problem equivalence class. European Journal of Operational Research, 179(1), 17–26. https://doi.org/10.1016/j.ejor.2006.03.009.

    Google Scholar 

  • Martins, G. H. A., & Dell, R. F. (2008). Solving the pallet loading problem. European Journal of Operational Research, 184(2), 429–440. https://doi.org/10.1016/j.ejor.2006.11.012.

    Google Scholar 

  • McGuigan, J. R., Moyer, C., & Harris, F. (2014). Managerial Economics (13th ed.). Stanford: CENGAGE Learning.

    Google Scholar 

  • Mehrjerdi, Y. Z. (2014). A multiple objective stochastic approach to vehicle routing problem. International Journal of Advanced Manufacturing Technology, 74(5–8), 1149–1158.

    Google Scholar 

  • Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Velasco, N. (2010). A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research, 37(11), 1886–1898. https://doi.org/10.1016/j.cor.2009.06.015.

    Google Scholar 

  • Miao, L., Ruan, Q., Woghiren, K., & Ruo, Q. (2012). A hybrid genetic algorithm for the vehicle routing problem with three-dimensional loading constraints. Rairo-Operations Research, 46(1), 63–82.

    Google Scholar 

  • Molina, J. C., Eguia, I., Racero, J., & Guerrero, F. (2014). Multi-objective vehicle routing problem with cost and emission functions. Xi Congreso De Ingenieria Del Transporte (Cit 2014), 160, 254–263. https://doi.org/10.1016/j.sbspro.2014.12.137.

    Google Scholar 

  • Montoya-Torres, J. R. (2015). Designing sustainable supply chains based on the triple bottom line approach. In Proceedings of the 2015 international conference on advanced logistics and transport (ICALT 2015) (pp. 1–6). Valenciennes, France: IEEE Publishing.

  • Montoya-Torres, J. R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115–129. https://doi.org/10.1016/j.cie.2014.10.029.

    Google Scholar 

  • Moura, A., & Bortfeldt, A. (2017). A two-stage packing problem procedure. International Transactions in Operational Research, 24(1–2), 43–58. https://doi.org/10.1111/itor.12251.

    Google Scholar 

  • Moura, A., & Oliveira, J. F. (2009). An integrated approach to the vehicle routing and container loading problems. OR Spectrum, 31(4), 775–800.

    Google Scholar 

  • Mu, Q., & Eglese, R. W. (2013). Disrupted capacitated vehicle routing problem with order release delay. Annals of Operations Research, 207(1), 201–216.

    Google Scholar 

  • Newbert, S. L. (2007). Empirical research on the resource based view of the firm: An assessment and suggestions for future research. Strategic Management Journal, 28(2), 121–146. https://doi.org/10.1002/smj.573.

    Google Scholar 

  • NHS Centre for Reviews and Dissemination. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. York.

  • Norouzi, N., Sadegh-Amalnick, M., & Tavakkoli-Moghaddam, R. (2017). Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption. Optimization Letters, 11(1), 121–134. https://doi.org/10.1007/s11590-015-0996-y.

    Google Scholar 

  • Nowak, M., Ergun, O., & White, C. C. (2009). An empirical study on the benefit of split loads with the pickup and delivery problem. European Journal of Operational Research, 198(3), 734–740. https://doi.org/10.1016/j.ejor.2008.09.041.

    Google Scholar 

  • Okude, M., & Taniguchi, E. (2012). An approximation algorithm for vehicle routing problems with hierarchized traffic network. Seventh International Conference on City Logistics, 39, 369–386. https://doi.org/10.1016/j.sbspro.2012.03.115.

    Google Scholar 

  • Omar, M. K., & Ramakrishnan, K. (2011). EPSO for solving non-oriented two-dimensional bin packing problem. In 2011 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 106–110).

  • Oncan, T., Aksu, D. T., Sahin, G., & Sahin, M. (2011). A branch and cut algorithm for the multi-vehicle one-to-one pickup and delivery problem with split loads. In 2011 IEEE International conference on industrial engineering and engineering management (IEEM) (pp. 1864–1868).

