Skip to main content
Log in

Interval cross efficiency for fully ranking decision making units using DEA/AHP approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An, M., Chen, Y., & Baker, C. J. (2011). A fuzzy reasoning and fuzzy-analytical hierarchy process based approach to the process of railway risk information: A railway risk management system. Information Sciences, 181(18), 3946–3966.

    Article  Google Scholar 

  • An, Q., Chen, H., Xiong, B., Wu, J., & Liang, L. (2016). Target intermediate products setting in a two-stage system with fairness concern. Omega, https://doi.org/10.1016/j.omega.2016.12.005.

    Article  Google Scholar 

  • An, Q., Wen, Y., Xiong, B., Yang, M., & Chen, X. (2017). Allocation of carbon dioxide emission permits with the minimum cost for Chinese provinces in big data environment. Journal of Cleaner Production, 142, 886–893.

    Article  Google Scholar 

  • Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.

    Article  Google Scholar 

  • Bardhan, I., Bowlin, W. F., Cooper, W. W., & Sueyoshi, T. (1996). Models for efficiency dominance in data envelopment analysis, Part I: Additive models and MED measures. Journal of the Operations Research Society of Japan, 39(3), 322–332.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 67–88.

    Google Scholar 

  • Chang, S. Y., & Chen, T. H. (2008). Performance ranking of Asian lead frame firms: A slack-based method in data envelopment analysis. International Journal of Production Research, 46(14), 3875–3885.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Chen, H. (2017). Average lexicographic efficiency for data envelopment analysis. Omega, https://doi.org/10.1016/j.omega.2017.01.008.

    Article  Google Scholar 

  • Chen, Y., Wang, J., Zhu, J., Sherman, H. D., & Chou, S. Y. (2017). How the Great Recession affects performance: A case of Pennsylvania hospitals using DEA. Annals of Operations Research, https://doi.org/10.1007/s10479-017-2516-1.

  • Chitnis, A., & Vaidya, O. S. (2016). Efficiency ranking method using DEA and TOPSIS (ERM-DT): Case of an Indian bank. Benchmarking: An International Journal, 23(1), 165–182.

    Article  Google Scholar 

  • Chu, J. F., Wu, J., & Song, M. L. (2016). An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: A transportation system application. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2264-7.

    Article  Google Scholar 

  • Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)—Thirty years on. European Journal of Operational Research, 192(1), 1–17.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2014). DEA Cobb–Douglas frontier and cross-efficiency. Journal of the Operational Research Society, 65, 265–268.

    Article  Google Scholar 

  • Doyle, J. R., & Green, R. H. (1994). Efficiency and cross efficiency in DEA: Derivations, meanings and the uses. Journal of the Operational Research Society, 45(5), 567–578.

    Article  Google Scholar 

  • Dyer, J. S. (1990). Remarks on the analytic hierarchy process. Management Science, 36(3), 249–258.

    Article  Google Scholar 

  • Dyson, R. G., & Thannassoulis, E. (1988). Reducing weight flexibility in data envelopment analysis. Journal of Operational Research Society, 39, 563–576.

    Article  Google Scholar 

  • Esmaeilzadeh, A., & Hadi-Vencheh, A. (2015). A new method for complete ranking of DMUs. Optimization, 64(5), 1177–1193.

    Article  Google Scholar 

  • Falsini, D., Fondi, F., & Schiraldi, M. M. (2012). A logistics provider evaluation and selection methodology based on AHP, DEA and linear programming integration. International Journal of Production Research, 50(17), 4822–4829.

    Article  Google Scholar 

  • Fang, H. H., Lee, H. S., Hwang, S. N., & Chung, C. C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega, 41(4), 731–734.

    Article  Google Scholar 

  • García, J. M. T., Moral, M. J. D., Martínez, M. A., & Herrera-Viedma, E. (2012). A consensus model for group decision making problems with linguistic interval fuzzy preference relations. Expert Systems with Applications, 39(11), 10022–10030.

    Article  Google Scholar 

  • Gocht, A., & Balcombe, K. (2006). Ranking efficiency units in DEA using bootstrapping an applied analysis for Slovenian farm data. Agricultural Economics, 35(2), 223–229.

    Article  Google Scholar 

  • Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems, 78, 73–87.

