Skip to main content

Advertisement

Log in

A GPU based local search algorithm for the unweighted and weighted maximum s-plex problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Given a graph G(VE) and a value \(s \in {\mathbb {N}}\), an s-plex S is a subset of V such that each vertex \(v \in S\) has at least \(|S|-s\) adjacent vertices in the subgraph induced by S. This work proposes a GPU based local search heuristic, called GPULS, for the problems of finding an s-plex of maximum cardinality and finding an s-plex of maximum weight. The proposed heuristic works well on both problems without any modification on its parameters or its code. GPULS considers two neighborhood structures, which are explored using tabu search and a first-improvement approach. We compare GPULS with the current best-performing exact methods and heuristics. The results obtained by GPULS are highly competitive, even when it runs on a CPU-only architecture. Moreover, we observed speedups of up to 16 times by running the heuristic on a hybrid CPU–GPU architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. dmclique, http://lcs.ios.ac.cn/~caisw/Resource/DIMACS%20machine%20benchmark.tar.gz.

  2. The source code of GPULS can be downloaded at https://sites.google.com/site/nogueirabruno/software.

  3. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

  4. The complete tables for \(s = 3, 4\) can be downloaded at https://sites.google.com/site/nogueirabruno/research.

  5. https://github.com/frank-hutter/fanova.

References

  • Balasundaram, B. (2007). Graph theoretic generalizations of clique: Optimization and extensions. Ph.D. thesis.

  • Balasundaram, B., Butenko, S., & Hicks, I. V. (2011). Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59(1), 133–142.

    Article  Google Scholar 

  • Boginski, V., Butenko, S., Shirokikh, O., Trukhanov, S., & Lafuente, J. G. (2014). A network-based data mining approach to portfolio selection via weighted clique relaxations. Annals of Operations Research, 216(1), 23–34.

    Article  Google Scholar 

  • Carraghan, R., & Pardalos, P. M. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9(6), 375–382.

    Article  Google Scholar 

  • Corstjens, J., Dang, N., Depaire, B., Caris, A., & De Causmaecker, P. (2018). A combined approach for analysing heuristic algorithms. Journal of Heuristics,. https://doi.org/10.1007/s10732-018-9388-7.

    Article  Google Scholar 

  • da Silva, M. R. C., Tavares, W. A., Dias, F. C. S., & Neto, M. B. C. (2017). Algoritmo branch-and-bound para o problema do k-plex máximo. In: Anais do XLIX Simpsio Brasileiro de Pesquisa Operacional

  • Gendreau, M., & Potvin, J. Y. (2010). Handbook of metaheuristics (pp. 41–60). Berlin: Springer.

    Book  Google Scholar 

  • Gschwind, T., Irnich, S., & Podlinski, I. (2016). Maximum weight relaxed cliques and Russian doll search revisited. Discrete Applied Mathematics, 234, 131–138. https://doi.org/10.1016/j.dam.2016.09.039.

    Article  Google Scholar 

  • Gujjula, K. R., Seshadrinathan, K. A., & Meisami, A. (2014). A hybrid metaheuristic for the maximum k-plex problem. In NATO advanced research workshop on examining robustness and vulnerability of critical infrastructure networks, IOS

  • Harris, M. (2007). Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology. http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf.

  • Komusiewicz, C. (2016). Multivariate algorithmics for finding cohesive subnetworks. Algorithms, 9(1), 21.

    Article  Google Scholar 

  • Martí, R., Moreno-Vega, J. M., & Duarte, A. (2010). Advanced multi-start methods. In M. Gendreau & J. Y. Potvin (Eds.), Handbook of metaheuristics (pp. 265–281). Boston, MA: Springer. https://doi.org/10.1007/978-1-4419-1665-5_9.

    Chapter  Google Scholar 

  • McClosky, B. (2008). Independence systems and stable set relaxations. Ph.D. thesis, Rice University

  • McClosky, B., & Hicks, I. V. (2012). Combinatorial algorithms for the maximum k-plex problem. Journal of combinatorial optimization, 23(1), 29–49.

    Article  Google Scholar 

  • Miao, Z., & Balasundaram, B. (2017). Approaches for finding cohesive subgroups in large-scale social networks via maximum k-plex detection. Networks, 69(4), 388–407.

    Article  Google Scholar 

  • Nogueira, B., & Pinheiro, R. G. S. (2018). A cpu–gpu local search heuristic for the maximum weight clique problem on massive graphs. Computers and Operations Research, 90, 232–248. https://doi.org/10.1016/j.cor.2017.09.023.

    Article  Google Scholar 

  • Nogueira, B., Pinheiro, R. G. S., & Subramanian, A. (2018). A hybrid iterated local search heuristic for the maximum weight independent set problem. Optimization Letters, 12(3), 567–583. https://doi.org/10.1007/s11590-017-1128-7.

    Article  Google Scholar 

  • Östergård, P. R. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120(1), 197–207.

    Article  Google Scholar 

  • Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226(1), 9–18.

    Article  Google Scholar 

  • Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research, 25, 159–185.

    Article  Google Scholar 

  • Seidman, S. B., & Foster, B. L. (1978). A graph-theoretic generalization of the clique concept. Journal of Mathematical sociology, 6(1), 139–154.

    Article  Google Scholar 

  • Trukhanov, S., Balasubramaniam, C., Balasundaram, B., & Butenko, S. (2013). Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations. Computational Optimization and Applications, 56(1), 113–130.

    Article  Google Scholar 

  • Wang, Y., Cai, S., & Yin, M. (2016). Two efficient local search algorithms for maximum weight clique problem. In AAAI conference on artificial intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915

  • Wu, Q., & Hao, J. K. (2013). An adaptive multistart tabu search approach to solve the maximum clique problem. Journal of Combinatorial Optimization, 26(1), 86–108.

    Article  Google Scholar 

  • Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight clique problem. Annals of Operations Research, 196(1), 611–634.

    Article  Google Scholar 

  • Xiao, M., Lin, W., Dai, Y., & Zeng, Y. (2017). A fast algorithm to compute maximum k-plexes in social network analysis. In AAAI conference on artificial intelligence (pp 919–925)

  • Xiao, S., & Feng, W. (2010). Inter-block gpu communication via fast barrier synchronization. In: 2010 IEEE international symposium on parallel and distributed processing (IPDPS) (pp 1–12). IEEE.

  • Zhou, Y., & Hao, J. K. (2017). Frequency-driven tabu search for the maximum s-plex problem. Computers and Operations Research, 86, 65–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nogueira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, B., Pinheiro, R.G.S. A GPU based local search algorithm for the unweighted and weighted maximum s-plex problems. Ann Oper Res 284, 367–400 (2020). https://doi.org/10.1007/s10479-019-03159-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03159-5

Keywords

Navigation