Skip to main content
Log in

An inexact scalarization proximal point method for multiobjective quasiconvex minimization

  • S.I. : CLAIO 2018
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present an inexact scalarization proximal point algorithm to solve unconstrained multiobjective minimization problems where the objective functions are quasiconvex and locally Lipschitz. Under some natural assumptions on the problem, we prove that the sequence generated by the algorithm is well defined and converges. Then providing two error criteria we obtain two versions of the algorithm and it is proved that each sequence converges to a Pareto–Clarke critical point of the problem; furthermore, it is also proved that assuming an extra condition, the convergence rate of one of these versions is linear when the regularization parameters are bounded and superlinear when these parameters converge to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attouch, H., Bolte, J., & Svaiter, B. (2013). Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Mathematical Programing Series A, 137, 91–129.

    Google Scholar 

  • Apolinario, H., Papa Quiroz, E. A., & Oliveira, P. R. (2016). A scalarization proximal point method for quasiconvex multiobjective minimization. Journal of Global Optimization, 64, 79–96.

    Google Scholar 

  • Auslender, A., & Teboulle, M. (2006). Interior gradient and proximal methods for convex and conic optimization. SIAM Journal of Optimization, 16(3), 697–725.

    Google Scholar 

  • Auslender, A., Teboulle, M., & Ben-Tiba, S. (1999). Interior proximal and multiplier methods based on second order homogeneous functional. Mathematics of Operations Research, 24(3), 645–668.

    Google Scholar 

  • Auslender, A., Teboulle, M., & Ben-Tiba, S. (1999b). A logarithmic–quadratic proximal method for variational inequalities. Computational Optimization and Applications, 12, 31–40.

    Google Scholar 

  • Aussel, D. (1998). Subdifferential properties of quasiconvex and pseudoconvex functions: Unified approach. Journal of Optimization Theory and Applications, 97(1), 29–45.

    Google Scholar 

  • Bento, G., Ferreira, O., & Oliveira, P. R. (2010). Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Analysis: Theory, Methods and Applications, 72(3), 564–572.

    Google Scholar 

  • Baygorrea, N., Papa Quiroz, E. A., & Maculan, N. (2017). On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds. Journal of the Operations Research Society of China, 5(4), 457–467.

    Google Scholar 

  • Baygorrea, N., Papa Quiroz, E. A., & Maculan, N. (2016). Inexact proximal point methods for quasiconvex minimization on Hadamard manifolds. Journal of the Operations Research Society of China, 4(4), 397–424.

    Google Scholar 

  • Berkovitz, L. (2003). Convexity and optimization in\( {\mathbb{R}}^n\). New York: Wiley.

  • Bolte, J., Daniilidis, A., Lewis, A., & Shiota, M. (2007). Clarke subgradients of stratifiable functions. SIAM Journal on Optimization, 18, 556–572.

    Google Scholar 

  • Bonnel, H., Iusem, A. N., & Svaiter, B. F. (2005). Proximal methods in vector optimization. SIAM Journal on Optimization, 15, 953–970.

    Google Scholar 

  • Brito, A. S., da Cruz Neto, J. X., Lopez, J. O., & Oliveira, P. R. (2012). Interior proximal algorithm for quasiconvex programming and variational inequalities with linear constraints. Journal of Optimization Theory and Applications, 154, 217–234.

    Google Scholar 

  • Burachik, R. S., & Iusem, A. (1998). Generalized proximal point algorithm for the variational inequality problem in Hilbert space. SIAM Journal of Optimization, 8, 197–216.

    Google Scholar 

  • Burachik, R. S., & Scheimberg, S. (2000). A proximal point method for the variational inequality problem in Banach spaces. SIAM Journal on Control and Optimization, 39(5), 1633–1649.

    Google Scholar 

  • Ceng, L., & Yao, J. (2007). Approximate proximal methods in vector optimization. European Journal of Operational Research, 183(1), 1–19.

    Google Scholar 

  • Chen, J. S., & Pan, S. (2008). A proximal-like algorithm for a class of nonconvex programming. Pacific Journal of Optimization, 4, 319–333.

    Google Scholar 

  • Chen, G., & Teboulle, M. (1993). Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization, 3, 538–543.

    Google Scholar 

  • Clarke, F. (1990). Optimization and nonsmooth analysis. Philadelphia: SIAM.

    Google Scholar 

  • Clarke, F. (2013). Functional analysis, calculus of variations and optimal control. New York: Springer.

    Google Scholar 

  • Cunha, F. G. M., da Cruz Neto, J. X., & Oliveira, P. R. (2010). A proximal point algorithm with \(\phi -\)divergence to quasiconvex programming. Optimization, 59, 777–792.

    Google Scholar 

  • Custodio, A. L., Madeira, J. F. A., Vaz, A. I. F., & Vicente, L. N. (2011). Direct Multisearch for multiobjective optimization. SIAM Journal on Optimization, 21, 1109–1140.

    Google Scholar 

  • Eckstein, J. (1998). Approximate iterations in Bregman-function-based proximal algorithms. Mathematical Programming, 83, 113–123.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. New York: Springer.

    Google Scholar 

  • Güler, O. (1992). New proximal point proximal algorithms for convex minimization. SIAM Journal Control and Optimization., 2, 649–664.