    Article  Google Scholar 

  • Hu, M. M., Ren, P. Y., Lan, J. B., Wang, J., & Zheng, W. M. (2014). Note on “Some models for deriving the priority weights from interval fuzzy preference relations”. European Journal of Operational Research, 237, 771–773.

    Article  Google Scholar 

  • Jahanshahloo, G. R., & Afzalinejad, M. (2006). A ranking method based on a full-inefficient frontier. Applied Mathematical Modelling, 30(3), 248–260.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Khodabakhshi, M., Lotfi, F. H., & Goudarzi, M. M. (2011). A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case. Mathematical and Computer Modelling, 53(9), 1946–1955.

    Article  Google Scholar 

  • Karray, F., & De Silva, C. W. (2004). Soft computing and intelligent systems design: Theory, tools and applications. London: Pearson Education.

    Google Scholar 

  • Korpela, J., Lehmusvaara, A., & Nisonen, J. (2007). Warehouse operator selection by combining AHP and DEA methodologies. International Journal of Production Economics, 108, 135–142.

    Article  Google Scholar 

  • Kritikos, M. N. (2017). A full ranking methodology in data envelopment analysis based on a set of dummy decision making units. Expert Systems with Applications, 77, 211–225.

    Article  Google Scholar 

  • Lai, P. L., Potter, A., Beynon, M., & Beresford, A. (2015). Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique. Transport Policy, 42, 75–85.

    Article  Google Scholar 

  • Lei, X., Li, Y., Xie, Q., & Liang, L. (2015). Measuring Olympics achievements based on a parallel DEA approach. Annals of Operations Research, 226(1), 379–396.

    Article  Google Scholar 

  • Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and its Nash equilibrium. Operations Research, 56(5), 1278–1288.

    Article  Google Scholar 

  • Liu, F. (2009). Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets and Systems, 160(18), 2686–2700.

    Article  Google Scholar 

  • Meng, F., & Tan, C. (2017). A new consistency concept for interval multiplicative preference relations. Applied Soft Computing, 52, 262–276.

    Article  Google Scholar 

  • Meng, F. Y., An, Q. X., Tan, C. Q., & Chen, X. H. (2017a). An approach for group decision making with interval fuzzy preference relations based on additive consistency and consensus analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 2069–2082.

    Article  Google Scholar 

  • Meng, F. Y., Lin, J., Tan, C. Q., & Zhang, Q. (2017b). A new multiplicative consistency based method for decision making with triangular fuzzy reciprocal preference relations. Fuzzy Sets and Systems, 315, 1–25.

    Article  Google Scholar 

  • Meng, F. Y., Tan, C. Q., & Chen, X. H. (2017c). Multiplicative consistency analysis for interval reciprocal preference relations: A comparative study. Omega, 68, 17–38.

    Article  Google Scholar 

  • Meng, F. Y., Zeng, X. L., & Li, Z. Y. (2007). Research the priority methods of interval numbers complementary judgment matrix. International Conference on Grey System and Intelligent Services, 1, 42–47.

    Google Scholar 

  • Mirhedayatian, S. M., & Saen, R. F. (2011). A new approach for weight derivation using data envelopment analysis in the analytic hierarchy process. Journal of the Operational Research Society, 62(8), 1585–1595.

    Article  Google Scholar 

  • Petridis, K., Chatzigeorgiou, A., & Stiakakis, E. (2016). A spatiotemporal Data Envelopment Analysis (ST DEA) approach: The need to assess evolving units. Annals of Operations Research, 238(1–2), 475–496.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (1987). Uncertainty and rank order in the analytic hierarchy process. European Journal of Operational Research, 32, 107–117.

    Article  Google Scholar 

  • Sadjadi, S. J., Omrani, H., Abdollahzadeh, S., Alinaghian, M., & Mohammadi, H. (2011). A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran. Expert Systems with Applications, 38(9), 10875–10881.

    Article  Google Scholar 

  • Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. In R. H. Silkman (Ed.), Measuring efficiency: An assessment of data envelopment analysis (No. 32) (pp. 73–105). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Shang, J., & Sueyoshi, T. (1995). A unified framework for the selection of a flexible manufacturing system. European Journal of Operational Research, 85, 297–315.

    Article  Google Scholar 

  • Sinuany-Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7, 109–124.

