Skip to main content
Log in

Price and cold-chain service decisions versus integration in a fresh agri-product supply chain with competing retailers

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies the price and cold-chain service decisions of a fresh agri-product supply chain with competing retailers and explores the impacts of (horizontal/vertical) integration on the decisions and profits. When the cold-chain service price is exogenous, we find that vertical integration is more effective to decrease quantity/quality loss of agri-products; the third-party logistics provider is better off with vertical integration while horizontal integration hurts both the third-party logistics provider and the supplier. We identify the conditions under which a retailer benefits from vertical or horizontal integration. Whether horizontal integration can improve the retailer’s profit depends on product substitutability. The profit of a retailer can be enhanced by vertical integration between the other retailer and the supplier if product substitutability is low. The endogenization of the cold-chain service price does not change the main results qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Improving the efficiency of the agri-products distribution system: principle and approach. http://epaper.gmw.cn/gmrb/html/2013-07/12/nw.D110000gmrb_20130712_3-11.htm?div=-1,2013.

  2. The rate of agri-products transported in a cold-chain with low temperature is only 5%. http://www.cnlenglian.com/news/show-htm-itemid-14394.html,2015.

  3. Dili Agri-product Group starts up a new business landscape by integrating Wenshi Fresh. http://epaper.syd.com.cn/sywb/html/2016-04/15/content_5366.htm?div=-1.

  4. Dili Group presses the “fast forward key” of development to enter fresh-product industry.

    http://mt.sohu.com/20161209/n475369488.shtml.

References

  • Aguezzoul, A. (2014). Third-party logistics selection problem: A literature review on criteria and methods. Omega,49(1), 69–78.

    Google Scholar 

  • Arya, A., & Mittendorf, B. (2013). The changing face of distribution channels: Partial forward integration and strategic investments. Production and Operations Management,22(5), 1077–1088.

    Google Scholar 

  • Autrey, R. L., Francesco, B., & Soberman, D. A. (2015). When gray is good: Gray markets and market-creating investments. Production and Operations Management,24(4), 547–559.

    Google Scholar 

  • Bhaskaran, S. R., & Gilbert, S. M. (2015). Implications of channel structure and operational mode upon a manufacturer’s durability choice. Production and Operations Management,24(7), 1071–1085.

    Google Scholar 

  • Bian, J., Lai, K. K., & Hua, Z. (2017). Service outsourcing under different supply chain power structures. Annals of Operations Research,248(1–2), 123–142.

    Google Scholar 

  • Bolandifar, E., Kouvelis, P., & Zhang, F. (2016). Delegation versus control in supply chain procurement under competition. Production and Operations Management,25(9), 1528–1541.

    Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., & Xu, X. (2010). Optimization and coordination of fresh product supply chains with freshness-keeping effort. Production and Operations Management,19(3), 261–278.

    Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., Xu, X., & Yu, G. (2013). Fresh-product supply chain management with logistics outsourcing. Omega,41(4), 752–765.

    Google Scholar 

  • Chen, T. H. (2017). Optimizing pricing, replenishment and rework decision for imperfect and deteriorating items in a manufacturer-retailer channel. International Journal of Production Economics,183, 539–550.

    Google Scholar 

  • Cho, S. H. (2014). Horizontal mergers in multitier decentralized supply chains. Management Science,60(2), 356–379.

    Google Scholar 

  • Ding, Y., & Jin, M. (2019). Service and pricing strategies in online retailing under carbon emission regulation. Journal of Cleaner Production,217, 85–94.

    Google Scholar 

  • Ge, Z., Hu, Q., & Xia, Y. (2014). Firms’ R&D cooperation behavior in a supply chain. Production and Operations Management,23(4), 599–609.

    Google Scholar 

  • Ghiami, Y., Williams, T., & Wu, Y. (2013). A two-echelon inventory model for a deteriorating item with stock-dependent demand, partial backlogging and capacity constraints. European Journal of Operational Research,231(3), 587–597.

