Skip to main content
Log in

Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis

  • S.I. : Data Envelopment Analysis: Four Decades On
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Data envelopment analysis technique, not only evaluates Decision making units (DMUs), but also introduces a benchmark for inefficient DMUs. By having the data related to the benchmark and using it appropriately, the DMU under the assessment determines how to eliminate its inefficiency and become efficient. The closer the evaluated DMU is to the presented target, the faster and easier it reaches the efficiency frontier. Furthermore, target setting in the presence of weight restrictions is an important issue. In this paper, a model for finding the closest target, in the presence of weight restrictions is presented. Thus, taking into account trade-offs, as well as weight restrictions, the closest target for each DMU is introduced. The proposed model is also compared with the previous models. Finally, administrating the proposed model for evaluating one of Iranian Banks, the least changes to inefficient branches is represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. These types of deposits and or savings accounts are popular in Iranian banks and are without interest or dividends.

References

  • Allen, R., Athanassopoulos, A., Dyson, R. G., & Thanassoulis, E. (1997). Weights restrictions and value judgments in DEA: Evolution, development and future directions. Annals of Operation Research,73, 13–34.

    Article  Google Scholar 

  • Amirteimoori, A., & Kordrostami, S. (2010). A Euclidean distance-based measure of efficiency in data envelopment analysis. Optimization,59, 985–996.

    Article  Google Scholar 

  • Ando, K., Kai, A., Maeda, Y., & Sekitani, K. (2012). Least distance based inefficiency measures on the Pareto-efficient frontier in DEA. Journal of the Operations Research Society of Japan,55(1), 73–91.

    Article  Google Scholar 

  • Aparicio, J. (2016). A survey on measuring efficiency through the determination of the least distance in data envelopment analysis. Journal of Centrum Cathedra,9, 143–167.

    Article  Google Scholar 

  • Aparicio, J., Cordero, J. M., & Pastor, J. T. (2017a). The determination of the least distance to the strongly efficient frontier in data envelopment analysis oriented models: modelling and computational aspects. Omega,71, 1–10.

    Article  Google Scholar 

  • Aparicio, J., Garcia-Nove, E. M., Kapelko, M., & Pastor, J. T. (2017b). Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis. omega,72, 1–14.

    Article  Google Scholar 

  • Aparicio, J., Kapelko, M., Mahlberg, B., & Sainz-Pardo, J. L. (2017c). Measuring input-specific productivity change based on the principle of least action. Journal of Productivity Analysis,47, 17–31.

    Article  Google Scholar 

  • Aparicio, J., Mahlberg, B., Pastor, J. T., & Sahoo, B. K. (2014). Decomposing technical inefficiency using the principle of least action. European Journal of Operational Research,239, 776–785.

    Article  Google Scholar 

  • Aparicio, J., Ruiz, J. L., & Sirvent, I. (2007). Closest targets and minimum distance to the Pareto-efficient frontier in DEA. Journal of Productivity Analysis,28, 209–218.

    Article  Google Scholar 

  • Atici, K. B., & Podinovski, V. V. (2015). Using data envelopment analysis for the assessment of technical efficiency of units with different specializations: an application to agriculture. Omega,54, 72–83.

    Article  Google Scholar 

  • Baek, C., & Lee, J. (2009). The relevance of DEA benchmarking information and the least-distance measure. Mathematical and Computer Modelling,49, 265–275.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science,30, 1078–1092.

    Article  Google Scholar 

  • Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software,22(4), 469–483.

    Article  Google Scholar 

  • Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research,98(2), 175–212.

    Article  Google Scholar 

  • Briec, W. (1998). Holder distance function and measurement of technical efficiency. Journal of Productivity Analysis,11(2), 111–131.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research,2(6), 429–444.

    Article  Google Scholar 

  • Cherchye, L., & Puyenbroeck, T. V. (2001). A comment on multi-stage DEA methodology. Operations Research Letters,28, 93–98.

    Article  Google Scholar 

  • Coelli, T. (1998). A multi-stage methodology for the solution of orientated DEA models. Operations Research Letters,23, 143–149.

    Article  Google Scholar 

  • Cook, W. D., Doyle, J., Green, R., & Kress, M. (1996). Ranking players in multiple tournaments. Computers & Operations Research,23(9), 869–880.

    Article  Google Scholar 

  • Cook, W. D., Ruiz, J. L., Sirvent, I., & Zhu, J. (2017). Within-group common benchmarking using DEA. European Journal of Operational Research,256, 901–910.

    Article  Google Scholar 

  • Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)—thirty years on. European Journal of Operational Research,192, 1–17.

