Skip to main content

Advertisement

Log in

An overview of MINLP algorithms and their implementation in Muriqui Optimizer

  • S.I.: CLAIO 2016
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present an overview of the main algorithms in the literature for convex mixed integer nonlinear programming and discuss aspects of their implementation in a new open source computational package called Muriqui Optimizer. We provide extensive computational results comparing the implementations of all approaches considered on a set of 343 benchmark test problems. Finally, we present to the technical and scientific community the new software Muriqui Optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berthold, T. (2014). Rens. Mathematical Programming Computation, 6(1), 33–54.

    Article  Google Scholar 

  • Bonami, P., Kilinç, M., & Linderoth, J. 2009). Algorithms and software for convex mixed integer nonlinear programs. Technical Report 1664, Computer Sciences Department, University of Wisconsin-Madison.

  • Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., et al. (2008). An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2), 186–204.

    Article  Google Scholar 

  • Bonami, P., Cornuéjols, G., Lodi, A., & Margot, F. (2009). A feasibility pump for mixed integer nonlinear programs. Mathematical Programming, 119, 331–352. https://doi.org/10.1007/s10107-008-0212-2.

    Article  Google Scholar 

  • Bonami, P., & Gonçalves, J. P. (2008). Heuristics for convex mixed integer nonlinear programs. Computational Optimization and Applications,. https://doi.org/10.1007/s10589-010-9350-6.

    Article  Google Scholar 

  • Bonami, P., Lee, J., Leyffer, S., & Wächter, A. (2013). On branching rules for convex mixed-integer nonlinear optimization. Journal of Experimental Algorithmics, 18, 2.6:2.1–2.6:2.31.

  • Borchers, B., & Mitchell, J. E. (1994). An improved branch and bound algorithm for mixed integer nonlinear programs. Computers & Operations Research, 21, 359–367.

    Article  Google Scholar 

  • Bussieck, M. R., & Vigerske, S. (2011). MINLP Solver Software. In J. J. Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh & J. C. Smith (Eds.), Wiley encyclopedia of operations research and management science. https://doi.org/10.1002/9780470400531.eorms0527.

  • CMU-IBM. (2012). Open source Minlp project. http://egon.cheme.cmu.edu/ibm/page.htm.

  • D’Ambrosio, C., & Lodi, A. (2011). Mixed integer nonlinear programming tools: A practical overview. 4OR, 9(4), 329–349.

  • Dash Optimization (2003). Getting Started with Xpress. http://www.fico.com/xpress.

  • Duran, M., & Grossmann, I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36, 307–339. https://doi.org/10.1007/BF02592064.

    Article  Google Scholar 

  • Fampa, M., Lee, J., & Melo, W. (2016). A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space. Computational Optimization and Applications, 65(1), 47–71. https://doi.org/10.1007/s10589-016-9835-z.

    Article  Google Scholar 

  • Fletcher, R., & Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming, 66, 327–349. https://doi.org/10.1007/BF01581153.

    Article  Google Scholar 

  • GAMS World. (2014). Minlp library 2. http://www.gamsworld.org/minlp/minlplib2/html/.

  • Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of Optimization Theory and Applications, 10, 237–260. https://doi.org/10.1007/BF00934810.

    Article  Google Scholar 

  • Gu, Z., Rothberg, E., & Bixby, R. E. Gurobi 4.6.1. Houston, TX.

  • Gupta, O. K., & Ravindran, A. (1985). Branch and bound experiments in convex nonlinear integer programming. Management Science, 31(12), 1533–1546.

    Article  Google Scholar 

  • Hemmecke, R., Köppe, M., Lee, J., & Weismantel, R. (2010). Nonlinear integer programming. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 Years of integer programming 1958–2008 (pp. 561–618). Berlin: Springer. https://doi.org/10.1007/978-3-540-68279-0_15.

    Google Scholar 

  • IBM Corporation. (2015). IBM ILOG CPLEX V12.6 User’s Manual for CPLEX.

  • Intel Corporation. (2016). Intel C++ Compiler 16.0 User and Reference Guide.

  • Kronqvist, J., Lundell, A., & Westerlund, T. (2016). The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. Journal of Global Optimization, 64(2), 249–272.