  • Parreno, F., Alvarez-Valdes, R., Oliveira, J. F., & Tamarit, J. M. (2010). A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing. Annals of Operations Research, 179(1), 203–220. https://doi.org/10.1007/s10479-008-0449-4.

    Google Scholar 

  • Pelikan, J., & Fabry, J. (2012). Heuristics for routes generation in pickup and delivery problem. Central European Journal of Operations Research, 20(3), 463–472.

    Google Scholar 

  • Perboli, G., Gobbato, L., & Perfetti, F. (2014). Packing problems in transportation and supply chain: New problems and trends. In Transportation: Can we do more with less resources?—16th meeting of the Euro working group on transportation—Porto 2013 (Vol. 111, pp. 672–681). https://doi.org/10.1016/j.sbspro.2014.01.101.

  • Perboli, G., Tadei, R., & Baldi, M. M. (2012). The stochastic generalized bin packing problem. Discrete Applied Mathematics, 160(7–8), 1291–1297. https://doi.org/10.1016/j.dam.2011.10.037.

    Google Scholar 

  • Pérez-Bernabeu, E., Juan, A. A., Faulin, J., & Barrios, B. B. (2015). Horizontal cooperation in road transportation: A case illustrating savings in distances and greenhouse gas emissions. International Transactions in Operational Research, 22(3), 585–606. https://doi.org/10.1111/itor.12130.

    Google Scholar 

  • Petersen, H. L., & Madsen, O. B. G. (2009). The double travelling salesman problem with multiple stacks—Formulation and heuristic solution approaches. European Journal of Operational Research, 198(1), 139–147. https://doi.org/10.1016/j.ejor.2008.08.009.

    Google Scholar 

  • Piera, M. A., Zuniga, C., & Mujica, M. (2009). A pallet packing CPN optimization approach for distribution center. Automatika, 50(1–2), 29–38.

    Google Scholar 

  • Pisinger, D. (2002). Heuristics for the container loading problem. European Journal of Operational Research, 141(2), 382–392. https://doi.org/10.1016/S0377-2217(02)00132-7.

    Google Scholar 

  • Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2015). Vehicle routing problems with loading constraints: state-of-the-art and future directions. OR Spectrum, 37(2), 297–330. https://doi.org/10.1007/s00291-014-0386-3.

    Google Scholar 

  • Pradenas, L., Oportus, B., & Parada, V. (2013). Mitigation of greenhouse gas emissions in vehicle routing problems with backhauling. Expert Systems with Applications, 40(8), 2985–2991. https://doi.org/10.1016/j.eswa.2012.12.014.

    Google Scholar 

  • Ramos, A. G., Oliveira, J. F., Gonçalves, J. F., & Lopes, M. P. (2016). A container loading algorithm with static mechanical equilibrium stability constraints. Transportation Research Part B-Methodological, 91, 565–581. https://doi.org/10.1016/j.trb.2016.06.003.

    Google Scholar 

  • Ramos, A. G., Oliveira, J. F., & Lopes, M. P. (2016). A physical packing sequence algorithm for the container loading problem with static mechanical equilibrium conditions. International Transactions in Operational Research, 23(1–2), 215–238. https://doi.org/10.1111/itor.12124.

    Google Scholar 

  • Rardin, R. L. (1997). Optimization in operations research (1st ed.). Upper Saddle: Prentice Hall.

    Google Scholar 

  • Ren, J., Tian, Y., & Sawaragi, T. (2011). A tree search method for the container loading problem with shipment priority. European Journal of Operational Research, 214(3), 526–535. https://doi.org/10.1016/j.ejor.2011.04.025.

    Google Scholar 

  • Respen, J., & Zufferey, N. (2017). Metaheuristics for truck loading in the car production industry. International Transactions in Operational Research, 24(1–2), 277–301. https://doi.org/10.1111/itor.12306.

    Google Scholar 

  • Richardson, B. C. (2005). Sustainable transport: Analysis frameworks. Journal of Transport Geography, 13(1), 29–39. https://doi.org/10.1016/j.jtrangeo.2004.11.005.