    Google Scholar 

  • Gilbert, S. M., Yu, G., & Xia, Y. (2007). The strategic effects of a merger upon supplier interactions. Naval Research Logistics,54(2), 162–175.

    Google Scholar 

  • Glock, C. H., & Kim, T. (2015). The effect of forward integration on a single-vendor–multi-retailer supply chain under retailer competition. International Journal of Production Economics,164, 179–192.

    Google Scholar 

  • He, Y., Ray, S., & Yin, S. (2016). Group selling, product durability, and consumer behavior. Production and Operations Management,25(11), 1942–1957.

    Google Scholar 

  • He, Y., & Wang, S. (2012). Analysis of production-inventory system for deteriorating items with demand disruption. International Journal of Production Research,50(16), 4580–4592.

    Google Scholar 

  • He, Y., Zhang, J., Gou, Q., & Bi, G. (2018). Supply chain decisions with reference quality effect under the O2O environment. Annals of Operations Research,268(1–2), 273–292.

    Google Scholar 

  • He, Y., & Zhao, X. (2012). Coordination in multi-echelon supply chain under supply and demand uncertainty. International Journal of Production Economics,139(1), 106–115.

    Google Scholar 

  • Huang, H., Ke, H., & Wang, L. (2016). Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers. International Journal of Production Economics,178, 12–21.

    Google Scholar 

  • Huang, Y. S., Su, W. J., & Lin, Z. L. (2011). A study on lead-time discount coordination for deteriorating products. European Journal of Operational Research,215(2), 358–366.

    Google Scholar 

  • Jaggi, C. K., Gautam, P., & Khanna, A. (2018a). Inventory decisions for imperfect quality deteriorating items with exponential declining demand under trade credit and partially backlogged shortages. In P. K. Kapur, et al. (Eds.), Quality, IT and Business Operations (pp. 213–229). Singapore: Springer.

    Google Scholar 

  • Jaggi, C. K., Gautam, P., & Khanna, A. (2018b). Credit policies for deteriorating imperfect quality items with exponentially increasing demand and partial backlogging. In Handbook of Research on Promoting Business Process Improvement Through Inventory Control Techniques (pp. 90-106). IGI: Global.

  • Jaggi, C. K., Mamta, G., Amrina, K., & Sunil, T. (2019). Inventory and credit decisions for deteriorating items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash equilibrium solution. Annals of Operations Research,274(1–2), 309–329.

    Google Scholar 

  • Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Annals of Operations Research,248(1–2), 253–280.

    Google Scholar 

  • Khanna, A., Gautam, P., & Jaggi, C. K. (2017). Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing. International Journal of Mathematical, Engineering and Management Sciences,2(12), 110–124.

    Google Scholar 

  • Li, G., Li, L., & Sun, J. (2019). Pricing and service effort strategy in a dual-channel supply chain with showrooming effect. Transportation Research Part E: Logistics and Transportation Review,126, 32–48.

    Google Scholar 

  • Lin, Y. T., Parlaktürk, A. K., & Swaminathan, J. M. (2014). Vertical integration under competition: Forward, backward, or no integration? Production and Operations Management,23(1), 19–35.

    Google Scholar 

  • Liu, B., Cai, G., & Tsay, A. A. (2014). Advertising in asymmetric competing supply chains. Production and Operations Management,23(11), 1845–1858.

    Google Scholar 

  • Liu, X., Li, J., Wu, J., & Zhang, G. (2017). Coordination of supply chain with a dominant retailer under government price regulation by revenue sharing contracts. Annals of Operations Research,257(1–2), 587–612.

    Google Scholar 

  • Ma, J., Ai, X., Yang, W., & Pan, Y. (2019). Decentralization versus coordination in competing supply chains under retailers’ extended warranties. Annals of Operations Research,275(2), 485–510.

    Google Scholar 

  • Martín-Herrán, G., Sigué, S. P., & Zaccour, G. (2014). Downstream horizontal integration and multiunit dealership. International Transactions in Operational Research,21(1), 81–101.

