Skip to main content
Log in

Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains

  • S.I. : Design and Management of Humanitarian Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The studies on supply chain (SC) disruption management frequently assume the existence of some negative scenarios and suggest ways to proactively protect and reactively recover the SC operations and performance if such scenarios occur. Though, there is a paucity of research on how to support methodologically the detection of realistic disruption scenarios, ideally of different risk aversion degrees. The contribution of our study lies in a conceptualization of a new methodical approach to the detection of disruption scenarios, ripple effect dispersal and recovery paths in supply chains on the basis of structural genomes. The objective is to integrate and expand the existing knowledge gained isolated in robustness analysis and recovery planning into a comprehensive framework for building a theory as well as for managerial purposes. The outcomes of this research constitute a useful decision-making support tool that allows detecting disruption scenarios at different risk-aversion levels based on the quantification of the structural robustness with the use of the genome method and observing the scope of disruption propagation, i.e., the ripple effect. The advantage of using a robustness computation by the genome method is that this allows detecting both the disruption scenarios of different severity, the ripple effect dispersal, and the corresponding recovery paths. Our results can be of value for decision-makers to compare different supply chain structural designs regarding the robustness and to identify disruption scenarios that interrupt the supply chain operations to different extents. The scenario detection can be further used for identifying optimal reconfiguration paths to deploy proactive contingency and reactive recovery policies. We show a correlation between the risk aversion degree of disruption scenarios and the outcomes of the reconfiguration policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adenso-Díaz, B., Mar-Ortiz, J., & Lozano, S. (2018). Assessing supply chain robustness to links failure. International Journal of Production Research, 56(15), 5104–5117.

    Article  Google Scholar 

  • Altay, N., Gunasekaran, A., Dubey, R., & Childe, S. J. (2018). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within humanitarian setting: A dynamic capability view. Production Planning and Control, 29(14), 1158–1174.

    Article  Google Scholar 

  • Aven, T. (2017). How some types of risk assessments can support resilience analysis and management. Reliability Engineering and System Safety, 167, 536–543.

    Article  Google Scholar 

  • Baptiste, P., Kovalyov, M., Orlovich, Y., Werner, F., & Zverovich, I. (2017). Graphs with maximal induced matchings of the same size. Discrete Applied Mathematics, 216(Part I), 15–28.

    Article  Google Scholar 

  • Basole, R. C., & Bellamy, M. A. (2014). Supply network structure, visibility, and risk diffusion: A computational approach. Decision Sciences, 45(4), 1–49.

    Article  Google Scholar 

  • Blackhurst, J., Dunn, K. S., & Craighead, C. W. (2011). An empirically derived framework of global supply resiliency. Journal of Business Logistics, 32(4), 374–391.

    Article  Google Scholar 

  • Bode, C., & Wagner, S. M. (2015). Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of Operations Management, 36, 215–228.

    Article  Google Scholar 

  • Cats, O., Koppenol, G.-J., & Warnier, M. (2017). Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliability Engineering and System Safety, 167, 544–553.

    Article  Google Scholar 

  • Cavalcantea, I. M., Frazzon, E. M., Forcellinia, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86–97.

    Article  Google Scholar 

  • Chen, X., Xi, Z., & Jing, P. (2017). A unified framework for evaluating supply chain reliability and resilience. IEEE Transactions on Reliability, 66, 1144–1156.

    Article  Google Scholar 

  • Chopra, S., & Meindl, P. (2015). Supply chain management—Strategy, planning and operation (6th ed.). Harlow: Pearson Education.

    Google Scholar 

  • Cohen, Y., Naseraldin, H., & Pilati, F. (2019). Assembly systems in industry 4.0 era: A road map to understand assembly 4.0. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-019-04203-1.

    Article  Google Scholar 

  • Colbourn, C. J. (1987). The combinatorics of network reliability. New York: Oxford University Press.

    Google Scholar 

  • Colbourn, C. J. (1988). Edge-packings of graph and network reliability. Discrete Mathematics, 72, 49–61.

    Article  Google Scholar 

  • Cui, T., Ouyang, Y., & Shen, Z. J. M. (2010). Reliable facility location design under the risk of disruptions. Operations Research, 58(4-part-1), 998–1011.

    Article  Google Scholar 

  • Demirel, G., MacCarthy, B. L., Ritterskamp, D., Champneys A., & Gross, T. (2019). Identifying dynamical instabilities in supply networks using generalized modeling. Journal of Operations Management. https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1005. Accessed 2 Oct 2019.