    Google Scholar 

  • Riff, M. C., Bonnaire, X., & Neveu, B. (2009). A revision of recent approaches for two-dimensional strip-packing problems. Engineering Applications of Artificial Intelligence, 22(4–5), 833–837. https://doi.org/10.1016/j.engappai.2008.10.025.

    Google Scholar 

  • Ruan, Q., Zhang, Z., Miao, L., & Shen, H. (2013). A hybrid approach for the vehicle routing problem with three-dimensional loading constraints. Computers & Operations Research, 40(6), 1579–1589. https://doi.org/10.1016/j.cor.2011.11.013.

    Google Scholar 

  • Salam, M. A., & Khan, S. A. (2016). Simulation based decision support system for optimization: A case of Thai logistics service provider. Industrial Management & Data Systems, 116(2), 236–254. https://doi.org/10.1108/IMDS-05-2015-0192.

    Google Scholar 

  • Schmid, V., Doerner, K. F., & Laporte, G. (2013). Rich routing problems arising in supply chain management. European Journal of Operational Research, 224(3), 435–448. https://doi.org/10.1016/j.ejor.2012.08.014.

    Google Scholar 

  • Schneider, M., Stenger, A., & Hof, J. (2015). An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectrum, 37(2), 353–387.

    Google Scholar 

  • Schwarze, S. (2016). Pricing strategies for the site-dependent vehicle routing problem. OR Spectrum, 38(1), 137–173. https://doi.org/10.1007/s00291-015-0399-6.

    Google Scholar 

  • Schwarze, S., & Voss, S. (2013). Improved load balancing and resource utilization for the Skill Vehicle Routing Problem. Optimization Letters, 7(8), 1805–1823.

    Google Scholar 

  • Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513–1520. https://doi.org/10.1016/j.dss.2012.05.053.

    Google Scholar 

  • Seuring, S., Müller, M., & Westhaus, M. (2005). Conducting a literature review—The example of sustainability in supply chains. In H. Kotzab, S. Seuring, M. Müller, & G. Reiner (Eds.), Research Methodologies in Supply Chain Management (pp. 92–106). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Sheng, L., Hongxia, Z., Xisong, D., & Changjian, C. (2016). A heuristic algorithm for container loading of pallets with infill boxes. European Journal of Operational Research, 252(3), 728–736. https://doi.org/10.1016/j.ejor.2016.01.025.

    Google Scholar 

  • Sheng, L., Wei, T., Zhiyuan, X., & Xiwei, L. (2014). A tree search algorithm for the container loading problem. Computers & Industrial Engineering, 75, 20–30. https://doi.org/10.1016/j.cie.2014.05.024.

    Google Scholar 

  • Shimizu, Y., Sakaguchi, T., & Yoo, J.-K. (2016). A hybrid method for solving multi-depot VRP with simultaneous pickup and delivery incorporated with Weber basis saving heuristic. Journal of Advanced Mechanical Design Systems and Manufacturing, 10(1), 1–13. https://doi.org/10.1299/jamdsm.2016jamdsm0004.

    Google Scholar 

  • Sicilia, J. A., Quemada, C., Royo, B., & Escuin, D. (2016). An optimization algorithm for solving the rich vehicle routing problem based on Variable Neighborhood Search and Tabu Search metaheuristics. Journal of Computational and Applied Mathematics, 291, 468–477. https://doi.org/10.1016/j.cam.2015.03.050.

    Google Scholar 

  • Sicilia, J. A., Royo, B., Larrode, E., & Fraile, A. (2014). A decision support system for a long-distance routing problem. based on the ant colony optimization metaheuristic. In Transportation: Can we do more with less resources?—16th Meeting of the Euro working group on transportation—Porto 2013 (Vol. 111, pp. 1035–1044). https://doi.org/10.1016/j.sbspro.2014.01.138.

  • Silva, E., Oliveira, J. F., & Wäscher, G. (2016). The pallet loading problem: A review of solution methods and computational experiments. International Transactions in Operational Research, 23(1–2), 147–172. https://doi.org/10.1111/itor.12099.