    Google Scholar 

  • Parker, G. G., & Anderson, E. G. (2002). From buyer to integrator: The transformation of the supply-chain manager in the vertically disintegrating firm. Production and Operations Management,11(1), 75–91.

    Google Scholar 

  • Shao, J., Krishnan, H., & Mccormick, S. T. (2016). Gray markets and supply chain incentives. Production and Operations Management,25(11), 1807–1819.

    Google Scholar 

  • Tang, S. Y., Gurnani, H., & Gupta, D. (2014). Managing disruptions in decentralized supply chains with endogenous supply process reliability. Production and Operations Management,23(7), 1198–1211.

    Google Scholar 

  • Wang, C., & Chen, X. (2017). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research,248(1–2), 471–491.

    Google Scholar 

  • Wang, K. J., & Lin, Y. S. (2012). Optimal inventory replenishment strategy for deteriorating items in a demand-declining market with the retailer’s price manipulation. Annals of Operations Research,201(1), 475–494.

    Google Scholar 

  • Wang, L., Song, H., & Wang, Y. (2017a). Pricing and service decisions of complementary products in a dual-channel supply chain. Computers & Industrial Engineering,105, 223–233.

    Google Scholar 

  • Wang, C., Wang, W., & Huang, R. (2017b). Supply chain enterprise operations and government carbon tax decisions considering carbon emissions. Journal of Cleaner Production,152, 271–280.

    Google Scholar 

  • Wang, X., Wu, C., & Xu, W. (2015). When to buy or sell in supply chains with the presence of mergers. International Journal of Production Economics,163, 137–145.

    Google Scholar 

  • Wang, M., & Zhao, L. (2018). Cold chain investment and pricing decisions in a fresh food supply chain. International Transactions in Operational Research. https://doi.org/10.1111/itor.12564.

    Article  Google Scholar 

  • Wei, J., & Zhao, J. (2016). Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments. Annals of Operations Research,242(2), 505–528.

    Google Scholar 

  • Wu, Q., Mu, Y., & Feng, Y. (2015). Coordinating contracts for fresh product outsourcing logistics channels with power structures. International Journal of Production Economics,160, 94–105.

    Google Scholar 

  • Wu, J., Teng, J. T., & Skouri, K. (2018). Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits. Annals of Operations Research,264(1–2), 459–476.

    Google Scholar 

  • Xie, J. P., Liang, L., Liu, L. H., & Ieromonachou, P. (2017). Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains. International Journal of Production Economics,183, 528–538.

    Google Scholar 

  • Yan, X., Zhao, H., & Tang, K. (2015). Requirement or promise? An analysis of the first-mover advantage in quality contracting. Production and Operations Management,24(6), 917–933.

    Google Scholar 

  • Yang, L., & Tang, R. (2019). Comparisons of sales modes for a fresh product supply chain with freshness-keeping effort. Transportation Research Part E: Logistics and Transportation Review,125, 425–448.

    Google Scholar 

  • Yu, Y., & Xiao, T. (2017). Pricing and cold-chain service level decisions in a fresh agri-products supply chain with logistics outsourcing. Computers & Industrial Engineering,111, 56–66.

    Google Scholar 

  • Zhang, T., Choi, T. M., & Zhu, X. (2018a). Optimal green product’s pricing and level of sustainability in supply chains: Effects of information and coordination. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3084-8.

    Article  Google Scholar 

  • Zhang, J., Liu, G., Zhang, Q., & Bai, Z. (2015). Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract. Omega,56(3), 37–49.

    Google Scholar 

  • Zhang, Y., Rong, F., & Wang, Z. (2018b). Research on cold chain logistic service pricing-based on tripartite Stackelberg game. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3803-8.

    Article  Google Scholar 

  • Zhang, J., Wei, Q., Zhang, Q., & Tang, W. (2016). Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints. Computers & Industrial Engineering,95, 1–9.

    Google Scholar 

  • Zhou, Y. W., Cao, Z. H., & Zhong, Y. (2015). Pricing and alliance selection for a dominant retailer with an upstream entry. European Journal of Operational Research,243(1), 211–223.

