Skip to main content
Log in

Computing multiobjective Markov chains handled by the extraproximal method

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper suggests a new method for generating the Pareto front in multi-objective Markov chains, which overcomes some existing drawbacks in multi-objective methods: a fundamental issue is to find strong Pareto policies which are policies whose cost-function value is the closest in Euclidean norm to the utopian point. Each strong Pareto policy is reached when each cost-function, constrained by the strategy of others, cannot improve further its own criterion. Constraints associated to the objective function are implemented formulating the problem as a bi-level optimization approach. We convert the problem into a single level optimization approach by introducing a generalized Lagrangian function to represent the original multi-objective problem in terms of a related nonlinear programming problem. Then, we apply the Tikhonov regularization method to the objective function. The regularization method ensures that all the possible Pareto policies to be generated along the Pareto front are strong Pareto policies. For solving the problem we employ the extra-proximal method. The method effectively approximates to every optimal Pareto point, which in this case is a strong Pareto point, in the Pareto front. The experimental result, applied to the route selection for counter-kidnapping problem, validates the effectiveness and usefulness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aiyoshi, E., & Shimizu, K. (1981). Hierarchical decentralized systems and its new solution by abarrier method. IEEE Transactions on Systems, Man, and Cybernetics, 11, 444–449.

    Article  Google Scholar 

  • Alves, M. J., & Clímaco, J. (2007). A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research, 180(1), 99–115.

    Article  Google Scholar 

  • Antipin, A. S. (2005). An extraproximal method for solving equilibrium programming problems and games. Computational Mathematics and Mathematical Physics, 45(11), 1893–1914.

    Google Scholar 

  • Bard, J., & Falk, J. (1982). An explicit solution to the multi-level programming problem. Computers & Operations Research, 9, 77–100.

    Article  Google Scholar 

  • Barrett, L., & Narayanan, S. (2008) Learning all optimal policies with multiple criteria. In Proceedings of the 25th international conference on machine learning (ICML ’08), Helsinki, Finland, pp. 41–47

  • Beltrami, E., Katehakis, M., & Durinovic, S. (1985). Multiobjective markov decisions in urban modelling. Mathematical Modelling, 6, 333–338.

    Article  Google Scholar 

  • Benayoun, R., De Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming with multiple objective functions: Step method (stem). Mathematical Programming, 1, 366–375.

    Article  Google Scholar 

  • Bianco, L., Caramia, M., & Giordani, S. (2009). A bilevel flow model for hazmat transportation network design. Transportation Research Part C: Emerging Technologies, 17(2), 175–196.

    Article  Google Scholar 

  • Chang, Y. (2015). A leader-follower partially observed, multiobjective markov game. Annals of Operations Research, 235(1), 103–128.

    Article  Google Scholar 

  • Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. (2012). Comparison of multi-objective optimization methodologies for engineering applications. Computers & Mathematics with Applications, 63, 912–942.

    Article  Google Scholar 

  • Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154, 29–50.

    Article  Google Scholar 

  • Clempner, J. B. (2016). Necessary and sufficient Karush–Kuhn–Tucker conditions for multiobjective markov chains optimality. Automatica, 71, 135–142.

    Article  Google Scholar 

  • Clempner, J. B., & Poznyak, A. S. (2014). Simple computing of the customer lifetime value: A fixed local-optimal policy approach. Journal of Systems Science and Systems Engineering, 23(4), 439–459.

    Article  Google Scholar 

  • Clempner, J. B., & Poznyak, A. S. (2015). Stackelberg security games: Computing the shortest-path equilibrium. Expert Systems with Applications, 42(8), 3967–3979.

    Article  Google Scholar 

  • Clempner, J. B., & Poznyak, A. S. (2016). Solving the pareto front for nonlinear multiobjective Markov chains using the minimum Euclidean distance optimization method. Mathematics and Computers in Simulation, 119, 142–160.