    Google Scholar 

  • Goudou, X., & Munier, J. (2009). The gradient and heavy ball with friction dynamical system: The quasiconvex case. Mathematical Programming, Serie B, 116, 173–191.

    Google Scholar 

  • Gromicho, J. (1998). Quasiconvex optimization and location theory. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Han, D., & He, B. (2001). A new accuracy criterion for approximate proximal point algorithms. Journal of Mathematical Analysis and Applications, 263, 343–354.

    Google Scholar 

  • Hadjisavvas, N., Komlosi, S., & Shaible, S. (2005). Handbook of generalized convexity and generalized monotonicity (Vol. 76)., Nonconvex optimization and its applications New York: Springer.

    Google Scholar 

  • Humes, C, Jr., & Silva, P. J. S. (2005). Inexact proximal algorithms and descent methods in optimization. Optimization and Engineering, 6, 257–271.

    Google Scholar 

  • Iusem, A. N., & Sosa, W. (2010). A proximal point method for equilibrium problems in Hilbert spaces. Optimization, 59, 1259–1274.

    Google Scholar 

  • Kaplan, A., & Tichatschke, R. (1998). Proximal point methods and nonconvex optimization. Journal of Global Optimization, 13, 389–406.

    Google Scholar 

  • Kaplan, A., & Tichatschke, R. (2004). On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization, 53, 3–17.

    Google Scholar 

  • Kiwiel, K. C. (1997). Proximal minimization methods with generalized Bregman functions. SIAM Journal of Control and Optimization, 35, 1142–11268.

    Google Scholar 

  • Langenberg, N. (2010). Pseudomonotone operators and the Bregman proximal point algorithm. Journal of Global Optimization, 47, 537–555.

    Google Scholar 

  • Langenberg, N., & Tichatschke, R. (2012). Interior proximal methods for quasiconvex optimization. Journal of Global Optimization, 52, 641–661.

    Google Scholar 

  • Martinet, B. (1970). Regularisation d’inéquations variationelles par approximations successives. Revue Frana̧ise Informatique Recherche Opérationnelle, 4, 154–158.

    Google Scholar 

  • Mallma Ramirez, L., Papa Quiroz, E. A., & Oliveira, P. R. (2017). An inexact proximal method with proximal distances for quasimonotone equilibrium problems. Journal of the Operations Research Society of China, 5(4), 545–561.

    Google Scholar 

  • Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York, NY: Oxford University Press.

    Google Scholar 

  • Miettinen, K. (2012). Nonlinear multiobjective optimization. New York: Springer.

    Google Scholar 

  • Mordukhovich, B. S. (2006). Variational analysis and generalized differentiation I: Basic theory (Vol. 330). New York: Springer Science and Business Media.

    Google Scholar 

  • Pan, S., & Chen, J. S. (2007). Entropy-like proximal algorithms based on a second-order homogeneous distances function for quasiconvex programming. Journal of Global Optimization, 39, 555–575.

    Google Scholar 

  • Papa Quiroz, E. A., & Oliveira, P. R. (2012). An extension of proximal methods for quasiconvex minimization on the nonnegative orthant. European Journal of Operational Research, 216, 26–32.

    Google Scholar 

  • Papa Quiroz, E. A., Mallma Ramirez, L., & Oliveira, P. R. (2015). An inexact proximal method for quasiconvex minimization. European Journal of Operational Research, 246(3), 721–729.

    Google Scholar 

  • Papa Quiroz, E. A., Mallma Ramirez, L., & Oliveira, P. R. (2018). An inexact algorithm with proximal distances for variational inequalities. RAIRO Operations Research, 52(1), 159–176.

    Google Scholar 

  • Pennanen, T. (2002). Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Mathematics of Operations Research, 27, 170–191.

    Google Scholar 

  • Polyak, B. T. (1987). Introduction to optimization. New York: Optimization Software.

    Google Scholar 

  • Rockafellar, R. T. (1976). Monotone operations and the proximal point method. SIAM Journal on Control and Optimization, 14, 877–898.

    Google Scholar 

  • Rockafellar, R. T., & Wets, R. (1998). Variational analysis. Grundlehren der Mathematischen, Wissenschaften (Vol. 317). New York: Springer.

    Google Scholar 

  • Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjetive optimization (Vol. 176)., Mathematics in science and engineering Orlando: Academic Press Inc.

    Google Scholar 

  • Souza, S. S., Oliveira, P. R., da Cruz Neto, J. X., & Soubeyran, A. (2010). A proximal method with separable Bregman distance for quasiconvex minimization on the nonnegative orthant. European Journal of Operational Research, 201, 365–376.

    Google Scholar 

  • Tang, G. J., & Huang, N. J. (2013). An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Operations Research Letters, 41(6), 586–591.

    Google Scholar 

  • Van Tiel, J. (1984). Convex analysis: An introductory text, Chichester, UK. Hoboken: Wiley.

    Google Scholar 

  • Villacorta, K. D., & Oliveira, P. R. (2011). An interior proximal method in vector optimization. European Journal of Operational Research, 214, 485–492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Papa Quiroz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papa Quiroz, E.A., Cruzado, S. An inexact scalarization proximal point method for multiobjective quasiconvex minimization. Ann Oper Res 316, 1445–1470 (2022). https://doi.org/10.1007/s10479-020-03622-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03622-8

Keywords

Mathematics Subject Classification

Navigation