    Google Scholar 

  • Zhu, X. (2016). Management the risks of outsourcing: Time, quality and correlated costs. Transportation Research Part E: Logistics and Transportation Review,90, 121–133.

    Google Scholar 

  • Zhu, J., Boyaci, T., & Ray, S. (2016). Effects of upstream and downstream mergers on supply chain profitability. European Journal of Operational Research,249(1), 131–143.

    Google Scholar 

Download references

Acknowledgement

This paper was partly supported by: (i) China National Funds for Distinguished Young Scientists under Grant 71425001; and (ii) the National Natural Science Foundation of China under Grants 71871112 and 71371093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiaojun Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Table 3

Under NI, from (3), we obtain \( \partial^{2} \pi_{ri} /\partial p_{i}^{2} = - 2 < 0 \); that is, \( \pi_{ri} \) is concave in \( p_{i} \). Solving the first-order conditions \( \partial \pi_{r1} /\partial p_{1} = 0 \) and \( \partial \pi_{r2} /\partial p_{2} = 0 \) for \( (p_{1} ,p_{2} ) \), we derive

$$ p_{1} (w_{1} ,w_{2} ,e) = (2a_{1} + \gamma a_{2} + 2c_{1} + \gamma c_{2} + 2w_{1} + \gamma w_{2} )/(4 - \gamma^{2} ) $$
(4)
$$ p_{2} (w_{1} ,w_{2} ,e) = (2a_{2} + \gamma a_{1} + 2c_{2} + \gamma c_{1} + 2w_{2} + \gamma w_{1} )/(4 - \gamma^{2} ) $$
(5)

where \( a_{1} = \rho (a + \beta e) \), \( a_{2} = (1 - \rho )(a + \beta e) \), \( \rho_{1} = \rho \), \( \rho_{2} = 1 - \rho \).

Substituting (4) and (5) into (2), we obtain \( \pi_{s} (w_{1} ,w_{2} ,e) \). Further, the Hessian matrix of \( \pi_{s} (w_{1} ,w_{2} ,e) \) over \( (w_{1} ,w_{2} ) \) is as follows:

$$ \begin{aligned} {\mathbf{H}} = & \left[ {\begin{array}{*{20}l} { - 2(2 - \gamma^{2} )/(4 - \gamma^{2} )} \hfill & {2\gamma /(4 - \gamma^{2} )} \hfill \\ {2\gamma /(4 - \gamma^{2} )} \hfill & { - 2(2 - \gamma^{2} )/(4 - \gamma^{2} )} \hfill \\ \end{array} } \right] \\ \left| {{\mathbf{H}}_{1} } \right| = & - 2(2 - \gamma^{2} )/(4 - \gamma^{2} ) < 0, \\ \left| {{\mathbf{H}}_{2} } \right| = & 4(2 - \gamma^{2} - \gamma )(2 - \gamma^{2} + \gamma )/(4 - \gamma^{2} )^{2} > 0. \\ \end{aligned} $$

Thus, H is negatively definite. Solving the first-order conditions \( \partial \pi_{s} (w_{1} ,w_{2} ,e)/\partial w_{1} = 0 \) and \( \partial \pi_{s} (w_{1} ,w_{2} ,e)/\partial w_{2} = 0 \) for \( (w_{1} ,w_{2} ) \), we derive

$$ w_{1} (e) = (a_{1} + \gamma a_{2} )/[2(1 - \gamma^{2} )] + (t + sr - c_{1} - sre)/2 $$
(6)
$$ w_{2} (e) = (a_{2} + \gamma a_{1} )/[2(1 - \gamma^{2} )] + (t + sr - c_{2} - sre)/2 $$
(7)

Substituting (6) and (7) into (1), we obtain \( \pi_{l} (e) \).

