Skip to main content
Log in

An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems

  • S.I.: MOPGP 2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2021

This article has been updated

Abstract

This paper presents an exact scalarization method to solve bi-objective integer linear optimization problems. This method uses diverse reference points in the iterations, and it is free from any kind of a priori chosen weighting factors. In addition, two new adapted scalarization methods from literature and the modified Tchebycheff method are studied. Each one of them results in different ways to obtain the Pareto frontier. Computational experiments were performed with random real size instances of two special problems related to the manufacturing industry, which involve lot sizing and cutting stock problems. Extensive tests confirmed the very good performance of the new scalarization method with respect to the computational effort, the number of achieved solutions, the ability to achieve different solutions, and the spreading and spacing of solutions at the Pareto frontier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  • Aliano Filho, A., Moretti, A. C., & Pato, M. V. (2018). A comparative study of exact methods for the bi-objective integer one-dimensional cutting stock problem. Journal of the Operational Research Society, 69(1), 91–107.

    Google Scholar 

  • Anthony, P., Xavier, G., & Ehrgott, M. (2009). Computational results for four exact methods to solve the three-objective assignment problem. In Multiobjective programming and goal programming (pp. 79–88). Berlin: Springer

  • Araujo, S. A., & Arenales, M. N. (2000). Problema de dimensionamento de lotes monoestágio com restrição de capacidade: modelagem, método de resolução e resultados computacionais. Pesquisa Operacional, 20, 287–306.

    Google Scholar 

  • Ben-Daya, M., Darwish, M., & Ertogral, K. (2008). The joint economic lot sizing problem: Review and extensions. European Journal of Operational Research, 185(2), 726–742.

    Google Scholar 

  • Benson, H. (1978). Existence of efficient solutions for vector maximization problems. Journal of Optimization Theory and Applications, 26(4), 569–580.

    Google Scholar 

  • Benson, H. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. Journal of Global Optimization, 13(1), 1–24.

    Google Scholar 

  • Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). An exact \(\varepsilon \)-constraint method for bi-objective combinatorial optimization problems: Application to the traveling salesman problem with profits. European Journal of Operational Research, 194(1), 39–50.

    Google Scholar 

  • Bowman, V. (1976). On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In H. Thieriez (Ed.), Multiple criteria decision making (Vol. 130)., Lecture notes in economics and mathematical systems Berlin: Springer.

    Google Scholar 

  • Branke, J., Deb, K., Miettinen, K., & Slowiński, R. (2008). Multiobjective optimization: Interactive and evolutionary approaches (Vol. 5252)., Lecture notes in computer science Berlin: Springer.

    Google Scholar 

  • Clímaco, J., Ferreira, C., & Captivo, M. E. (1997a). Multicriteria integer programming: An overview of the different algorithmic approaches. In Multicriteria analysis: Proceedings of the XIth international conference on MCDM, 1–6 August 1994, Coimbra, Portugal (pp. 248–258). Berlin: Springer.

  • Clímaco, J., Ferreira, C., & Captivo, M. E. (1997b). Multicriteria integer programming: An overview of the different algorithmic approaches. In J. Clímaco (Ed.), Multicriteria analysis (pp. 248–258). Berlin: Springer.

    Google Scholar 

  • Cohon, J. L. (2003). Multiobjective programming and planning. Mineola, NY: Dover Publications. (Originally published: New York: Academic Press, 2003. in series: Mathematics in Science and Engineering. With new pref.).

    Google Scholar 

  • Collette, Y., & Siarry, P. (2005). Three new metrics to measure the convergence of metaheuristics towards the pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Computers and Operations Research, 32(4), 773–792.

    Google Scholar 

  • Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.

    Google Scholar 

  • Dächert, K., Gorski, J., & Klamroth, K. (2012). An augmented weighted Tchebycheff method with adaptively chosen parameters for discrete bicriteria optimization problems. Computational and Operational Research, 39(12), 2929–2943.

    Google Scholar 

  • Dai, R., & Charkhgard, H. (2018). A two-stage approach for bi-objective integer linear programming. Operations Research Letters, 46(1), 81–87.