  • Dolgui, A., Ivanov, D., & Rozhkov, M. (2019). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1627438.

    Article  Google Scholar 

  • Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., & Childe, S. J. (2015). The design of a responsive sustainable supply chain network under uncertainty. The International Journal of Advanced Manufacturing Technology, 80, 427–445.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, A., Blome, C., & Luo, Z. (2019a). Antecedents of resilient supply chains: An empirical study. IEEE Transactions on Engineering Management, 66(1), 8–19.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., Roubaud, D., & Foropon, C. (2019b). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1582820.

    Article  Google Scholar 

  • Giannoccaro, I., Nair, A., & Choi, T. (2018). The impact of control and complexity on supply network performance: An empirically informed investigation using NK simulation analysis. Decision Science, 49(4), 625–659.

    Article  Google Scholar 

  • He, J., Alavifard, F., Ivanov, D., & Jahani, H. (2018). A real-option approach to mitigate disruption risk in the supply chain. Omega: The International Journal of Management Science. https://doi.org/10.1016/j.omega.2018.08.008.

    Article  Google Scholar 

  • Hosseini, S., & Barker, K. (2016). A Bayesian network model for resilience-based supplier selection. International Journal of Production Economics, 180, 68–87.

    Article  Google Scholar 

  • Hosseini, S., & Ivanov, D. (2019). Resilience assessment of supply networks with disruption propagation considerations: A Bayesian network approach. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03350-8.

    Article  Google Scholar 

  • Hosseini, S., Ivanov, D., & Dolgui, A. (2019a). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E, 125, 285–307.

    Article  Google Scholar 

  • Hosseini, S., Morshedlou, N., Ivanov, D., Sarder, M. D., Barker, K., & Al Khaled, A. (2019b). Resilient supplier selection and optimal order allocation under disruption risks. International Journal of Produc-tion Economics. https://doi.org/10.1016/j.ijpe.2019.03.018.

    Article  Google Scholar 

  • Hu, X., Gurnani, H., & Wang, L. (2013). Managing risk of supply disruptions: Incentives for capacity restoration. Production and Operations Management, 22(1), 137–150.

    Article  Google Scholar 

  • Ivanov, D. (2018). Structural dynamics and resilience in supply chain risk management. New York: Springer.

    Book  Google Scholar 

  • Ivanov, D. (2019). “A blessing in disguise” or “as if it wasn’t hard enough already”: Reciprocal and aggravate vulnerabilities in the supply chain. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1634850.

    Article  Google Scholar 

  • Ivanov, D., & Dolgui, A. (2019). Low-certainty-need (LCN) supply chains: A new perspective in managing disruption risks and resilience. International Journal of Production Research, 57(15–16), 5119–5136.

    Article  Google Scholar 

  • Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning and Control (forthcoming).

  • Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019a). Digital supply chain twins: Managing the ripple effect, resilience and disruption risks by data-driven optimization, simulation, and visibility. In D. Ivanov, et al. (Eds.), Handbook of ripple effects in the supply chain (pp. 309–332). New York: Springer.

    Google Scholar 

  • Ivanov, D., Dolgui, A., & Sokolov, B. (Eds.). (2019b). Handbook of ripple effects in the supply chain. New York: Springer. ISBN 978-3-030-14301-5.

    Google Scholar 

  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019c). The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.

    Article  Google Scholar 

  • Ivanov, D., Dolgui, A., Sokolov, B., & Ivanova, M. (2017). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.

    Article  Google Scholar 

  • Ivanov, D., Pavlov, A., & Sokolov, B. (2016). Exact and heuristic methods for integrated supply chain structure reliability analysis. International Journal of Integrated Supply Management, 10(2), 206–224.

    Article  Google Scholar 

  • Ivanov, D., & Sokolov, B. (2013). Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis, and adaptation of performance under uncertainty. European Journal of Operational Research, 224(2), 313–323.

    Article  Google Scholar 

  • Ivanov, D., & Sokolov, B. (2019). Simultaneous structural-operational control of supply chain dynamics and resilience. Annals of Operatios Research. https://doi.org/10.1007/s10479-019-03231-0.

    Article  Google Scholar 

  • Ivanov, D., Sokolov, B., & Pavlov, A. (2014). Optimal distribution (re)planning in a centralized multi-stage network under conditions of ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758–770.

    Article  Google Scholar 

  • Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2019d). Global supply chain and operations management (2nd ed.). Cham: Springer.

    Book  Google Scholar 

  • Kim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of Operations Management, 33–34, 43–59.