In addition, we can derive \( \partial^{2} \pi_{l} (e)/\partial e^{2} = - \lambda < 0 \); that is, \( \pi_{l} (e) \) is concave in e. Solving the first-order condition \( \partial \pi_{l} (e)/\partial e = 0 \) for e, we have

$$ e^{NI * } = t[\beta + 2(1 - \gamma )sr]/[2\lambda (2 - \gamma )] $$
(8)

\( e^{NI * } \le 1 \) is equivalent to \( \lambda \ge \hat{\lambda }^{NI} = t[\beta + 2(1 - \gamma )sr]/[2(2 - \gamma )] \). Substituting (8) into (4)–(7), we derive \( (w_{1}^{NI * } ,w_{2}^{NI * } ,p_{1}^{NI * } ,p_{2}^{NI * } ) \). Similarly, we can derive equilibrium outcomes under VI1, VI2 and HI, as shown in Table 3. □

Proof of Proposition 2 Part (1)

Based on \( e^{NI * } \), we can derive \( \partial e^{NI * } /\partial \gamma = t(\beta - 2sr)/[2\lambda (2 - \gamma )^{2} ] \). Obviously, if \( \beta > 2sr \), we obtain \( \partial e^{NI * } /\partial \gamma > 0 \); otherwise, \( \partial e^{NI * } /\partial \gamma < 0 \). Likewise, we can derive other results in Proposition 2. □

Proof of Proposition 3

From \( e^{NI * } \) and \( e^{HI * } \), we obviously derive \( e^{HI * } < e^{NI * } \). From \( e^{NI * } \) and \( e^{VI2 * } \), we obtain

$$ \begin{aligned} e^{VI2 * } - e^{NI * } = & t[(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]/(4\lambda ) - t(\beta + 2(1 - \gamma )sr)/(2\lambda (2 - \gamma )) \\ = & t\{ \beta [(2 - \rho + \gamma \rho )(2 - \gamma ) - 2] + sr[(2 - \gamma )(3 - 2\gamma - \gamma^{2} ) - 4(1 - \gamma )]\} /[4\lambda (2 - \gamma )] \\ = & t\{ (1 - \gamma )(2 - 2\rho + \gamma \rho )\beta + (1 - \gamma )^{2} (2 + \gamma )sr\} /[4\lambda (2 - \gamma )] > 0. \\ \end{aligned} $$

Then, we have \( e^{NI * } < e^{VI2 * } \). Likewise, we can show \( e^{NI * } < e^{VI1 * } \).

In addition, under VI2 and VI1, it is easy to obtain \( e^{VI1 * } \le e^{VI2 * } \) for \( \rho \in (0,0.5] \), and \( e^{VI2 * } < e^{VI1 * } \) for \( \rho \in (0.5,1) \). □

Proof of Proposition 4 Part (1)

From \( (w_{1}^{NI * } ,w_{1}^{VI2 * } ,w_{1}^{HI * } ) \) we have

$$ w_{1}^{NI * } - w_{1}^{VI2 * } = [\beta (\rho + \gamma - \gamma \rho ) - (1 - \gamma^{2} )sr](e^{NI * } - e^{VI2 * } )/[2(1 - \gamma^{2} )] $$

According to Proposition 3, we have \( e^{NI * } - e^{VI2 * } < 0 \). Hence, we obtain \( w_{1}^{VI2 * } \le w_{1}^{NI * } \) for \( \beta \le sr(1 - \gamma^{2} )/(\rho + \gamma - \gamma \rho ) \). Likewise, we can derive \( w_{1}^{NI * } \le w_{1}^{HI * } \) for \( \beta \le sr(1 - \gamma^{2} )/(\rho + \gamma - \gamma \rho ) \). In addition, we can obtain \( w_{1}^{HI * } < w_{1}^{NI * } < w_{1}^{VI2 * } \) for \( \beta > sr(1 - \gamma^{2} )/(\rho + \gamma - \gamma \rho ) \).

Similarly, we can demonstrate that \( w_{2}^{VI1 * } \le w_{2}^{NI * } \le w_{2}^{HI * } \) for \( \beta \le sr(1 - \gamma^{2} )/(1 - \rho + \gamma \rho ) \), and \( w_{2}^{HI * } < w_{2}^{NI * } < w_{2}^{VI1 * } \) for \( \beta > sr(1 - \gamma^{2} )/(1 - \rho + \gamma \rho ) \).