    Google Scholar 

  • Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631–657.

    Google Scholar 

  • Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403–449). Boston: Springer.

  • Deb, K., & Kalyanmoy, D. (2001). Multi-objective optimization using evolutionary algorithms. New York, NY: Wiley.

    Google Scholar 

  • Deb, K. & Sundar, J. (2006). Reference point based multi-objective optimization using evolutionary algorithms. In Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO ’06 (pp. 635–642). New York, NY: ACM.

  • Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4), 425–460.

    Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2002). Multiobjective combinatorial optimization—Theory, methodology, and applications (pp. 369–444). Boston, MA: Springer.

    Google Scholar 

  • Gau, T., & Wascher, G. (1995). CUTGEN: A problem generator for the standard one-dimensional cutting stock problem. European Journal of Operational Research, 84(3), 572–579.

    Google Scholar 

  • Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9, 848–859.

    Google Scholar 

  • Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the cutting-stock problem—part II. Operations Research, 11, 863–888.

    Google Scholar 

  • Golfeto, R. R., Moretti, A. C., & Salles, L. L. N. (2009). A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem. Pesquisa Operacional (impresso), 9, 365–382.

    Google Scholar 

  • Karimi, B., Ghomi, S. F., & Wilson, J. (2003). The capacitated lot sizing problem: A review of models and algorithms. Omega, 31(5), 365–378.

    Google Scholar 

  • Kettani, O., Aouniïd, B., & Martel, J. M. (2004). The double role of the weight factor in the goal programming model. Computers and Operations Research, 31(11), 1833–1845.

    Google Scholar 

  • Kim, I., & de Weck, O. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2), 149–158.

    Google Scholar 

  • Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear programming problem. European Journal of Operational Research, 9(4), 378–385.

    Google Scholar 

  • Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02 (Vol. 1, pp. 711–716). IEEE.

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942.

    Google Scholar 

  • Lazimy, R. (2013). Interactive polyhedral outer approximation (IPOA) strategy for general multiobjective optimization problems. Annals of Operations Research, 210(1), 73–99.

    Google Scholar 

  • Luque, M. (2015). Modified interactive Tchebyshev algorithm (MICA) for non-convex multiobjective programming. Optimization Letters, 9(1), 173–187.

    Google Scholar 

  • Luque, M., Lopez-Agudo, L., & Marcenaro-Gutierrez, O. (2015). Equivalent reference points in multiobjective programming. Expert Systems with Applications, 42(4), 2205–2212.

    Google Scholar 

  • Luque, M., Miettinen, K., Eskelinen, P., & Ruiz, F. (2009). Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega, 37(2), 450–462.

    Google Scholar 

  • Luque, M., Miettinen, K., Ruiz, A. B., & Ruiz, F. (2012). A two-slope achievement scalarizing function for interactive multiobjective optimization. Computers and Operations Research, 39(7), 1673–1681.

    Google Scholar 

  • Luque, M., Ruiz, F., & Steuer, R. E. (2010). Modified interactive Tchebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research, 204(3), 557–564.

    Google Scholar 

  • Madsen, O. B., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple objectives. Annals of Operations Research, 60(1), 193–208.

    Google Scholar 

  • Messac, A., Ismail-Yahaya, A., & Mattson, C. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86–98.

    Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization., volume 12 of International series in operations research and management science Dordrecht: Kluwer.

    Google Scholar 

  • Miettinen, K., Eskelinen, P., Luque, M., & Ruiz, F. (2009). On the use of preferential weights in interactive reference point based methods. In Multiobjective programming and goal programming (pp. 211–220). Berlin: Springer.

  • Molina, J., Santana, L. V., Hernández-Díaz, A. G., Coello, C. A. C., & Caballero, R. (2009). g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2), 685–692.

    Google Scholar 

  • Neumayer, P., & Schweigert, D. (1994). Three algorithms for bicriteria integer linear programs. Operations Research Spektrum, 16(4), 267–276.

    Google Scholar 

  • Ouaïl, F. Z., & Chergui, M. E. A. (2018). A branch-and-cut technique to solve multiobjective integer quadratic programming problems. Annals of Operations Research, 267(1–2), 431–446.