    Article  Google Scholar 

  • Kinra, A., Ivanov, D., Das, A., Dolgui, A. (2019). Ripple effect quantification by supplier risk exposure assessment. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1675919.

  • Kopytov, E. A., Pavlov, A. N., & Zelentsov, V. A. (2010). New methods of calculating the Genome of structure and the failure criticality of the complex objects’ elements. Transport and Telecommunication, 11(4), 4–13.

    Google Scholar 

  • Levner, E., & Ptuskin, A. (2018). Entropy-based model for the ripple effect: Managing environmental risks in supply chains. International Journal of Production Research, 56(7), 2539–2551.

    Article  Google Scholar 

  • Lin, Y. K., Huang, C. F., Liao, Y.-C., & Yeh, C. T. (2017). System reliability for a multistate intermodal logistics network with time windows. International Journal of Production Research, 55, 1957–1969.

    Article  Google Scholar 

  • Macdonald, J. R., Zobel, C. W., Melnyk, S. A., & Griffis, S. E. (2018). Supply chain risk and resilience: Theory building through structured experiments and simulation. International Journal of Production Research, 56(12), 4337–4355.

    Article  Google Scholar 

  • Mishra, D., Dwivedi, Y., Rana, N., & Hassini, E. (2019). Evolution of supply chain ripple effect: A bibliometric and meta-analytic view of the constructs. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1668073.

    Article  Google Scholar 

  • Mishra, D., Sharma, R. R. K., Kumar, S., & Dubey, R. (2016). Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance. International Journal of Production Economics, 180, 183–197.

    Article  Google Scholar 

  • Nair, A., & Vidal, J. M. (2011). Supply network topology and robustness against disruptions—An investigation using a multi-agent model. International Journal of Production Research, 49(5), 1391–1404.

    Article  Google Scholar 

  • Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for supply chain risk propagation. International Journal of Production Research, 56(17), 5795–5819.

    Article  Google Scholar 

  • Orlovich, Y. L., Dolgui, A. B., Finke, G., Gordon, V. S., & Werner, F. (2011). The complexity of dissociation set problems in graphs. Discrete Applied Mathematics, 159(13), 1352–1366.

    Article  Google Scholar 

  • Paul, S., Sarker, R., Essam, D., & Lee, P. T.-W. (2019). Managing sudden disturbances in a three-tier manufacturing supply chain: A mathematical modelling approach. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03251-w.

    Article  Google Scholar 

  • Pavlov, A., Ivanov, D., Dolgui, A., & Sokolov, B. (2018). Hybrid fuzzy-probabilistic approach to supply chain resilience assessment. IEEE Transactions on Engineering Management, 65(2), 303–315.

    Article  Google Scholar 

  • Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and contingency planning in sustainable and resilient supply chain resource management under conditions of structural dynamics. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03182-6.

    Article  Google Scholar 

  • Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The evolution of resilience in supply chain management: A retrospective on ensuring supply chain resilience. Journal of Business Logistics, 40(1), 56–65.

    Article  Google Scholar 

  • Pyt’ev, Y. P. (2002). The method of the possibility theory in the problems of optimal estimation and decision making: VI. Fussy sets. Independence. P-complection methods for estimation fuzzy sets and their parameters. Pattern Recognition and Image Analysis, 12(2), 107–115.

    Google Scholar 

  • Raj, R., Wang, J. W., Nayak, A., Tiwari, M. K., Han, B., Liu, C. L., et al. (2015). Measuring the resilience of supply chain systems using a survival model. IEEE Systems Journal, 9(2), 377–381.

    Article  Google Scholar 

  • Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study. European Journal of Operational Research, 259(3), 1017–1035.

    Article  Google Scholar 

  • Ryabinin, I. A. (1976). Reliability of engineering systems. Mir: Principles and Analysis.

    Google Scholar 

  • Sawik, T. (2017). A portfolio approach to supply chain disruption management. International Journal of Production Research, 55(7), 1970–1991.

    Article  Google Scholar 

  • Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59.

    Article  Google Scholar 

  • Schmidt, W., & Simchi-Levi, D. (2013). Nissan Motor Company Ltd.: Building operational resiliency (pp. 13–149). Cambridge: MIT Sloan Management.

    Google Scholar 

  • Sheffi, Y. (2005). The resilient enterprise: Overcoming vulnerability for competitive advantage. Cambridge: MIT Press.

    Google Scholar 

  • Sinha, P., Kumar, S., & Prakash, S. (2019). Measuring and mitigating the effects of cost disturbance propagation in multi-echelon apparel supply chains. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.09.015.