    Article  Google Scholar 

  • Cooper, W. W., Ruiz, J. L., & Sirvent, I. (2011). Choices and uses of DEA weights. In W. W. Cooper, L. W. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis (pp. 93–126). Berlin: Springer.

    Chapter  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Davoodi, A., & Zhiani Rezai, H. (2014). Improving production possibility set with production trade-offs. Applied Mathematical Modelling,39(7), 1966–1974.

    Article  Google Scholar 

  • Dimitrov, S., & Sutton, W. (2009). Promoting symmetric weight selection in data envelopment analysis: A penalty function approach. European Journal of Operational Research,200(1), 281–288.

    Article  Google Scholar 

  • Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European Journal of Operational Research,204, 189–198.

    Article  Google Scholar 

  • Frei, F. X., & Harker, P. T. (1999). Projections onto efficient frontiers: Theoretical and computational extensions to DEA. Journal of Productivity Analysis,11, 275–300.

    Article  Google Scholar 

  • Fukuyama, H., Maeda, Y., Sekitani, K., & Shi, J. (2014). Input-output substitutability and strongly monotonic p-norm least-distance DEA measures. European Journal of Operational Research,237, 997–1007.

    Article  Google Scholar 

  • Gonzalez, E., & Alvarez, A. (2001). From efficiency measurement to efficiency improvement: the choice of a relevant benchmark. European Journal of Operational Research,133, 512–520.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Lotfi, H. F., Jafari, Y., & Maddahi, R. (2011). Selecting symmetric weights as a secondary goal in DEA cross efficiency evaluation. Applied Mathematical Modelling,35(1), 544–549.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Memariani, A., Hosseinzadeh, F., & Shoja, N. (2005). A feasible interval for weights in DEA. Applied Mathematics and Computation,160(1), 155–168.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Vakili, J., & Mirdehghan, S. M. (2012a). Using the minimum distance of DMUs from the frontier of the PPS for evaluating group performance of DMUs in DEA. Asia-Pacific Journal of Operational Research,29(2), 1250010-1–1250010-25.

    Google Scholar 

  • Jahanshahloo, G. R., Vakili, J., & Zarepisheh, M. (2012b). A linear bi-level programming problem for obtaining the closest targets and minimum distance of a unit from the strong efficient frontier. Asia-Pacific Journal of Operational Research,29(2), 1250011-1–1250011-19.

    Google Scholar 

  • Joro, T., Korhonen, P., & Walleniuss, J. (1998). Structural comparison of data envelopment analysis and multiple objective linear programming. Management Science,44(7), 962–970.

    Article  Google Scholar 

  • Kaffash, S., & Marra, (2017). Data envelopment analysis in financial services: A citations network analysis of banks, insurance companies and money market funds. Annals of Operations Research,253(1), 307–344.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2005). Determining a sequence of targets in DEA. Journal of Operational Research Society,56, 144–1439.

    Article  Google Scholar 

  • Ouenniche, J., & Carrales, S. (2018). Assessing efficiency profiles of UK commercial banks: A DEA analysis with regression-based feedback. Annals of Operations Research,266(1–2), 551–587.

    Article  Google Scholar 

  • Ouenniche, J., Carrales, S., Fukuyama, H., & Tone, K. (2017). An account of DEA-based contributions in the banking sector. In K. Tone (Ed.), Advances in DEA theory and applications: With Extensions to forecasting models. Wiley series in operations research and management science (Chap. 14, pp. 141–171). https://doi.org/10.1002/9781118946688.ch14.

  • Paradi, J. C., Sherman, H. D., & Tam, F. K. (2018). Data envelopment analysis in the financial services industry: A guide for practitioners and analysts working in operations research using DEA. International series in operations research & management science. Berlin: Springer.

    Book  Google Scholar 

  • Pastor, J. T., & Aparicio, J. (2010). The relevance of DEA benchmarking information and the least-distance measure: comment. Mathematical and Computer Modelling,52, 397–399.

    Article  Google Scholar 

  • Podinovski, V. V. (1999). Side effects of absolute weight bounds in DEA models. European Journal of Operational Research,115, 583–595.

    Article  Google Scholar 

  • Podinovski, V. V. (2004a). Production trade-offs and weight restrictions in data envelopment analysis. Journal of Operational Research Society,55, 1311–1322.

    Article  Google Scholar 

  • Podinovski, V. V. (2004b). Suitability and redundancy of non-homogeneous weight restrictions for measuring the relative efficiency in DEA. European Journal of Operational Research,154, 380–395.