Part (2)

Based on Table 3, we obtain

$$ \begin{aligned} D^{NI * } - D^{HI * } & = \{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr \\ & \quad + \beta ]e^{NI * } \} /[2(2 - \gamma )] - \{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{HI * } \} /4 \\ & \quad > [a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{NI * } ]/4 \\ & \quad - [a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{HI * } ]/4 \\ & = [2(1 - \gamma )sr + \beta ](e^{NI * } - e^{HI * } )/4 \\ \end{aligned} $$

As \( e^{NI * } > e^{HI * } \) in Proposition 3, we can show \( D^{NI * } > D^{HI * } \).

Likewise, we obtain

$$ \begin{aligned} D^{VI2 * } - D^{NI * } & = \{ (2 - \rho + \gamma \rho )a - (1 - \gamma )c_{1} - (2 - \gamma - \gamma^{2} )c_{2} \\ & \quad - (3 - 2\gamma - \gamma^{2} )(t + sr) + [(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]e^{VI2 * } \} /4 \\ & \quad - \{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{NI * } \} /[2(2 - \gamma )] \\ & \quad > \{ (2 - \rho + \gamma \rho )a - (1 - \gamma )c_{1} - (2 - \gamma - \gamma^{2} )c_{2} - (3 - 2\gamma - \gamma^{2} )(t + sr) \\ & \quad + [(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]e^{VI2 * } \} /4 \\ & \quad - \{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{VI2 * } \} /[2(2 - \gamma )] \\ \end{aligned} $$

for \( e^{VI2 * } > e^{NI * } \) according to Proposition 3.

Thus,

$$ \begin{aligned} D^{VI2 * } - D^{NI * } > & (1 - \gamma )[(2 - 2\rho + \rho \gamma )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} - (2 - \gamma - \gamma^{2} )(t + sr) \\ & + [(2 - 2\rho + \rho \gamma )\beta + (2 - \gamma - \gamma^{2} )sr]e^{VI2 * } ]/[4(2 - \gamma )] = (1 - \gamma )D_{2}^{VI2 * } /(2 - \gamma ) > 0, \\ \end{aligned} $$

i.e., \( D^{VI2 * } > D^{NI * } . \) Overall, we obtain \( D^{HI * } < D^{NI * } < D^{VI2 * } \).□

Proof of Proposition 5 Part (1)

From Table 3, we obtain

$$ \begin{aligned} \pi_{l}^{NI * } - \pi_{l}^{HI * } & = t\{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{NI * } \} /[2(2 - \gamma )] \\ & \quad - t\{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{HI * } \} /4 + \lambda [(e^{HI * } )^{2} - (e^{NI * } )^{2} ]/2 \\ & \quad > t\{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{NI * } \} /[2(2 - \gamma )] \\ & \quad - t\{ a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) + [2(1 - \gamma )sr + \beta ]e^{HI * } \} /[2(2 - \gamma )] + \lambda [(e^{HI * } )^{2} - (e^{NI * } )^{2} ]/2 \\ & = t[2(1 - \gamma )sr + \beta ](e^{NI * } - e^{HI * } )/[2(2 - \gamma )] + \lambda [e^{HI * } - e^{NI * } ][e^{HI * } + e^{NI * } ]/2 \\ & = (e^{NI * } - e^{HI * } )\{ t[2(1 - \gamma )sr + \beta ]/[2(2 - \gamma )] - \lambda (e^{HI * } + e^{NI * } )/2\} \\ & \quad > (e^{NI * } - e^{HI * } )\{ t[2(1 - \gamma )sr + \beta ]/[2(2 - \gamma )] - \lambda e^{NI * } \} \\ & \quad > (e^{NI * } - e^{HI * } )\{ t(2(1 - \gamma )sr + \beta ) - t(\beta + 2(1 - \gamma )sr)\} /[2(2 - \gamma )] = 0 \\ \end{aligned} $$