    Article  Google Scholar 

  • Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1), 152–169.

    Article  Google Scholar 

  • Tan, W. J., Zhang, A. N., & Cai, W. (2019). A graph-based model to measure structural redundancy for supply chain resilience. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1566666.

    Article  Google Scholar 

  • Wilson, M. C. (2007). The impact of transportation disruptions on supply chain performance. Transportation Research Part E: Logistics and Transportation Review, 43(4), 295–320.

    Article  Google Scholar 

  • Zhao, K., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the resilience of complex supply network topologies against random and targeted disruptions. IEEE Systems Journal, 5(1), 28–39.

    Article  Google Scholar 

  • Zhao, K., Zuo, Z., & Blackhurst, J. V. (2019). Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. Journal of Operations Management, 65(2), 190–212.

    Article  Google Scholar 

  • Zhao, M., & Freeman, N. K. (2018). Robust sourcing from suppliers under ambiguously correlated major disruption risks. Production and Operations Management. https://doi.org/10.1111/poms.12933.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers who helped us improving the manuscript immensely.

Funding

The research described in this paper is partially supported by the Russian Foundation for Basic Research (Grants 16-29-09482-ofi-m, 17-29-07073-ofi-i, 19–08–00989), state order of the Ministry of Education and Science of the Russian Federation No. 2.3135.2017/4.6, state Research 0073–2019–0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Werner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Computational analysis of the SC robustness with the consideration of disruptions at both nodes and arcs (i.e., both facility and transportation disruptions)

Consider the example of the genome analysis of an SC according to Fig. 1.

The grey nodes 1–7 in Fig. 5 are related to the nodes in the SC design in Fig. 1. The white nodes 8–16 are the arcs in the SC design in Fig. 1. Supplier 1 delivers to factory 3 using transportation link 8 and to factory 2 using transportation link 9. Factories 2 and 3 deliver to distribution center 4 using links 10 and 11. In addition, the distribution center 4 can source from supplier 6. In other words, plant 4 exhibits a multiple sourcing strategy from nodes 2 or 3 or 6. Customer 5 can order products either directly from factory 2 using link 13 or from distribution center 4 using link 14, or from warehouse 7, which is a subsidiary (backup warehouse) of distribution center 4, using links 15 and 16.

Fig. 5
figure 5

Fuzzy-probabilistic graph of the SC design

The logical fulfillment function contains seven conjunctions:

$$ \begin{aligned} {\text{path }}6 - 12 - 4 - 15 - 7 - 16 - 5,\,{\text{path }}1 - 9 - 2 - 11 - 4 - 15 - 7 - 16 - 5,\,{\text{path }}1 - 8 - 3 - 10 - 4 - 15 - 7 - 16 - 5, \hfill \\ {\text{path }}6 - 12 - 4 - 14 - 5,\,{\text{path }}1 - 9 - 2 - 11 - 4 - 14 - 5,\,{\text{path }}1 - 8 - 3 - 10 - 4 - 14 - 5,{\text{ and path }}1 - 9 - 2 - 13 - 5. \hfill \\ \end{aligned} $$

The probability function of the robust purpose fulfillment can be written as follows:

$$ \begin{aligned} {\text{Pc}} & = {\text{P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}7{\text{ P}}9{\text{ P}}11{\text{ Q}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad + {\text{ P}}1{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}7{\text{ P}}8{\text{ P}}10{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad + {\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}12{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}9{\text{ P}}11{\text{ Q}}13{\text{ P}}14 \\ & \quad + {\text{ P}}1{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}8{\text{ P}}10{\text{ P}}14 \\ & \quad + {\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}12{\text{ P}}14 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}5{\text{ P}}9{\text{ P}}13 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}9{\text{ P}}12{\text{ P}}13{\text{ P}}14 \\ & \quad - {\text{ P}}1{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}8{\text{ P}}10{\text{ P}}12{\text{ P}}14 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}13{\text{ P}}14 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}12{\text{ P}}13{\text{ P}}14 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}11{\text{ Q}}13{\text{ P}}14 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}9{\text{ P}}11{\text{ P}}12{\text{ Q}}13{\text{ P}}14 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}11{\text{ P}}12{\text{ Q}}13{\text{ P}}14 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}9{\text{ P}}12{\text{ P}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad - {\text{ P}}1{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}8{\text{ P}}10{\text{ P}}12{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}7{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}12{\text{ P}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}7{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}11{\text{ Q}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}9{\text{ P}}11{\text{ P}}12{\text{ Q}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ & \quad + {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ P}}7{\text{ P}}8{\text{ P}}9{\text{ P}}10{\text{ P}}11{\text{ P}}12{\text{ Q}}13{\text{ Q}}14{\text{ P}}15{\text{ P}}16 \\ \end{aligned} $$