    Article  Google Scholar 

  • Podinovski, V. V. (2005). The explicit role of weight bounds in models of data envelopment analysis. Journal of the Operational Research Society,56, 1408–1418.

    Article  Google Scholar 

  • Podinovski, V. V. (2007). Computation of efficient targets in DEA models with production trade-offs and weight restrictions. European Journal of Operational Research,181, 586–591.

    Article  Google Scholar 

  • Podinovski, V. V. (2016). Optimal weights in DEA models with weight restrictions. European Journal of Operational Research,245(3), 916–924.

    Article  Google Scholar 

  • Portela, M. S., Borges, P., & Thanassoulis, E. (2003). Finding closest targets in non-oriented DEA models: The case of convex and non-convex technologies. Journal of Productivity Analysis,19, 251–269.

    Article  Google Scholar 

  • Ramon, N., Ruiz, J. L., & Sirvent, I. (2016). On the use of DEA models with weight restrictions for benchmarking and target setting. In J. Aparicio, C. A. K. Lovell, & J. T. Pastor (Eds.), Advances in efficiency and productivity (pp. 149–180). Berlin: Springer.

    Chapter  Google Scholar 

  • Ruiz, J. L., Segura, J. V., & Sirvent, I. (2015). Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities. European Journal of Operational Research,242, 594–605.

    Article  Google Scholar 

  • Ruiz, J. L., & Sirvent, I. (2011). A DEA approach to derive individual lower and upper bounds for the technical and allocative components of the overall profit efficiency. Operational Research Society,62, 1907–1916.

    Article  Google Scholar 

  • Ruiz, J. L., & Sirvent, I. (2016). Common benchmarking and ranking of units with DEA. Omega,65, 1–9.

    Article  Google Scholar 

  • Sherman, H. D., & Gold, F. (1985). Bank branch operating efficiency: Evaluation with data envelopment analysis. Journal of Banking & Finance,9(2), 297–315.

    Article  Google Scholar 

  • Thanassoulis, E. (1995). Assessing police forces in england and wales using data envelopment analysis. European Journal of Operational Research,87, 641–657.

    Article  Google Scholar 

  • Thanassoulis, E., & Allen, R. (1998). Simulating weights restrictions in data envelopment analysis by means of unobserved DMUs. Management Science, 44(4), 586–594.

    Article  Google Scholar 

  • Thanassoulis, E., Portela, M. C., & Allen, R. (2004). Incorporating value judgments in DEA. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis. International series in operations research & management science (Vol. 71, 2nd ed., pp. 99–138). Norwell: Kluwer.

  • Thompson, R. G. (1990). The role of multiplier bounds in efficiency analysis with application to Kansas farming. Journal of Econometrics,46, 93–108.

    Article  Google Scholar 

  • Thompson, R. G., Singleton, F. D., Jr., Thrall, R. M., & Smith, B. A. (1986). Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces,16(6), 35–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Hosseinzadeh Lotfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Proof of Theorem (1)

Suppose \( (\tilde{X},\tilde{Y}) \in D_{o} \) that is \( (\tilde{X},\tilde{Y}) \) is a Pareto-efficient point dominating DMUo on the frontier T. \( (\tilde{X},\tilde{Y}) \) is efficient, thus the optimal solution of both of the following problems equals zero.

$$ \begin{aligned} & \begin{array}{*{20}c} {Max} & {1S^{ + } + 1S^{ - } } \\ \end{array} \\ & \begin{array}{*{20}l} {s.t.} \hfill & {\sum\limits_{j \in E}^{{}} {\lambda_{j} x_{j} + \sum\limits_{t = 1}^{L} {\mu_{t} P_{t} + S^{ - } = \tilde{X}} } } \hfill \\ {} \hfill & {\sum\limits_{j \in E}^{{}} {\lambda_{j} } y_{j} + \sum\limits_{t = 1}^{L} {\mu_{t} Q_{t} - S^{ + } = \tilde{Y}} } \hfill \\ {} \hfill & {\sum\limits_{j \in E}^{{}} {\lambda_{j} } x_{j} + \sum\limits_{t = 1}^{L} {\mu_{t} P_{t} \ge 0} } \hfill \\ {} \hfill & {\sum\limits_{j \in E}^{{}} {\lambda_{j} } y_{j} + \sum\limits_{t = 1}^{L} {\mu_{t} Q_{t} \ge 0} } \hfill \\ {} \hfill & {\lambda ,\mu ,S^{ + } ,S^{ - } \ge 0} \hfill \\ {} \hfill & {} \hfill \\ \end{array} \\ \end{aligned} $$
(8)
$$ \begin{aligned} & \begin{array}{*{20}c} {Min} & {V\tilde{X} - U\tilde{Y}} \\ \end{array} \\ & \begin{array}{*{20}c} {s.t.} & {VX_{j} - UY_{j} - W^{\prime \prime } X_{j} - W^{\prime } Y_{j} \ge 0} & {j \in E} \\ {} & {\sum\limits_{r = 1}^{s} {u_{r} Q_{rt} - \sum\limits_{i = 1}^{m} {v_{i} P_{it} + \sum\limits_{r = 1}^{s} {w_{r}^{\prime } P_{rt} } + } \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } Q_{it} } + d_{t}^{\prime } } } & {t = 1, \ldots ,L} \\ {} & {u_{r} \ge 1} & {r = 1, \ldots ,s} \\ {} & {v_{i} \ge 1} & {i = 1, \ldots ,m} \\ {} & {w^{\prime } ,w^{\prime \prime } \ge 0} & {} \\ \end{array} \\ \end{aligned} $$
(9)