    Article  Google Scholar 

  • Clempner, J. B., & Poznyak, A. S. (2017). Multiobjective markov chains optimization problem with strong pareto frontier: Principles of decision making. Expert Systems With Applications, 68, 123–135.

    Article  Google Scholar 

  • Clempner, J. B., & Poznyak, A. S. (2018). A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems. Engineering Optimization. https://doi.org/10.1080/0305215X.2017.1418866 (To be published).

    Article  Google Scholar 

  • Das, I., & Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multi-criteria optimization problems. Structural and Multidisciplinary Optimization, 14, 63–69.

    Article  Google Scholar 

  • Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: An alternate approach for generating Pareto-optimal points in multicriteria optimization problems. SIAM Journal on Optimization, 8, 631–657.

    Article  Google Scholar 

  • Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7, 205–230.

    Article  Google Scholar 

  • Deb, K. (2001). Nonlinear goal programming using multi-objective genetic algorithms. Journal of the Operational Research Society, 52, 291–302.

    Article  Google Scholar 

  • Dempe, S. (2001). Discrete bilevel optimization problems. Technical report, Institut fur Wirtschaftsinformatik, Universitat Leipzig, Leipzig, Germany.

  • DeNegre, S., & Ralphs, T. (2009). A branch-and-cut algorithm for integer bilevel linear programs. Operations Research and Cyber-Infrastructure, 47, 65–78.

    Article  Google Scholar 

  • Eichfelder, G. (2008). Adaptive scalarization methods in multiobjective optimization. Berlin: Springer.

    Book  Google Scholar 

  • Fampa, M., Barroso, L., Candal, D., & Simonetti, L. (2008). Bilevel optimization applied to strategic pricing in competitive electricity markets. Computational Optimization and Applications, 39(2), 121–142.

    Article  Google Scholar 

  • Fliege, J., & Heseler, A. (2003). Constructing approximations to the efficient set of convex quadratic multi-objective problems. Tech. rep.: University of Dortmund, Germany.

  • Fu, Y., & Diwekar, U. M. (2004). An efficient sampling approach to multiobjective optimization. Annals of Operations Research, 132(1–4), 109–134.

    Article  Google Scholar 

  • Herskovits, J., Leontiev, A., Das, G., & Santos, G. (2000). Contact shape optimization: A bilevel programming approach. Structural and Multidisciplinary Optimization, 20, 214–221.

    Article  Google Scholar 

  • Hwang, C., & Masud, A. (1979). Multiple objective decision making, methods and applications: A state-of-the art survey. Berlin: Springer.

    Book  Google Scholar 

  • Kim, I., & de Weck, O. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29, 149–158.

    Article  Google Scholar 

  • Koppe, M., Queyranne, M., & Ryan, C. T. (2009). A parametric integer programming algorithm for bilevel mixed integer programs. Journal of Optimization Theory and Applications, 146(1), 137–150.

    Article  Google Scholar 

  • Lau, H. C., Yuan, Z., & Gunawan, A. (2016). Patrol scheduling in urban rail network. Annals of Operations Research, 239(1), 317–342.

    Article  Google Scholar 

  • Leigh, J., Dunnett, S., & Jackson, L. (2017). Predictive police patrolling to target hotspots and cover response demand. Annals of Operations Research,. https://doi.org/10.1007/s10479-017-2528-x.

    Article  Google Scholar 

  • Li, K., Kwong, S., Zhang, Q., & Deb, K. (2015). Interrelationship-based selection for decomposition multiobjective optimization. IEEE Transactions on Cybernetics, 45(10), 2076–2088.

    Article  Google Scholar 

  • Naoum-Sawaya, J., & Elhedhli, S. (2011). Controlled predatory pricing in a multiperiod stackelberg game: An MPEC approach. Journal of Global Optimization, 50, 345–362.

    Article  Google Scholar 

  • Pirotta, M., Parisi, S., & Restelli, M. (2015) Multi-objective reinforcement learning with continuous Pareto frontier approximation. In Proceedings of the twenty-ninth AAAI conference on artificial intelligence.