    Google Scholar 

  • Skorna, A. C. H., & Fleisch, E. (2012). Loss prevention in transportation to ensure product quality: Insights from the cargo insurance sector. IFIP Advances in Information and Communication Technology, 384 AICT, 148–156. https://doi.org/10.1007/978-3-642-33980-6_18.

    Google Scholar 

  • Soysal, M., Bloemhof-Ruwaard, J. M., & Bektas, T. (2015). The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. International Journal of Production Economics, 164, 366–378. https://doi.org/10.1016/j.ijpe.2014.11.016.

    Google Scholar 

  • Tang, J., Guan, J., Yu, Y., & Chen, J. (2014). Beam search combined with MAX–MIN ant systems and benchmarking data tests for weighted vehicle routing problem. IEEE Transactions on Automation Science and Engineering, 11(4), 1097–1109. https://doi.org/10.1109/TASE.2013.2295092.

    Google Scholar 

  • Tang, J., Ma, Y., Guan, J., & Yan, C. (2013). A Max–Min ant system for the split delivery weighted vehicle routing problem. Expert Systems with Applications, 40(18), 7468–7477. https://doi.org/10.1016/j.eswa.2013.06.068.

    Google Scholar 

  • Tang, J., Zhang, J., & Pan, Z. (2010). A scatter search algorithm for solving vehicle routing problem with loading cost. Expert Systems with Applications, 37(6), 4073–4083. https://doi.org/10.1016/j.eswa.2009.11.027.

    Google Scholar 

  • Tao, Y., & Wang, F. (2015). An effective tabu search approach with improved loading algorithms for the 3L-CVRP. Computers & Operations Research, 55, 127–140. https://doi.org/10.1016/j.cor.2013.10.017.

    Google Scholar 

  • Tarantilis, C. D., Zachariadis, E. E., & Kiranoudis, C. T. (2009). A hybrid metaheuristic algorithm for the integrated vehicle routing and three-dimensional container-loading problem. IEEE Transactions on Intelligent Transportation Systems, 10(2), 255–271.

    Google Scholar 

  • Tian, T., Zhu, W., Lim, A., & Wei, L. (2016). The multiple container loading problem with preference. European Journal of Operational Research, 248(1), 84–94. https://doi.org/10.1016/j.ejor.2015.07.002.

    Google Scholar 

  • Tiwari, A., & Chang, P.-C. (2015). A block recombination approach to solve green vehicle routing problem. International Journal of Production Economics, 164, 379–387. https://doi.org/10.1016/j.ijpe.2014.11.003.

    Google Scholar 

  • Todosijevic, R., Hanafi, S., Urosevic, D., Jarboui, B., & Gendron, B. (2017). A general variable neighborhood search for the swap-body vehicle routing problem. Computers & Operations Research, 78, 468–479. https://doi.org/10.1016/j.cor.2016.01.016.

    Google Scholar 

  • Toffolo, T. A. M., Esprit, E., Wauters, T., & Berghe, G. Vanden. (2017). A two-dimensional heuristic decomposition approach to a three-dimensional multiple container loading problem. European Journal of Operational Research, 257(2), 526–538. https://doi.org/10.1016/j.ejor.2016.07.033.

    Google Scholar 

  • Tol, R. S. J. (2005). The marginal damage costs of carbon dioxide emissions: An assessment of the uncertainties. Energy Policy, 33(16), 2064–2074. https://doi.org/10.1016/j.enpol.2004.04.002.

    Google Scholar 

  • Tricoire, F., Doerner, K. F., Hartl, R. F., & Iori, M. (2011). Heuristic and exact algorithms for the multi-pile vehicle routing problem. OR Spectrum, 33(4), 931–959.

    Google Scholar 

  • Trivella, A., & Pisinger, D. (2016). The load-balanced multi-dimensional bin-packing problem. Computers & Operations Research, 74, 152–164. https://doi.org/10.1016/j.cor.2016.04.020.