    Article  Google Scholar 

  • Leyffer, S. (2003). MacMINLP: Test problems for mixed integer nonlinear programming. https://wiki.mcs.anl.gov/leyffer/index.php/macminlp.

  • Leyffer, S. (2001). Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Computational Optimization and Applications, 18, 295–309.

    Article  Google Scholar 

  • Leyffer, S., Linderoth, J., Luedtke, J., Miller, A., & Munson, T. (2009). Applications and algorithms for mixed integer nonlinear programming. Journal of Physics: Conference Series, 180(1), 012014.

    Google Scholar 

  • Li, D., Wang, J., & Sun, X. L. (2007). Computing exact solution to nonlinear integer programming: Convergent lagrangian and objective level cut method. Journal of Global Optimization, 39, 127–154.

    Article  Google Scholar 

  • Massachusetts Institute of Technology. The mit license. https://mit-license.org.License.

  • Melo, W., Fampa, M., & Raupp, F. (2014). Integrating nonlinear branch-and-bound and outer approximation for convex mixed integer nonlinear programming. Journal of Global Optimization, 60(2), 373–389.

    Article  Google Scholar 

  • Melo, W., Fampa, M., & Raupp, F. (2018). Integrality gap minimization heuristics for binary mixed integer nonlinear programming. Journal of Global Optimization. https://doi.org/10.1007/s10898-018-0623-4.

    Article  Google Scholar 

  • MOSEK ApS. (2017). The MOSEK optimization toolbox for MATLAB manual. Version 8.0.

  • Murray, W., & Ng, K.-M. (2010). An algorithm for nonlinear optimization problems with binary variables. Computational Optimization and Applications, 47, 257–288. https://doi.org/10.1007/s10589-008-9218-1.

    Article  Google Scholar 

  • Quesada, I., & Grossmann, I. E. (1992). An LP/NLP based branch and bound algorithm for convex minlp optimization problems. Computers & Chemical Engineering, 16(10–11), 937–947.

    Article  Google Scholar 

  • Science Technology Facilities Council. (2014). Hsl. a collection of fortran codes for large scale scientific computation. Software.

  • Still, C., & Westerlund, T. (2006). A sequential cutting plane algorithm for solving convex NLP problems. European Journal of Operational Research, 173(2), 444–464.

    Article  Google Scholar 

  • Still, C., & Westerlund, T. (2006). Solving convex minlp optimization problems using a sequential cutting plane algorithm. Computational Optimization and Applications, 34, 63–83. https://doi.org/10.1007/s10589-005-3076-x.

    Article  Google Scholar 

  • Stubbs, R. A., & Mehrotra, S. (1999). A branch-and-cut method for 0–1 mixed convex programming. Mathematical Programming, 86, 515–532. https://doi.org/10.1007/s101070050103.

    Article  Google Scholar 

  • Trespalacios, F., & Grossmann, I. E. (2014). Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chemie Ingenieur Technik, 86(7), 991–1012.

    Article  Google Scholar 

  • Veinott, A. F. (1967). The supporting hyperplane method for unimodal programming. Operations Research, 15(1), 147–152.

    Article  Google Scholar 

  • Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25–57. https://doi.org/10.1007/s10107-004-0559-y.

    Article  Google Scholar 

  • Westerlund, T., & Pettersson, F. (1995). An extended cutting plane method for solving convex MINLP problems. Computers & Chemical Engineering, 19(Supplement 1), 131–136.

    Article  Google Scholar 

  • Wolsey, L. A. (1998). Integer programming., Series in discrete mathematics and optimization New York: Wiley.

Download references

Acknowledgements

Marcia Fampa was partially supported by CNPq (National Council for Scientific and Technological Development) Grant 303898/2016-0, as Fernanda Raupp was partially supported by CNPq Grant 307679/2016-0. The authors are grateful to the anonymous referees for their helpful insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendel Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, W., Fampa, M. & Raupp, F. An overview of MINLP algorithms and their implementation in Muriqui Optimizer. Ann Oper Res 286, 217–241 (2020). https://doi.org/10.1007/s10479-018-2872-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2872-5

Keywords