Hence, we derive \( \pi_{l}^{HI * } < \pi_{l}^{NI * } \).

$$ \begin{aligned} \pi_{l}^{VI2 * } - \pi_{l}^{NI * } & = t \cdot \{ [(2 - \rho + \gamma \rho )a - (1 - \gamma )c_{1} - (2 - \gamma - \gamma^{2} )c_{2} - (3 - 2\gamma - \gamma^{2} )(t + sr) \\ & \quad + [(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]e^{VI2 * } ]/4 \\ & \quad - [a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) \\ & \quad + [2(1 - \gamma )sr + \beta ]e^{NI * } ]/[2(2 - \gamma )]\} + \lambda [(e^{NI * } )^{2} - (e^{VI2 * } )^{2} ]/2 \\ & \quad > t\{ [(2 - \rho + \gamma \rho )a - (1 - \gamma )c_{1} - (2 - \gamma - \gamma^{2} )c_{2} - (3 - 2\gamma - \gamma^{2} )(t + sr) \\ & \quad + [(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]e^{VI2 * } ]/4 \\ & \quad - [a - (1 - \gamma )(c_{1} + c_{2} ) - 2(1 - \gamma )(t + sr) \\ & \quad + [2(1 - \gamma )sr + \beta ]e^{VI2 * } ]/[2(2 - \gamma )]\} + \lambda [(e^{NI * } )^{2} - (e^{VI2 * } )^{2} ]/2 \\ = & t(1 - \gamma )[(2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} \\ & \quad - (2 - \gamma^{2} - \gamma )(t + sr) + [(2 - 2\rho + \gamma \rho )\beta \\ & \quad + (2 - \gamma^{2} - \gamma )sr]e^{VI2 * } ]/[4(2 - \gamma )] + \lambda (e^{NI * } + e^{VI2 * } )(e^{NI * } - e^{VI2 * } )/2 \\ & \quad > t(1 - \gamma )[(2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} \\ & \quad - (2 - \gamma^{2} - \gamma )(t + sr) + [(2 - 2\rho + \gamma \rho )\beta \\ & + (2 - \gamma^{2} - \gamma )sr]e^{VI2 * } ]/[4(2 - \gamma )] + \lambda e^{VI2 * } (e^{NI * } - e^{VI2 * } ) \\ & = t(1 - \gamma )[(2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} \\ & \quad - (2 - \gamma^{2} - \gamma )(t + sr) + [(2 - 2\rho + \gamma \rho )\beta \\ & \quad + (2 - \gamma^{2} - \gamma )sr]e^{VI2 * } ]/[4(2 - \gamma )] + t[(2 - \rho + \gamma \rho )\beta \\ & \quad + (3 - 2\gamma - \gamma^{2} )sr](e^{NI * } - e^{VI2 * } )/4 \\ & = t(1 - \gamma )[(2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} \\ & \quad - (2 - \gamma^{2} - \gamma )(t + sr)]/[4(2 - \gamma )] \\ & \quad + t\{ [(2 - \rho + \gamma \rho )\beta + (3 - 2\gamma - \gamma^{2} )sr]e^{NI * } /4 - [\beta + 2(1 - \gamma )sr]e^{VI2 * } /[2(2 - \gamma )]\} \\ & = t(1 - \gamma )[(2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} - (2 - \gamma^{2} - \gamma )(t + sr)]/[4(2 - \gamma )] \\ \end{aligned} $$

In this paper, we assume that the market demand of retailer 2 is positive under VI2 without the cold-chain service level, i.e.,

$$ (2 - 2\rho + \gamma \rho )a + \gamma c_{1} - (2 - \gamma^{2} )c_{2} - (2 - \gamma^{2} - \gamma )(t + sr) > 0. $$

Hence, we obtain \( \pi_{l}^{NI * } < \pi_{l}^{VI2 * } \). Overall, we obtain \( \pi_{l}^{HI * } < \pi_{l}^{NI * } < \pi_{l}^{VI2 * } \).