    Google Scholar 

  • Özlen, M., & Azizoğlu, M. (2009). Multi-objective integer programming: A general approach for generating all non-dominated solutions. European Journal of Operational Research, 199(1), 25–35.

    Google Scholar 

  • Poldi, K. C., & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths. Computers and Operations Research, 36, 2074–2081.

    Google Scholar 

  • Ralphs, T. K., Saltzman, M. J., & Wiecek, M. M. (2006). An improved algorithm for solving biobjective integer programs. Annals of Operations Research, 147(1), 43–70.

    Google Scholar 

  • Ruzika, S., & Wiecek, M. M. (2003). A survey of approximation methods in multiobjective programming. Journal of Optimization Theory and Applications, 126(3), 473–501.

    Google Scholar 

  • Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. Journal of Optimization Theory and Applications, 126(3), 473–501.

    Google Scholar 

  • Sawik, T. (2007). A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing. European Journal of Operational Research, 180(3), 1060–1075.

    Google Scholar 

  • Sayin, S., & Kouvelis, P. (2005). The multiobjective discrete optimization problem: A weighted min-max two-stage optimization approach and a bicriteria algorithm. Management Science, 51(10), 1572–1581.

    Google Scholar 

  • Schandl, B., Klamroth, K., & Wiecek, M. (2001). Norm-based approximation in bicriteria programming. Computational Optimization and Applications, 20(1), 23–42.

    Google Scholar 

  • Shao, L., & Ehrgott, M. (2016). Discrete representation of non-dominated sets in multi-objective linear programming. European Journal of Operational Research, 255(3), 687–698.

    Google Scholar 

  • Shim, H. S., Lee, S. H., & Kang, B. S. (2017). Pareto front generation for bridge deck management system using bi-objective optimization. KSCE Journal of Civil Engineering, 21(5), 1563–1572.

    Google Scholar 

  • Shukla, P. K. (2007). On the normal boundary intersection method for generation of efficient front (pp. 310–317). Berlin: Springer.

    Google Scholar 

  • Solanki, R. (1991). Generating the noninferior set in mixed integer biobjective linear programs: An application to a location problem. Computers and Operations Research, 18(1), 1–15.

    Google Scholar 

  • Steuer, R., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(3), 326–344.

    Google Scholar 

  • Sylva, J., & Crema, A. (2004). A method for finding the set of non-dominated vectors for multiple objective integer linear programs. European Journal of Operational Research, 158(1), 46–55.

    Google Scholar 

  • Ustun, O., & Demirtas, E. A. (2008). An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection. Omega, 36(4), 509–521. (Special Issue on Logistics: New Perspectives and Challenges.).

    Google Scholar 

  • Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In Multiple criteria decision making theory and application (pp. 468–486). Berlin: Springer.

  • Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers and Industrial Engineering, 48(2), 409–425.

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous reviewers for their helpful comments. In addition, we thank the Federal Technological University of Parana for the support of this research. The research of Margarida Vaz Pato was supported by National Funding from FCT - Fundação para Ciência e a Tecnologia, Portugal, under Project UID/MAT/04561/2019 and UID/Multi/00491/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Aliano Filho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendixes A.1 and A.2 consider the following illustrative instance for an integer linear bi-objective problem.

$$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} z(x)=(c^T x,d^Tx)\\ \text {subject to}&{} Ax=b\\ &{} x \in {\mathbb {Z}}_+^6, \end{array} \end{aligned}$$
(12)

where \(c^T=[-5 \,\,\, 2]\), \(d^T=[1 \,\, -4]\), \(A=[{\bar{A}}\, \, |\, \, I_4]\), \(b=[3,6,8,4]^T\), \(I_4\) is the identity matrix of dimension 4, and \({\bar{A}}^T=\left[ \begin{array}{cccc} -1&{} 1&{} 1&{} 0 \\ 1&{} 0&{} 1&{} 1 \end{array} \right] \). Let \(X=\{ x \in {\mathbb {Z}}_+^6| Ax=b\}\) be the feasible set of this problem.