As \( (\tilde{X},\tilde{Y}) \ne 0 \), and regarding the optimal solution of both of the proceeding problems, a non-negative scalar set \( \tilde{\lambda }_{j} ;\;j \in E \) and \( \tilde{\mu }_{t} ;\;(t = 1, \ldots ,L) \) can be found in which at least one of the \( \tilde{\lambda }_{j} ,\tilde{\mu }_{t} \) is strictly positive, such that:

$$ (\tilde{X},\tilde{Y}) = \left( {\sum\limits_{j \in E} {\tilde{\lambda }_{j} x_{ij} + \sum\limits_{l} {\tilde{\mu }_{t}^{\prime \prime } b_{il} } ,\sum\limits_{j \in E} {\tilde{\lambda }_{j} y_{rj} + \sum\limits_{t} {\tilde{\mu }_{t}^{\prime } a_{rt} } } } } \right) $$

However, according to Complementary Slackness Theorem, for each \( \tilde{\lambda }_{j} > 0 \), its corresponding dual constraint is binding, that is:

$$ \exists \tilde{u}_{r} \ge 1,\tilde{v}_{i} \ge 1,\tilde{w}^{\prime } ,\tilde{w}^{\prime \prime } \ge 0\quad s.t.\quad \tilde{U}Y_{j} - \tilde{V}X_{j} + \tilde{W}^{\prime \prime } X_{j} + \tilde{W}^{\prime } Y_{j} = 0 $$

Then we define as follows:

$$ \tilde{\gamma }_{j} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\tilde{\lambda }_{j} > 0} \hfill \\ 1 \hfill & {o.w.} \hfill \\ \end{array} ,\quad \tilde{d}_{j} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\tilde{\lambda }_{j} > 0} \hfill \\ { - \tilde{U}Y_{j} + \tilde{V}X_{j} - \tilde{W}^{\prime \prime } X_{j} - \tilde{W}^{\prime } Y_{j} } \hfill & {o.w.} \hfill \\ \end{array} } \right.} \right. $$

Similarly, according to Complementary Slackness Theorem, for each \( \tilde{\mu }_{t} > 0 \), its corresponding dual constraint is binding, that is:

$$ \exists \tilde{v} \ge 1,\tilde{u} \ge 1,\tilde{w}^{\prime \prime } \ge 0,\tilde{w}^{\prime } \ge 0\quad s.t.\quad \sum\limits_{r = 1}^{s} {\tilde{u}_{r} Q_{rt} - \sum\limits_{i = 1}^{m} {\tilde{v}_{i} P_{it} + \sum\limits_{r = 1}^{s} {\tilde{w}_{r}^{\prime } P_{rt} } + } \sum\limits_{i = 1}^{m} {\tilde{w}_{i}^{\prime \prime } Q_{it} } = 0} $$

Then we define as follows:

$$ \tilde{\gamma }_{t}^{\prime } = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\tilde{\mu }_{t} > 0} \hfill \\ 1 \hfill & {o.w.} \hfill \\ \end{array} } \right.,\quad \tilde{d}_{t}^{\prime } = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\tilde{\mu }_{t} > 0} \hfill \\ { - \sum\limits_{r = 1}^{s} {\tilde{u}_{r} Q_{rt} + \sum\limits_{i = 1}^{m} {\tilde{v}_{i} P_{it} - \sum\limits_{r = 1}^{s} {\tilde{w}_{r}^{\prime } P_{rt} } - } \sum\limits_{i = 1}^{m} {\tilde{w}_{i}^{\prime \prime } Q_{it} } } } \hfill & {o.w.} \hfill \\ \end{array} } \right. $$