    Google Scholar 

  • Tsai, J.-F., & Li, H. L. (2006). A global optimization method for packing problems. Engineering Optimization, 38(6), 687–700.

    Google Scholar 

  • Tsai, J.-F., Wang, P.-C., & Lin, M.-H. (2015). A global optimization approach for solving three-dimensional open dimension rectangular packing problems. Optimization, 64(12), 2601–2618. https://doi.org/10.1080/02331934.2013.877906.

    Google Scholar 

  • Tsao, Y.-C., & Lu, J.-C. (2012). A supply chain network design considering transportation cost discounts. Transportation Research Part E: Logistics and Transportation Review, 48(2), 401–414. https://doi.org/10.1016/j.tre.2011.10.004.

    Google Scholar 

  • Tzur, M., & Drezner, E. (2011). A lookahead partitioning heuristic for a new assignment and scheduling problem in a distribution system. European Journal of Operational Research, 215(2), 325–336. https://doi.org/10.1016/j.ejor.2011.06.013.

    Google Scholar 

  • Ubeda, S., Arcelus, F. J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131(1), 44–51. https://doi.org/10.1016/j.ijpe.2010.04.041.

    Google Scholar 

  • Vargas-Osorio, S., & Zuniga, C. (2016). A literature review on the pallet loading problem. Revista Digital Lampsakos, 15, 69–80. https://doi.org/10.21501/21454086.1790.

  • Veenstra, M., Roodbergen, K. J., Vis, I. F. A., & Coelho, L. C. (2017). The pickup and delivery traveling salesman problem with handling costs. European Journal of Operational Research, 257(1), 118–132. https://doi.org/10.1016/j.ejor.2016.07.009.

    Google Scholar 

  • Wang, L., Zhang, H., Xiong, Y., & Li, D. (2010). Ant colony optimization algorithm based on space division for container loading problem. In 2010 Chinese control and decision conference, Vols 1–5 (p. 3448–+). https://doi.org/10.1109/CCDC.2010.5498563.

  • Wang, Y., Ma, X., Li, Z., Liu, Y., Xu, M., & Wang, Y. (2017). Profit distribution in collaborative multiple centers vehicle routing problem. Journal of Cleaner Production, 144, 203–219. https://doi.org/10.1016/j.jclepro.2017.01.001.

    Google Scholar 

  • Wang, Z., Li, K. W., & Levy, J. K. (2008). A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach. European Journal of Operational Research, 191(1), 86–99.

    Google Scholar 

  • Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047.

    Google Scholar 

  • Wei, L., & Lim, A. (2015). A bidirectional building approach for the 2D constrained guillotine knapsack packing problem. European Journal of Operational Research, 242(1), 63–71. https://doi.org/10.1016/j.ejor.2014.10.004.

    Google Scholar 

  • Wei, L., Oon, W.-C., Zhu, W., & Lim, A. (2012). A reference length approach for the 3D strip packing problem. European Journal of Operational Research, 220(1), 37–47. https://doi.org/10.1016/j.ejor.2012.01.039.

    Google Scholar 

  • Wei, L., Tian, T., Zhu, W., & Lim, A. (2014). A block-based layer building approach for the 2D guillotine strip packing problem. European Journal of Operational Research, 239(1), 58–69. https://doi.org/10.1016/j.ejor.2014.04.020.

    Google Scholar 

  • Wei, L., Zhang, Z., & Lim, A. (2014). An adaptive variable neighborhood search for a heterogeneous fleet vehicle routing problem with three-dimensional loading constraints. IEEE Computational Intelligence Magazine, 9(4), 18–30.

    Google Scholar 

  • Wei, L., Zhang, Z., Zhang, D., & Lim, A. (2015). A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints. European Journal of Operational Research, 243(3), 798–814. https://doi.org/10.1016/j.ejor.2014.12.048.

    Google Scholar 

  • Wei, L., Zhu, W., & Lim, A. (2015). A goal-driven prototype column generation strategy for the multiple container loading cost minimization problem. European Journal of Operational Research, 241(1), 39–49. https://doi.org/10.1016/j.ejor.2014.08.015.