    Article  Google Scholar 

  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.

    Article  Google Scholar 

  • Torgersen, A. M., Forsund, F. R., & Kittelsen, S. A. C. (1996). Slack-adjusted efficiency measures and ranking of efficient units. The Journal of Productivity Analysis, 7(4), 379–398.

    Article  Google Scholar 

  • Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11, 229–241.

    Article  Google Scholar 

  • Wang, T. C., & Chen, Y. H. (2008). Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178, 3755–3765.

    Article  Google Scholar 

  • Wang, Y. M., & Chin, K. S. (2010). A neutral DEA model for cross-efficiency evaluation and its extension. Expert Systems with Applications, 37(5), 3666–3675.

    Article  Google Scholar 

  • Wang, Y. M., Liu, J., & Elhag, T. M. S. (2008). An integrated AHP-DEA methodology for bridge risk assessment. Computers & Industrial Engineering, 54, 513–525.

    Article  Google Scholar 

  • Wang, Y. M., Yang, J. B., & Xu, D. L. (2005). Interval weight generation approaches based on consistency test and interval comparison matrices. Applied Mathematics and Computation, 167, 252–273.

    Article  Google Scholar 

  • Wang, Z. J. (2015). A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”. European Journal of Operational Research, 247, 867–871.

    Article  Google Scholar 

  • Wei, Y. Q., Liu, J. S., & Wang, X. Z. (1994). Concept of consistence and weights of the judgement matrix in the uncertain type of AHP. Systems Engineering Theory & Practice, 14(1), 16–22.

    Google Scholar 

  • Winkler, R. L. (1990). Decision modeling and rational choice: AHP and utility theory. Management Science, 36(3), 247–248.

    Article  Google Scholar 

  • Wong, Y. H. B., & Beasley, J. E. (1990). Restricting weight flexibility in data envelopment analysis. Journal of the Operational Research Society, 41, 829–835.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Chen, Y. (2009). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909–918.

    Article  Google Scholar 

  • Wu, J., Sun, J. S., & Liang, L. (2012). DEA cross-efficiency aggregation method based upon Shannon entropy. International Journal of Production Research, 50(23), 6726–6736.

    Article  Google Scholar 

  • Wu, J., Xiong, B., An, Q., Sun, J., & Wu, H. (2015). Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs. Annals of Operations Research, https://doi.org/10.1007/s10479-015-1938-x.

    Article  Google Scholar 

  • Wu, J., Yu, Y., Zhu, Q., An, Q., & Liang, L. (2017). Closest target for the orientation-free context-dependent DEA under variable returns to scale. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2017.1409865.

  • Xia, M. M., & Xu, Z. S. (2014). Interval weight generation approaches for reciprocal relations. Applied Mathematics Modelling, 38, 828–838.

    Article  Google Scholar 

  • Xu, Z., & Yager, R. R. (2009). Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group. Fuzzy Optimization and Decision Making, 8(2), 123–139.

    Article  Google Scholar 

  • Yan, H. B., & Ma, T. J. (2015). A group decision making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority. European Journal of Operational Research, 241(3), 815–829.

    Article  Google Scholar 

  • Yang, T., & Kuo, C. W. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147, 128–136.

    Article  Google Scholar 

  • Yoo, H. (2003). A study on the efficiency evaluation problem of total quality management activities in Korean companies. The Total Quality Management, 14(1), 119–128.

    Article  Google Scholar 

  • Yousefi, S., Shabanpour, H., Fisher, R., & Saen, R. F. (2016). Evaluating and ranking sustainable suppliers by robust dynamic data envelopment analysis. Measurement, 83, 72–85.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grants (No. 71501189, 71571192), Natural Science Foundation of Hunan Province (2017JJ3397), the open project of “Mobile Health” Ministry of Education-China Mobile Joint Laboratory of Central South University, the China Postdoctoral Science Special Foundation (2015T80901), the State Key Program of National Natural Science of China (No. 71631008), Major Project for National Natural Science Foundation of China (71790615), and the China Postdoctoral Science Foundation (2014M560655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Q., Meng, F. & Xiong, B. Interval cross efficiency for fully ranking decision making units using DEA/AHP approach. Ann Oper Res 271, 297–317 (2018). https://doi.org/10.1007/s10479-018-2766-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2766-6

Keywords

Navigation