Finally, as we supposed \( (\tilde{X},\tilde{Y}) \) dominates DMUo, we can define:

$$ \begin{aligned} \tilde{s}_{io}^{ - } = x_{io} - \tilde{x}_{i} \ge 0\quad i = 1, \ldots ,m. \hfill \\ \tilde{s}_{ro}^{ + } = \tilde{y}_{r} - y_{ro} \ge 0\quad r = 1, \ldots ,s. \hfill \\ \end{aligned} $$

So \( \tilde{\lambda }_{j} ,\tilde{d}_{j} \ge 0,\,\tilde{\gamma }_{j} \in \left\{ {0,1} \right\};\;j \in E \), \( \tilde{\mu }_{t} ,\tilde{d}_{t}^{\prime } \ge 0,\,\tilde{\gamma }_{t}^{\prime } \in \left\{ {0,1} \right\};\;t = 1, \ldots ,L \), \( \tilde{S}^{ - } ,\tilde{S}^{ + } ,\tilde{w}^{\prime } ,\tilde{w}^{\prime \prime } \ge 0 \) and \( \tilde{u}_{r} \ge 1;\;r = 1, \ldots ,s,\;\tilde{v}_{i} \ge 1;\;i = 1, \ldots ,m, \) satisfy the theorem’s conditions.

Conversely suppose that the parameters \( \tilde{\lambda }_{j} ,\tilde{d}_{j} \ge 0,\,\,\tilde{\gamma }_{j} \in \left\{ {0,1} \right\};\;j \in E \) ، \( \tilde{\mu }_{t} ,\tilde{d}_{t}^{'} \ge 0,\,\, \) ، \( \tilde{\gamma }_{t}^{'} \in \left\{ {0,1} \right\};\;t = 1, \ldots ,L \) and \( \tilde{u}_{r} \ge 1;\;r = 1, \ldots ,s\,\,,\tilde{v}_{i} \ge 1\;\;i = 1, \ldots ,m,\tilde{S}^{ - } ,\tilde{S}^{ + } ,\tilde{w}^{\prime } ,\tilde{w}^{\prime \prime } \ge 0 \) are true for the constraints (a.3)–(a.12).

We define:

$$ (\tilde{X},\tilde{Y}) = \left( {\sum\limits_{j \in E} {\tilde{\lambda }_{j} x_{ij} + \sum\limits_{t} {\tilde{\mu }_{t} P_{t} } ,\sum\limits_{j \in E} {\tilde{\lambda }_{j} y_{rj} + \sum\limits_{t} {\tilde{\mu }_{t} Q_{t} } } } } \right) $$

Now we prove that \( (\tilde{X},\tilde{Y}) \in D_{o} \) According to (a.4) and (a.3) it is obvious that \( (\tilde{X},\tilde{Y}) \) dominates DMUo = (XoYo)thus it is enough to prove that \( (\tilde{X},\tilde{Y}) \) is on the efficiency frontier.

We want to prove that \( (\tilde{X},\tilde{Y}) \) lies on the efficiency frontier that is to prove \( U\tilde{Y} - V\tilde{X} + W^{\prime \prime } \tilde{X} + W^{\prime } \tilde{Y} = 0 \). Based on what we already supposed, according to the (a.1) and (a.2), we know that \( \tilde{X} = \sum\nolimits_{j \in E} {\tilde{\lambda }_{j} x_{j} } + \sum\limits_{t} {\tilde{\mu }_{t} P_{t} } \) and \( \tilde{Y} = \sum\nolimits_{j \in E} {\tilde{\lambda }_{j} y_{j} } + \sum\limits_{t} {\tilde{\mu }_{t} Q_{t} } \).

by replacing, we have:

\( U\tilde{Y} - V\tilde{X} + W^{\prime \prime } \tilde{X} + W^{\prime } \tilde{Y} = \underbrace {{(U + W^{\prime } )(\sum\limits_{j \in E} {\tilde{\lambda }_{j} y_{j} } ) - (V - W^{\prime \prime } )(\sum\limits_{j \in E} {\tilde{\lambda }_{j} x_{j} } )}}_{\prime \prime a\prime \prime } + \underbrace {{(U + W^{\prime } )(\sum\limits_{t} {\tilde{\mu }_{t} Q_{t} } ) - (V - W^{\prime \prime } )(\sum\limits_{t} {\tilde{\mu }_{t} P_{t} } )}}_{\prime \prime b\prime \prime } \)so, to prove \( U\tilde{Y} - V\tilde{X} + W^{\prime \prime } \tilde{X} + W^{\prime } \tilde{Y} = 0 \), it is enough to prove that individual sentences “a” and “b” equals zero. To prove the sentence “a” is zero we have:

$$ \begin{aligned} \tilde{d}_{j} \ge 0 & \Rightarrow \sum\limits_{r = 1}^{s} {u_{r} \tilde{y}_{rj} - \sum\limits_{i = 1}^{m} {v_{i} \tilde{x}_{ij} + \sum\limits_{r = 1}^{s} {w_{r}^{\prime } \tilde{y}_{rj} } + \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } \tilde{x}_{ij} } \le 0,\quad j \in E} } \\ & \Rightarrow \tilde{\lambda }_{j} \sum\limits_{r = 1}^{s} {u_{r} } \tilde{y}_{rj} - \tilde{\lambda }_{j} \sum\limits_{i = 1}^{m} {v_{i} \tilde{x}_{ij} + \tilde{\lambda }_{j} \sum\limits_{r = 1}^{s} {w_{r}^{\prime } \tilde{y}_{rj} } + \tilde{\lambda }_{j} \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } \tilde{x}_{ij} } \le 0,\quad j \in E} \\ & \Rightarrow U\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{y}_{j} - V\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{j} } } + w^{\prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} } \tilde{y}_{rj} + w^{\prime \prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{ij} } \le 0, \\ \end{aligned} $$

while

$$ \sum\limits_{r = 1}^{s} {u_{r} \tilde{y}_{rj} - \sum\limits_{i = 1}^{m} {v_{i} \tilde{x}_{ij} + \sum\limits_{r = 1}^{s} {w_{r}^{\prime } \tilde{y}_{rj} } + \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } \tilde{x}_{ij} } } } = - d_{j} ,\,\,\,j \in E $$

therefore

$$ \,U\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{y}_{j} - V\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{j} } } + w^{\prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} } \tilde{y}_{rj} + w^{\prime \prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{ij} } = - \sum\limits_{j \in E} {\tilde{\lambda }_{j} d_{j} } $$

by (a.8) and (a.9), it is concluded that \( \sum\nolimits_{j \in E} {\tilde{\lambda }_{j} d_{j} } = 0 \) so

$$ (U + w^{\prime } )\sum\limits_{j \in E} {\tilde{\lambda }_{j} } \tilde{y}_{rj} - (V - w^{\prime \prime } )\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{ij} } = U\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{y}_{j} - V\sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{j} } } + w^{\prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} } \tilde{y}_{rj} + w^{\prime \prime } \sum\limits_{j \in E} {\tilde{\lambda }_{j} \tilde{x}_{ij} } = - \sum\limits_{j \in E} {\tilde{\lambda }_{j} d_{j} } = 0 $$

therefore, the sentence “a” is equal to zero.

To prove the sentence “b” is zero, we have:

$$ \begin{aligned} d_{t}^{'} \ge 0 & \Rightarrow \sum\limits_{r = 1}^{s} {u_{r} Q_{rt} - \sum\limits_{i = 1}^{m} {v_{i} P_{it} + \sum\limits_{r = 1}^{s} {w_{r}^{\prime } Q_{rt} } + } \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } P_{it} } \le 0\quad t = 1, \ldots ,L} \\ & \Rightarrow \tilde{\mu }_{t} \sum\limits_{r = 1}^{s} {u_{r} Q_{rt} - \tilde{\mu }_{t} \sum\limits_{i = 1}^{m} {v_{i} P_{it} + \tilde{\mu }_{t} \sum\limits_{r = 1}^{s} {w_{r}^{\prime } Q_{rt} } + } \tilde{\mu }_{t} \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } P_{it} } \le 0\quad t = 1, \ldots ,L} \\ & \Rightarrow U\sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} - V\sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} + w^{\prime } \sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} } + } w^{\prime \prime } \sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} } \le 0.} \\ \end{aligned} $$

while

$$ \,\sum\limits_{r = 1}^{s} {u_{r} Q_{rt} - \sum\limits_{i = 1}^{m} {v_{i} P_{it} + \sum\limits_{r = 1}^{s} {w_{r}^{\prime } Q_{rt} } + } \sum\limits_{i = 1}^{m} {w_{i}^{\prime \prime } P_{it} } = - d_{t}^{\prime } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 1, \ldots ,L\,\,\,\,} $$

Therefore

$$ U\sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} - V\sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} + W^{\prime } \sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} } + } W^{\prime \prime } \sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} } } = - \sum\limits_{t} {\tilde{\mu }_{t} d_{t}^{\prime } } $$