1.1 Numerical example for MRV method

Example 1

Consider \(\ell =100\). This means that we expect to obtain at maximum 100 non-dominated vectors.

  • Calculation of lexicographic vectors: First, we obtain the lexicographic vectors \(z^{\text {lex}_1}=A=(-30,6)^T\) and \(z^{\text {lex}_2}=B=(3,-15)^T\) individually optimizing the objectives \(z_1(x)\) and \(z_2(x)\), respectively, and cheeking they if are dominated vectors.

    We calculate \(\delta _1\) and \(\delta _2\) as follows:

    $$\begin{aligned} \delta _1 = \frac{B_1-A_1}{100}=0.33 \quad \text {and} \quad \delta _2=\frac{B_2-A_2}{100}=0.21. \end{aligned}$$

    Let \(t=2\) and go to the next step.

  • Iteration 1: first, \(R'=(-30,-15)^T+(0.33,0.21)^T=(-29.67,-14.79)^T\) and \(N'=(3,6)^T-(0.33,0.21)^T=(2.67,5.79)\).

    We solve Problem (3) given by:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -29.67 \leqq z_1(x) \leqq 2.67\\ &{} -14.79 \leqq z_2(x) \leqq 5.79 \\ &{} z_1(x)-(-29.79) \leqq u \\ &{} z_2(x)-(-14.67) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    whose optimal solution is a Pareto optimal solution corresponding to the objective vector \(C=(-19,-7)^T\). Let \(t=3\).

  • Iteration 2: We organize the non-dominated vectors already determined, that is, \(A=(-30,6)^T\), \(B=(-19,-7)^T\), \(C=(3,-15)^T\). We consider the consecutive vectors A and B, hence \(R'=(-30,-7)^T+(0.33,0.21)^T=(-29.67,-6.79)^T\) and \(N'=(-19,6)^T-(0.33,0.21)^T=(-19.33,5.79)^T\) and solve the subproblem:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -29.67 \leqq z_1(x) \leqq -19.33\\ &{} -6.79 \leqq z_2(x) \leqq 5.79 \\ &{} z_1(x)-(-29.67) \leqq u \\ &{} z_2(x)-(-6.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    whose solution corresponds to the objective vector \(H=(-26,-2)^T\). Considering the consecutive non-dominated vectors B and C, let \(A \leftarrow B\) and \(B \leftarrow C\), we have \(R=(-19,-15)^T\) and \(N=(3,-7)^T\) and so \(R'=(-18.67,-14.79)^T\) and \(N'=(2.67,-7.21)^T\). A new subproblem must be solved:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -18.67 \leqq z_1(x) \leqq 2.67\\ &{} -14.79 \leqq z_2(x) \leqq -7.21 \\ &{} z_1(x)-(-18.67) \leqq u \\ &{} z_2(x)-(-14.79) \leqq u \\ &{} x \in X, \, u \geqq 0. \end{array} \end{aligned}$$

    Its solution provides the objective vector \(C=(-7,-13)^T\), and there are \(t=5\) non-dominated vectors.

  • Iteration 3: Let us order the non-dominated vectors determined, that is, \(A=(-30,6)^T\), \(B=(-26,-2)^T\), \(C=(-19,-7)^T\), \(D=(-7,-13)^T\) and \(E=(3,-15)^T\). Hence, considering the first pair of consecutive vectors, we have \(R'=(-29.67,-1.79)^T\), \(N'=(-26.33,6.21)^T\), and the new subproblem to be solved is the following:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -29.67 \leqq z_1(x) \leqq -26.33\\ &{} -1.79 \leqq z_2(x) \leqq 6.21 \\ &{} z_1(x)-(-29.67) \leqq u \\ &{} z_2(x)-(-26.33) \leqq u \\ &{} x \in X, \, u \geqq 0. \end{array} \end{aligned}$$