Part (2)

$$ \begin{aligned} \pi_{s}^{NI * } - \pi_{s}^{HI * } = & (w_{1}^{NI * } - t - sr + sre^{NI * } )D_{1}^{NI * } + (w_{2}^{NI * } - t - sr + sre^{NI * } )D_{2}^{NI * } \\ & - (w_{1}^{HI * } - t - sr + sre^{HI * } )D_{1}^{HI * } - (w_{2}^{HI * } - t - sr + sre^{HI * } )D_{2}^{HI * } \\ \end{aligned} $$

First, we obtain

$$ \begin{aligned} (w_{1}^{NI * } - t - sr + sre^{NI * } ) - (w_{1}^{HI * } - t - sr + sre^{HI * } ) = & (\rho + \gamma - \gamma \rho )(a + \beta e^{NI * } )/[2(1 - \gamma^{2} )] + (sre^{NI * } - t - sr - c_{1} )/2 \\ & - (\rho + \gamma - \gamma \rho )(a + \beta e^{HI * } )/[2(1 - \gamma^{2} )] - (sre^{HI * } - t - sr - c_{1} )/2 \\ = & (\rho + \gamma - \gamma \rho )(\beta e^{NI * } - \beta e^{HI * } )/[2(1 - \gamma^{2} )] + (sre^{NI * } - sre^{HI * } )/2 > 0. \\ \end{aligned} $$

Like the proof of Proposition 4(2), we can derive \( D_{1}^{NI * } > D_{1}^{HI * } \). Thus, we have

$$ (w_{1}^{NI * } - t - sr + sre^{NI * } )D_{1}^{NI * } - (w_{1}^{HI * } - t - sr + sre^{HI * } )D_{1}^{HI * } > 0. $$

Likewise, we can obtain \( (w_{2}^{NI * } - t - sr + sre^{NI * } )D_{2}^{NI * } - (w_{2}^{HI * } - t - sr + sre^{HI * } )D_{2}^{HI * } > 0 \).

Consequently, we have \( \pi_{s}^{HI * } < \pi_{s}^{NI * } \).□

Proofs of Propositions 6 and 7

The proofs of Propositions 6 and 7 are similar to those of Propositions 4 and 3, respectively. Here, we omit them. □

Proof of Table 4

Under NI, the Hessian matrix of \( \pi_{l} (t,e) \) over \( (t,e) \) is as follows:

$$ {\mathbf{\rm H}} = \left[ {\begin{array}{*{20}l} { - 2(1 - \gamma )/(2 - \gamma )} \hfill & {[\beta + 2(1 - \gamma )sr]/[2(2 - \gamma )]} \hfill \\ {[\beta + 2(1 - \gamma )sr]/[2(2 - \gamma )]} \hfill & { - \lambda } \hfill \\ \end{array} } \right]. $$

If \( \lambda > \hat{\lambda}_{E1}^{NI} = [\beta + 2(1 - \gamma )sr]^{2} /[8(1 - \gamma )(2 - \gamma )] \), then the Hessian matrix of \( \pi_{l} (t,e) \) is negatively definite. Solving the first-order conditions \( \partial \pi_{l} (t,e)/\partial t = 0 \) and \( \partial \pi_{l} (t,e)/\partial e = 0 \) for \( (t,e) \), we obtain \( e_{E}^{NI * } \) and \( t_{E}^{NI * } . \)

\( e_{E}^{NI * } \le 1 \) is equivalent to \( \lambda > \hbox{max} \{ \hat{\lambda}_{E2}^{NI} ,\hat{\lambda}_{E3}^{NI} \} \), and \( t_{E}^{NI * } < s \) is equivalent to \( \hat{a}_{E1}^{NI} < a < \hat{a}_{E2}^{NI} \). Further, similar to Table 3, we can complete the proof of Table 4. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xiao, T. & Feng, Z. Price and cold-chain service decisions versus integration in a fresh agri-product supply chain with competing retailers. Ann Oper Res 287, 465–493 (2020). https://doi.org/10.1007/s10479-019-03368-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03368-y

Keywords

Navigation