By (a.11) and (a.12), it is concluded that \( \sum\limits_{t} {\tilde{\mu }_{t}^{\prime } d_{t}^{\prime } } = 0 \) so

$$ \left( {U + W^{\prime } } \right)\sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} Q_{it} - \left( {V - W^{\prime \prime } } \right)} \sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} P_{rt} = U\!\!\sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} } - V\!\!\sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} } +W^{\prime } \sum\limits_{r = 1}^{s} {\tilde{\mu }_{t} Q_{rt} + W^{\prime \prime } } \sum\limits_{i = 1}^{m} {\tilde{\mu }_{t} P_{it} = - \sum\limits_{t}^{{}} {\tilde{\mu }_{t} d_{t}^{\prime } = 0} } } $$

Therefore, the sentence “b” is equal to zero.

So \( U\tilde{Y} - V\tilde{X} + W^{\prime \prime } \tilde{X} + W^{\prime } \tilde{Y} = 0 \) and the desirable result is obtained.□

Appendix B

2.1 Proof of the Theorem (2)

With respect to Theorem (1), Dp is non-dominated strong efficient frontier ofDMUp, and considering Definition (1) Least L1-distance of DMUpfrom Dpis equal to:

$$ \begin{aligned} & Min\left\{ {\left\| {\left( {\begin{array}{*{20}c} X \\ Y \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {X_{p} } \\ {Y_{p} } \\ \end{array} } \right)} \right\|_{1} ;\left( {\begin{array}{*{20}c} X \\ Y \\ \end{array} } \right) \in D_{p} } \right\} \\ & \quad = Min\left\{ {\left\| {\left( {\begin{array}{*{20}c} {\sum\limits_{j \in E} {\lambda_{j} x_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} P_{t} } } \\ {\sum\limits_{j \in E} {\lambda_{j} y_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} Q_{t} } } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {X_{p} } \\ {Y_{p} } \\ \end{array} } \right)} \right\|_{1} ;\left( {\begin{array}{*{20}c} {\sum\limits_{j \in E} {\lambda_{j} x_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} P_{t} } } \\ {\sum\limits_{j \in E} {\lambda_{j} y_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} Q_{t} } } \\ \end{array} } \right) \in D_{p} } \right\} \\ & \quad = Min\left\{ {\left| {\sum\limits_{j \in E} {\lambda_{j} x_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} P_{t} } - X_{p} } \right| + \left| {\sum\limits_{j \in E} {\lambda_{j} y_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t} Q_{t} - Y_{p} } } \right|} \right\} \\ \quad s.t.\quad (7.1) - (7.15) \\ & \quad = Min\left\{ {\left| {S^{ - } } \right| + \left| {S^{ + } } \right|} \right\} \\ \quad s.t.\quad (7.1) - (7.15) \\ \end{aligned} $$
$$ \begin{aligned} & {\text{since }}\left( {S^{ - } , S^{ + } } \right) \ge 0; \\ & \quad = Min1S^{ - } + 1S^{ + } = Z^{*}_{p} \\ & \quad s.t.\begin{array}{*{20}c} {} & {(7.1) - (7.15)} \\ \end{array} \\ \end{aligned} $$

Appendix C

3.1 Proof of Theorem (3)

Let DMUp is efficient and \( (\lambda^{*} ,d^{*} ,d^{\prime *} ,\mu^{*} ,S^{ - *} ,S^{ + *} ,w^{\prime *} ,w^{\prime \prime *} ) \) is an optimal solution of model (7), evaluating DMUp. In contrast, suppose \( Z_{p}^{*} \ne 0 \), then at least one of the component of vector (\( S ^{* - } , S^{* + } \)) is positive. Hence

$$ \left( {\begin{array}{*{20}c} { - \left( {\sum\limits_{j \in E} {\lambda *_{j} x_{j} } + \sum\limits_{t = 1}^{L} {\mu *_{t} P_{t} } } \right)} \\ {\sum\limits_{j \in E} {\lambda *_{j} y_{j} } + \sum\limits_{t = 1}^{L} {\mu *_{t} Q_{t} } } \\ \end{array} } \right)\begin{array}{*{20}c} \ge \\ \ne \\ \end{array} \left( {\begin{array}{*{20}c} { - X_{p} } \\ {Y_{p} } \\ \end{array} } \right) $$

Which means DMUp is dominated by \( \left( {\begin{array}{*{20}c} { - \left( {\sum\limits_{j \in E} {\lambda_{j}^{*} x_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t}^{*} P_{t} } } \right)} \\ {\sum\limits_{j \in E} {\lambda_{j}^{*} y_{j} } + \sum\limits_{t = 1}^{L} {\mu_{t}^{*} Q_{t} } } \\ \end{array} } \right) \), and this is in contradiction with the assumption that DMUp is efficient.