  • Poznyak, A. S., Najim, K., & Gomez-Ramirez, E. (2000). Self-learning control of finite Markov chains. New York: Marcel Dekker.

    Book  Google Scholar 

  • Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113.

    Article  Google Scholar 

  • Salmeron, J., Wood, K., & Baldick, R. (2004). Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems, 19(2), 905–912.

    Article  Google Scholar 

  • Salukvadze, M. E. (1979). Vector-valued optimization problems in control theory. New York: Academic Press.

    Google Scholar 

  • Schittkowski, K. (1999). Easy-opt: An interactive optimization system with automatic differentiation—User’s guide. Tech. rep.: Department of Mathematics, University of Bayreuth.

  • Sheng, W., Liu, Y., Meng, X., & Zhang, T. (2012). An improved strength pareto evolutionary algorithm 2 with application to the optimization of distributed generations. Computers & Mathematics with Applications, 64(5), 944–955.

    Article  Google Scholar 

  • Steuer, R. E. (1989). The Tchebyche procedure of interactive multiple objective programming. In Multiple criteria decision making and risk analysis using microcomputers (pp. 235–249). Springer, Berlin.

    Chapter  Google Scholar 

  • Tanaka, K. (1989). The closest solution to the shadow minimum of a cooperative dynamic game. Computers & Mathematics with Applications, 18(1–3), 181–188.

    Article  Google Scholar 

  • Tanaka, K., & Yokoyama, K. (1991). On \(\epsilon \)-equilibrium point in a noncooperative n-person game. Journal of Mathematical Analysis and Applications, 160, 413–423.

    Article  Google Scholar 

  • Tappeta, R., & Renaud, J. (1999). Interactive multiobjective optimization procedure. AIAA Journal, 37(7), 881–889.

    Article  Google Scholar 

  • Tind, J., & Wiecek, M. M. (1999). Augmented lagrangian and tchebycheff approaches in multiple objective programming. Journal of Global Optimization, 14, 251–266.

    Article  Google Scholar 

  • Trejo, K. K., Clempner, J. B., & Poznyak, A. S. (2015a). Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games. International Journal of Applied Mathematics and Computer Science, 25(2), 337–351.

    Article  Google Scholar 

  • Trejo, K. K., Clempner, J. B., & Poznyak, A. S. (2015b). A Stackelberg security game with random strategies based on the extraproximal theoretic approach. Engineering Applications of Artificial Intelligence, 37, 145–153.

    Article  Google Scholar 

  • Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009) Constructing stochastic mixture policies for episodic multiobjective reinforcement learning task. In Lecture Notes in Computer Science: Advances in artificial intelligence (Vol. 5866, pp. 340–349). Berlin: Springer.

    Chapter  Google Scholar 

  • Wakuta, K., & Togawa, K. (1998). Solution procedures for multi-objective Markov decision processes. Optimization, 43, 29–46.

    Article  Google Scholar 

  • Wierzbicki, P. (1980). Multiple criteria decision making theory and applications (pp. 468–486). Berlin: Springer.

    Book  Google Scholar 

  • Xia, H., Zhuang, J., & Yu, D. (2014). Multi-objective unsupervised feature selection algorithm utilizing redundancy measure and negative epsilon-dominance for fault diagnosis. Neurocomputing, 146, 113–124.

    Article  Google Scholar 

  • Xinjie, Y., & Mitsuo, G. (2010). Introduction to evolutionary algorithms. London: Springer.

    Google Scholar 

  • Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60.

    Article  Google Scholar 

  • Zitzler, E., Knowles, J., & Thiele, L. (2008). Quality assessment of Pareto set approximations. In Lecture Notes in Computer Science: Multiobjective optimization (Vol. 5252, pp. 373–404). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio B. Clempner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clempner, J.B. Computing multiobjective Markov chains handled by the extraproximal method. Ann Oper Res 271, 469–486 (2018). https://doi.org/10.1007/s10479-018-2755-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2755-9

Keywords

Navigation