or as

$$ {\rm P}(P) = \,2P^{5} + 3P^{7} - 2P^{8} - P^{9} - 4P^{10} - P^{11} + 4P^{12} + P^{13} + P^{14} - 3P^{15} + P^{16} , $$

or as the dual genome

$$ \eta = (0,0,0,0,0,2,0,3, - 2, - 1, - 4, - 1,4,1,1, - 3,1). $$

The SC structure failure possibility polynomial that describes all possible combinations of minimum failure edge-cuts can be written as

$$ \begin{aligned} T(Q) & = Q + 6Q^{2} + 9Q^{3} - 100Q^{4} + 173Q^{5} + 13Q^{6} - 408Q^{7} + 521Q^{8} - 74Q^{9} \\ & \quad - 535Q^{10} + 762Q^{11} - 563Q^{12} + 260Q^{13} - 76Q^{14} + 13Q^{15} - Q^{16} . \\ \end{aligned} $$

or as the genome

\( \chi = (0,1,6,9, - 100,173,13, - 408,521, - 74, - 535,762, - 563,260, - 76,13, - 1) \).

Figure 6 illustrates the computation of the structural robustness, the respective disruption scenarios, and the contribution of the individual SC elements to the structural robustness.

Fig. 6
figure 6

Structural robustness, respective disruption scenarios, and contribution of the individual SC elements to the structural robustness

Appendix 2: Computational analysis of the robustness of the SC with the consideration of disruptions at arcs (i.e., transportation disruptions)

Figure 7 shows a fuzzy-probabilistic graph in the event of disruptions at arcs (i.e., transportation disruptions) only.

Fig. 7
figure 7

Fuzzy-probabilistic graph in the event of disruptions at arcs (i.e., transportation disruptions) only

The logical fulfillment function contains seven conjunctions:

$$ \begin{aligned} & {\text{path }}1 - 5,\,{\text{path }}1 - 3 - 6,\,{\text{path }}2 - 4 - 6,\,{\text{ path }}6 - 9, \\ & {\text{path }}1 - 3 - 7 - 8,\,{\text{path }}2 - 4 - 7 - 8,\,{\text{and}}\,{\text{ path }}7 - 8 - 9. \\ \end{aligned} $$

The probability function of the robust purpose fulfillment can be written as follows (Table 2):

Table 2 Statistical analysis
$$ \begin{aligned} {\text{Pc}} & = {\text{P}}1{\text{ P}}3{\text{ Q}}5{\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ Q}}9 \\ & \quad + {\text{ P}}2{\text{ P}}4{\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ Q}}9 \\ & \quad + {\text{ P}}1{\text{ P}}3{\text{ Q}}5{\text{ P}}6{\text{ Q}}9 \\ & \quad + {\text{ P}}2{\text{ P}}4{\text{ P}}6{\text{ Q}}9 \\ & \quad + {\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ P}}9 \\ & \quad + {\text{ P}}1{\text{ P}}5 \\ & \quad + {\text{ P}}6{\text{ P}}9 \\ & \quad - {\text{ P}}1{\text{ P}}5{\text{ P}}6{\text{ P}}9 \\ & \quad - {\text{ P}}1{\text{ P}}5{\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ P}}9 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ P}}6{\text{ Q}}9 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ Q}}5{\text{ P}}6{\text{ Q}}9 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}4{\text{ P}}5{\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ Q}}9 \\ & \quad - {\text{ P}}1{\text{ P}}2{\text{ P}}3{\text{ P}}4{\text{ Q}}5{\text{ Q}}6{\text{ P}}7{\text{ P}}8{\text{ Q}}9 = 0.572265625000 \, \left( {{\text{probability}}\,{\text{of}}\,{\text{purpose}}\,{\text{fulfillment}}} \right) \\ \end{aligned} $$

Figure 8 illustrates the computation of the structural robustness, the respective disruption scenarios, and the contribution of the individual SC elements to the structural robustness.

Fig. 8
figure 8

Structural robustness, respective disruption scenarios, and contribution of the individual SC elements to the structural robustness

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A., Ivanov, D., Werner, F. et al. Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains. Ann Oper Res 319, 609–631 (2022). https://doi.org/10.1007/s10479-019-03454-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03454-1

Keywords

Navigation