    It provides a solution whose objective vector is \(F=(-28,2)^T\). Now, \(A \leftarrow B\) and \(B \leftarrow C\) and thereby \(R'=(-25.67,-6.79)^T\) and \(N'=(-19.33,1.79)^T\). We solve the subproblem:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -25.67 \leqq z_1(x) \leqq -19.33\\ &{} -6.79 \leqq z_2(x) \leqq 1.79 \\ &{} z_1(x)-(-25.67) \leqq u \\ &{} z_2(x)-(-6.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    whose optimal solution corresponds to the objective vector \(G=(-21,-3)^T\). Consequently, \(A \leftarrow C\) and \(B \leftarrow D\) and the new reference vectors are \(R'=(-18.67,-12.79)^T\) and \(N'=(-7.33,-7.21)^T\). The new subproblem is given by:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -18.67 \leqq z_1(x) \leqq -7.33\\ &{} -12.79 \leqq z_2(x) \leqq -7.21 \\ &{} z_1(x)-(-18.67) \leqq u \\ &{} z_2(x)-(-12.79) \leqq u \\ &{} x \in X, \, u \geqq 0. \end{array} \end{aligned}$$

    This subproblem has an optimal solution whose associated objective vector is \(H=(-14,-8)^T\). Let \(A \leftarrow D\) and \(B \leftarrow E\) and consequently, \(R'=(-6.67,-14.79)^T\) and \(N'=(2.67,-13.21)^T\), thus originating the following subproblem:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -6.67 \leqq z_1(x) \leqq 2.67\\ &{} -14.79 \leqq z_2(x) \leqq -13.21 \\ &{} z_1(x)-(-6.67) \leqq u \\ &{} z_2(x)-(-14.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    which provides the objective vector \(I=(-2,-14)^T\). Now, we have \(t=9\) non-dominated vectors.

  • Iteration 4: Let us sort all the vectors already determined, that is, \(A=(-30,6)^T\), \(B=(-28,2)^T\), \(C=(-26,-2)^T\), \(D=(-21,-3)^T\), \(E=(-19,-7)^T\), \(F=(-14,-8)^T\), \(G=(-7,-13)^T\), \(H=(-2,-14)^T\) and \(I=(3,-15)^T\). We have as reference vectors \(R'=(-29.67,2.21)^T\) and \(N'=(-28.33,5.79)^T\), thus resulting the following subproblem:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -29.67 \leqq z_1(x) \leqq -28.33\\ &{} 2.21 \leqq z_2(x) \leqq 5.79 \\ &{} z_1(x)-(-29.67) \leqq u \\ &{} z_2(x)-(2.21) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    which is infeasible. The next four subproblems are infeasible. For the fifth problem, we have \(R'=(-13.67,-12.79)^T\) and \(N'=(-7.33,-8.21)^T\). Now, the subproblem to be solved is:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -13.67 \leqq z_1(x) \leqq -7.33\\ &{} -12.79 \leqq z_2(x) \leqq -8.21 \\ &{} z_1(x)-(-13.67) \leqq u \\ &{} z_2(x)-(-12.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    It provides a Pareto optimal solution whose associated objective vector is \(J=(-12,-12)^T\). The other subproblems obtained from the consecutive vectors already found, are infeasible. Then, we update \(t=10\).

  • Iteration 5: We sort all the non-dominated vectors determined: \(A=(-30,6)^T\), \(B=(-28,2)^T\), \(C=(-26,-2)^T\), \(D=(-21,-3)^T\), \(E=(-19,-7)^T\), \(F=(-14,-8)^T\), \(G=(-12,-12)^T\), \(H=(-7,-13)^T\), \(I=(-2,-14)^T\) and \(J=(3,-15)^T\). The first five subproblems determined were already checked in the previous iteration and are infeasible. It remains to analyze the sixth subproblem, hence \(A \leftarrow F\) and \(B \leftarrow G\), whose modified reference vectors are \(R'=(-13.67,-11.79)^T\) and \(N'=(-12.33,-8.21)^T\). Now we must solve the subproblem:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -13.67 \leqq z_1(x) \leqq -12.33\\ &{} -11.79 \leqq z_2(x) \leqq -8.21 \\ &{} z_1(x)-(-13.67) \leqq u \\ &{} z_2(x)-(-11.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    which is infeasible. For the seventh subproblem, \(A \leftarrow G\) and \(B \leftarrow H\), and, consequently, \(R'=(-11.67,-12.79)^T\) and \(N'=(-13.33,-12.21)^T\). The respective subproblem is the following:

    $$\begin{aligned} \begin{array}{lll} \text {Minimize} &{} u \\ \text {subject to}&{} -11.67 \leqq z_1(x) \leqq -13.33\\ &{} -12.79 \leqq z_2(x) \leqq -12.21 \\ &{} z_1(x)-(-11.67) \leqq u \\ &{} z_2(x)-(-12.79) \leqq u \\ &{} x \in X, \, u \geqq 0, \end{array} \end{aligned}$$

    which is also infeasible. In the previous iteration, it was verified that the nine subproblems are infeasible, thus attaining the stopping criterion for this procedure and with all the non-dominated vectors determined. The set of all non-dominated vectors for the problem instance given in this example is

    $$\begin{aligned} \begin{array}{lll} \displaystyle Z^*&{}=&{}\left\{ \displaystyle \left[ \begin{array}{c} -30 \\ 6 \end{array} \right] , \left[ \begin{array}{c} -28 \\ 2 \end{array} \right] ,\left[ \begin{array}{c} -26 \\ -2 \end{array} \right] ,\left[ \begin{array}{c} -21 \\ -3 \end{array} \right] , \right. \\ &{} &{}\displaystyle \left[ \begin{array}{c} -19 \\ -7 \end{array} \right] ,\left[ \begin{array}{c} -14 \\ -8 \end{array} \right] ,\left[ \begin{array}{c} -12 \\ -12 \end{array} \right] ,\left[ \begin{array}{c} -7 \\ -13 \end{array} \right] , \\ &{} &{} \left. \left[ \begin{array}{c} -2 \\ -14 \end{array} \right] , \left[ \begin{array}{c} 3 \\ -15 \end{array} \right] \right\} . \end{array} \end{aligned}$$
    (13)

It is important to note the following aspect: in spite of using \(\ell =100\), thus expecting a maximum 100 iterations, the procedure only solved 10 subproblems up to optimality and tested nine for feasibility.

1.2 Numerical example for MB method

Example 2

The lexicographic vectors of Problem (12) are given by \(A=z^{\text {lex}_1}=(3,-15)^T\) and \(B=z^{\text {lex}_2}=(-30,6)^T\). Let \(\ell =21\), and, consequently, \(\delta _1=1.57\) and \(\delta _2=1.00\).

  • Iteration 1: For \(k=1\), \(z^0=(1.43,-14)\) and the following subproblem is solved:

    $$\begin{aligned} \begin{array}{lll} \text {Maximize} &{} l_1\\ \text {subject to}&{} 1.43 - z_1(x) = l_1 \\ &{} -14 - z_2(x) = l_2 \\ &{} x \in X, \ l_1 \geqq 0,\ l_2 \geqq 0, \end{array} \end{aligned}$$

    thus giving a new Pareto optimal solution, whose associated objective vector is \({z^1}=(-2,-14)^T\).

  • Iteration 2: \(k=2\), \(z^{0k}=(-3.57,-13)^T\), we have \(z^0=(1.43,-14)\) and the following subproblem is solved:

    $$\begin{aligned} \begin{array}{lll} \text {Maximize} &{} l_1\\ \text {subject to}&{} -3.57 - z_1(x) = l_1 \\ &{} -13 - z_2(x) = l_2 \\ &{} x \in X,\ l_1 \geqq 0,\ l_2 \geqq 0, \end{array} \end{aligned}$$

    thus determining a new Pareto optimal solution, whose associated objective vector is \({z^2}=(-7,-13)^T\).

By following the same steps, until the value of the second coordinate of \(z^0\) researches 6, all the non-dominated vectors for Problem (12) are determined, as presented in (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliano Filho, A., Moretti, A.C., Pato, M.V. et al. An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems. Ann Oper Res 296, 35–69 (2021). https://doi.org/10.1007/s10479-019-03317-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03317-9

Keywords

Navigation