Conversely, let \( Z_{p}^{*} = 0 \). Regarding Theorem (2), \( Z_{p}^{*} \) is the closest distance of DMUp from DP, and considering Theorem (1), DP is the set of points on the frontier which dominate DMUp. Accordingly, the distance between DMUp and the set of efficient and dominated points is zero, which means DMUp is efficient.□

Appendix D

4.1 Proof of Lemma (1)

Evaluating DMUp, suppose that (λ*μ*, \( S^{ - *} , S^{ + *} \)) is the optimal solution of model (8), and (V*U*, \( W^{\prime *} \), \( W^{\prime \prime *} \)) is its corresponding dual multipliers vector. According to the Complementary Slackness Theorem, for each \( \lambda_{j}^{*} > 0 \), the corresponding dual constraint is binding, that is [respecting model (9)]:

$$ \begin{array}{*{20}c} {\tilde{U}Y_{j} - \tilde{V}X_{j} + \tilde{W}^{\prime \prime } X_{j} + \tilde{W}^{\prime } Y_{j} = 0} & {} & {} \\ \end{array} $$

Then we define \( \begin{array}{*{20}c} {\gamma_{j}^{*} } & {,d_{j}^{*} } \\ \end{array} \) as follows:

$$ \gamma^{*}_{j} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\tilde{\lambda }_{j} > 0} \hfill \\ 1 \hfill & {o.w.} \hfill \\ \end{array} ,\quad d_{j}^{*} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\lambda_{j}^{*} > 0} \hfill \\ { - U^{*} Y_{j} + V^{*} X_{j} - W^{*\prime \prime } X_{j} - W^{*\prime } Y_{j} } \hfill & {o.w.} \hfill \\ \end{array} } \right.} \right. $$

Similarly, according to the Complementary Slackness Theorem for each \( \mu_{t}^{*} > 0 \), the corresponding dual constraint is binding, that is:

$$ \exists v_{i}^{*} \ge 1,u_{r}^{*} \ge 1,w^{*\prime } \ge 0,w^{*\prime \prime } \ge 0\quad s.t.\quad \sum\limits_{r = 1}^{s} {u_{r}^{*} Q_{rt} - \sum\limits_{i = 1}^{m} {v_{i}^{*} P_{it} + \sum\limits_{r = 1}^{s} {w_{r}^{*\prime } P_{rt} } + } \sum\limits_{i = 1}^{m} {w_{i}^{*\prime \prime } Q_{it} } = 0} $$

and we define:

$$ \gamma_{t}^{*\prime } = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\mu_{t}^{*} > 0} \hfill \\ 1 \hfill & {o.w.} \hfill \\ \end{array} } \right.,\quad d_{t}^{*\prime } = \left\{ {\begin{array}{*{20}l} 0 \hfill & {\mu_{t} > 0} \hfill \\ { - \sum\limits_{r = 1}^{s} {u_{r}^{*} Q_{rt} + \sum\limits_{i = 1}^{m} {v_{i}^{*} P_{it} - \sum\limits_{r = 1}^{s} {w_{r}^{*\prime } P_{rt} } - } \sum\limits_{i = 1}^{m} {w_{i}^{*\prime \prime } Q_{it} } } } \hfill & {o.w.} \hfill \\ \end{array} } \right. $$

Therefore,(λ*μ*S−*S+*V*U*W′*W′′*γ*γ*d*d′*) is a feasible solution for DMUp in model(7).□

Appendix E

5.1 Proof of Lemma (2)

Regarding the proof of Lemma (1) and as (λ*μ*S−*S+*V*U*W′*W′′*γ′*γ*d*d′*) is a feasible solution for model (7) and since the objective function of model (7) is \( Min\left\{ {\sum\nolimits_{i = 1}^{m} {s_{i}^{ - } + \sum\nolimits_{r = 1}^{s} {s_{r}^{ + } } } } \right\} \), so \( \gamma_{p}^{*} = \sum\nolimits_{i = 1}^{m} {s_{i}^{ - *} } + \sum\nolimits_{r = 1}^{s} {s_{r}^{ + *} } \) is an upper bound for model (7).□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razipour-GhalehJough, S., Hosseinzadeh Lotfi, F., Jahanshahloo, G. et al. Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis. Ann Oper Res 288, 755–787 (2020). https://doi.org/10.1007/s10479-019-03166-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03166-6

Keywords

Navigation