    Google Scholar 

  • Wu, K. C., & Ting, C. J. (2007). A two-phase algorithm for the manufacturer’s pallet loading problem. 2007 IEEE International Conference on Industrial Engineering and Engineering Management, 1–4, 1574–1578. https://doi.org/10.1109/IEEM.2007.4419457.

    Google Scholar 

  • Wu, W., Tian, Y., & Jind, T. (2016). A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul. Applied Soft Computing, 47, 224–234. https://doi.org/10.1016/j.asoc.2016.05.011.

    Google Scholar 

  • Wu, Y., Li, W., Goh, M., & de Souza, R. (2010). Three-dimensional bin packing problem with variable bin height. European Journal of Operational Research, 202(2), 347–355. https://doi.org/10.1016/j.ejor.2009.05.040.

    Google Scholar 

  • Xiao, Y., & Konak, A. (2016). The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transportation Research Part E-Logistics and Transportation Review, 88, 146–166. https://doi.org/10.1016/j.tre.2016.01.011.

    Google Scholar 

  • Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), 1419–1431. https://doi.org/10.1016/j.cor.2011.08.013.

    Google Scholar 

  • Xu, H., Chen, Z.-L., Rajagopal, S., & Arunapuram, S. (2003). Solving a practical pickup and delivery problem. Transportation Science, 37(3), 347–364.

    Google Scholar 

  • Yang, B., Hu, Z.-H., Wei, C., Li, S.-Q., Zhao, L., & Jia, S. (2015). Routing with time-windows for multiple environmental vehicle types. Computers & Industrial Engineering, 89, 150–161. https://doi.org/10.1016/j.cie.2015.02.001.

    Google Scholar 

  • Yang, H., Yang, S., Xu, Y., Cao, E., Lai, M., & Dong, Z. (2015). Electric vehicle route optimization considering time-of-use electricity price by learnable partheno-genetic algorithm. IEEE Transactions on Smart Grid, 6(2), 657–666. https://doi.org/10.1109/TSG.2014.2382684.

    Google Scholar 

  • Yeung, L. H. W., & Tang, W. K. S. (2005). A hybrid genetic approach for container loading in logistics industry. IEEE Transactions on Industrial Electronics, 52(2), 617–627. https://doi.org/10.1109/TIE.2005.844224.

    Google Scholar 

  • Yi, J., Chen, X.-G., & Zhou, J. (2009). The pinwheel pattern and its application to the manufacturer’s pallet-loading problem. International Transactions in Operational Research, 16(6), 809–828.

    Google Scholar 

  • Yin, P. Y., & Chuang, Y. L. (2016). Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking. Applied Mathematical Modelling, 40, 9302–9315. https://doi.org/10.1016/j.apm.2016.06.013.

    Google Scholar 

  • Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints. European Journal of Operational Research, 195(3), 729–743. https://doi.org/10.1016/j.ejor.2007.05.058.

    Google Scholar 

  • Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2013a). Designing vehicle routes for a mix of different request types, under time windows and loading constraints. European Journal of Operational Research, 229(2), 303–317. https://doi.org/10.1016/j.ejor.2013.02.056.

    Google Scholar 

  • Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2013b). Integrated distribution and loading planning via a compact metaheuristic algorithm. European Journal of Operational Research, 228(1), 56–71. https://doi.org/10.1016/j.ejor.2013.01.040.

    Google Scholar 

  • Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2015). The load-dependent vehicle routing problem and its pick-up and delivery extension. Transportation Research Part B: Methodological, 71, 158–181. https://doi.org/10.1016/j.trb.2014.11.004.

    Google Scholar 

  • Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2016). The vehicle routing problem with simultaneous pick-ups and deliveries and two-dimensional loading constraints. European Journal of Operational Research, 251(2), 369–386. https://doi.org/10.1016/j.ejor.2015.11.018.

    Google Scholar 

  • Zhang, D., Cai, S., Ye, F., Si, Y.-W., & Nguyen, T. T. (2017). A hybrid algorithm for a vehicle routing problem with realistic constraints. Information Sciences, 394, 167–182. https://doi.org/10.1016/j.ins.2017.02.028.

    Google Scholar 

  • Zhang, D., Peng, Y., & Leung, S. C. H. (2012). A heuristic block-loading algorithm based on multi-layer search for the container loading problem. Computers & Operations Research, 39(10), 2267–2276. https://doi.org/10.1016/j.cor.2011.10.019.

    Google Scholar 

  • Zhang, J., Lam, W. H. K., & Chen, B. Y. (2016). On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. European Journal of Operational Research, 249(1), 144–154. https://doi.org/10.1016/j.ejor.2015.08.050.

    Google Scholar 

  • Zhang, Q., Shah, N., Wassick, J., Helling, R., & van Egerschot, P. (2014). Sustainable supply chain optimisation: An industrial case study. Computers & Industrial Engineering, 74, 68–83. https://doi.org/10.1016/j.cie.2014.05.002.

    Google Scholar 

  • Zhang, R., Yun, W. Y., & Kopfer, H. (2010). Heuristic-based truck scheduling for inland container transportation. OR Spectrum, 32(3), 787–808.

    Google Scholar 

  • Zhang, Y., & Chen, X. D. (2014). An optimization model for the vehicle routing problem in multi-product frozen food delivery. Journal of Applied Research and Technology, 12(2), 239–250. https://doi.org/10.1016/S1665-6423(14)72340-5.

    Google Scholar 

  • Zhang, Z., Wei, L., & Lim, A. (2015). An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints. Transportation Research Part B-Methodological, 82, 20–35. https://doi.org/10.1016/j.trb.2015.10.001.

    Google Scholar 

  • Zhao, X., Bennell, J. A., Bektaş, T., & Dowsland, K. (2016). A comparative review of 3D container loading algorithms. International Transactions in Operational Research, 23(1–2), 287–320. https://doi.org/10.1111/itor.12094.

    Google Scholar 

  • Zheng, J.-N., Chien, C.-F., & Gen, M. (2015). Multi-objective multi-population biased random-key genetic algorithm for the 3-D container loading problem. Computers & Industrial Engineering, 89, 80–87. https://doi.org/10.1016/j.cie.2014.07.012.

    Google Scholar 

  • Zhu, W., Huang, W., & Lim, A. (2012). A prototype column generation strategy for the multiple container loading problem. European Journal of Operational Research, 223(1), 27–39. https://doi.org/10.1016/j.ejor.2012.05.039.

    Google Scholar 

  • Zhu, W., & Lim, A. (2012). A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem. European Journal of Operational Research, 222(3), 408–417. https://doi.org/10.1016/j.ejor.2012.04.036.

    Google Scholar 

  • Zhu, W., Oon, W.-C., Lim, A., & Weng, Y. (2012). The six elements to block-building approaches for the single container loading problem. Applied Intelligence, 37(3), 431–445.

    Google Scholar 

  • Zhu, W., Qin, H., Lim, A., & Wang, L. (2012). A two-stage tabu search algorithm with enhanced packing heuristics for the 3L-CVRP and M3L-CVRP. Computers & Operations Research, 39(9), 2178–2195. https://doi.org/10.1016/j.cor.2011.11.001.

    Google Scholar 

  • Zhu, W., Zhang, Z., Oon, W.-C., & Lim, A. (2012). Space defragmentation for packing problems. European Journal of Operational Research, 222(3), 452–463. https://doi.org/10.1016/j.ejor.2012.05.031.

    Google Scholar 

  • Zuniga, C., Piera, M. A., & Narciso, M. (2011). Revisiting the pallet loading problem using a discrete event system approach to minimise logistic costs. International Journal of Production Research, 49(8), 2243–2264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo R. Montoya-Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Mejía, C.A., Montoya-Torres, J.R. & Islam, S.M.N. Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review. Ann Oper Res 273, 311–375 (2019). https://doi.org/10.1007/s10479-017-2723-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2723-9

Keywords

Navigation