Skip to main content
Log in

Service quality guarantee design: obedience behavior, demand updating and information asymmetry

  • S.I.: Information-Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

With the increasingly fierce market competition and the rapid development of advanced logistics technology, service quality guarantee and demand updating become effective ways to promote procurement decisions in logistics supply chain. However, information asymmetry and obedience behavior have made it more complicated. In this paper, we considered the above factors, and studied the capacity procurement issue in a logistics service supply chain consisting of a logistics service integrator (LSI) and a functional logistics service provider (FLSP) in two periods. First, we find the optimal purchase quantities increase with the FLSP’s obedience factor, in specific conditions, the LSI’s guaranteed service quality and FLSP’s obedience behavior can reach the upper limit (or lower limit). Second, the information symmetry creates a win–win situation iff the penalty cost to the FLSP is moderate and the demand is incompletely revealed. Third, demand updating relaxes the condition for the LSI’s service quality guarantee reaching to the upper limit. For FLSP, when the penalty cost is moderate, the demand updating makes FLSP less obedient in case that the demand is completely revealed and more obedient when the demand is incompletely revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Berk, E., Gürler, Ü., & Levine, R. A. (2007). Bayesian demand updating in the lost sales Newsvendor problem: A two-moment approximation. European Journal of Operational Research, 182, 256–281.

    Article  Google Scholar 

  • Berman, B., & Mathur, A. (2014). Planning and implementing effective service guarantee programs. Business Horizons, 57, 107–116.

    Article  Google Scholar 

  • Bimpikis, K., Crapis, D., & Tahbaz-Salehi, A. (2019). Information sale and competition. Management Science, 65(6), 2646–2664.

    Article  Google Scholar 

  • Bloomberg News. (2017). Chinese billionaires clash over Alibaba’s parcel deliveries. https://www.bloomberg.com/news/articles/2017-06-02/chinese-billionaires-clash-over-alibaba-s-parcel-deliveries. Accessed 29 Aug 2018.

  • Carvalho, A., & Barbosa-Póvoa, A. P. F. D. (2013). A new methodology to identify supply chains sustainability bottlenecks. Computer Aided Chemical Engineering, 32, 541–546.

    Article  Google Scholar 

  • Choi, T. M. (2016). Inventory service target in quick response fashion retail supply chains. Service Science, 8(4), 406–419.

    Article  Google Scholar 

  • Chong, V. K., & Syarifuddin, I. (2010). The effect of obedience pressure and authoritarianism on managers’ project evaluation decisions. Advances in Accounting Incorporating Advances in International Accounting, 26, 185–194.

    Google Scholar 

  • CNN. (2018). Didi suspends carpool service in China after rape and killing of passenger. https://money.cnn.com/2018/08/26/technology/didi-suspends-carpool-hina/index.html. Accessed 29 March 2020.

  • Coyle, J. J., Bardi, E. J., & Langle, J. C. (1992). The management of business logistics (5th ed.). St. Paul, MN: West.

    Google Scholar 

  • Cui, R., Li, M., & Li, Q. (2019). Value of high-quality logistics: Evidence from a clash between SF Express and Alibaba. Management Science, 1–24.

  • Cui, R., & Sun, T. (2018). Sooner or later? Learning from delivery speed information. Working paper, Emory University, GA.

  • Daily mail. (2018). Why Airbnb is a serious threat to New York City. https://www.nydailynews.com/opinion/ny-oped-why-airbnb-is-a-threat-to-nyc-20180605-story.html. Accessed 29 March 2020.

  • DZone. (2016). How Amazon Uses Its Own Cloud to Process Vast, Multidimensional Datasets. https://dzone.com/articles/big-data-analytics-delivering-business-value-at-am. Accessed 29 March 2020.

  • Fisher, M., Santiago, G., & Xu, J. (2018). The value of rapid delivery in online retailing. Working paper, University of Pennsylvania, PA.

  • Gurnani, H., & Tang, S. C. (1999). Note: optimal ordering decisions with uncertain cost and demand forecast updating. Management Science, 45(10), 1456–1462.

    Article  Google Scholar 

  • Hill, T. (2017). Manufacturing strategy: The strategic management of the manufacturing function. London: Macmillan.

    Google Scholar 

  • Hugo net. (2019). What other e-commerce markets are worth exploring outside the US? https://www.cifnews.com/article/48254. Accessed 25 March 2020 (in Chinese).

  • Kashyap, R. (2001). The effects of service guarantees on external and internal markets. Academy of Marketing Science Review, 10(1), 1–9.

    Google Scholar 

  • Lee, J. S., Lee, C. Y., & Lee, K. S. (2012). Forecasting demand for a newly introduced product using reservation price data and Bayesian updating. Technological Forecasting and Social Change, 79(7), 1280–1291.

    Article  Google Scholar 

  • Li, H. D., Duan, J. Y., & Zeng, K. (2017). The concept, antecedents and consequences of loyalty to supervisor. Advances in Psychological Science, 25(1), 133.

    Article  Google Scholar 

  • Liu, W. H., Liu, Y., Zhu, D. L., et al. (2015). Service capability procurement decision in logistics service supply chain: A research under demand updating and quality guarantee. International Journal of Production Economics, 53(2), 488–510.

    Article  Google Scholar 

  • Liu, W. H., Shen, X. R., & Wang, D. (2018a). The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China. Annals of Operations Research, 1–40.

  • Liu, W. H., Wang, D., Shen, X. R., Yan, X. Y., & Wei, W. Y. (2018b). The impacts of distributional and peer-induced fairness concerns on the decision-making of order allocation in logistics service supply chain. Transportation Research Part E: Logistics and Transportation Review, 116, 102–122.

    Article  Google Scholar 

  • Liu, W. H., Wang, M. L., Zhu, D. L., & Zhou, L. (2019). Service capacity procurement of logistics service supply chain with demand updating and loss-averse preference. Applied Mathematical Modelling, 66, 486–507.

    Article  Google Scholar 

  • Liu, W. H., Wang, S. Q., Zhu, D. L., et al. (2017). Order allocation of logistics service supply chain with fairness concern and demand updating: Model analysis and empirical examination. Annals of Operations Research, 268(1–2), 177–213.

    Google Scholar 

  • Liu, W. H., Xu, X. C., & Kouhpaenejad, A. (2013). Deterministic approach to the fairest revenue-sharing coefficient in logistics service supply chain under the stochastic demand condition. Computers & Industrial Engineering, 66(1), 41–52.

    Article  Google Scholar 

  • Lobel, I., & Xiao, W, (2017). Technical Note—Optimal long-term supply contracts with asymmetric demand information. Operations Research, 65(5), 1275–1284.

    Article  Google Scholar 

  • Mermillod, M., Marchand, V., Lepage, J., et al. (2015). Destructive obedience without pressure. Social Psychology, 46(6), 345–351.

    Article  Google Scholar 

  • Miltenburg, J., & Pong, H. C. (2007a). Order quantities for style goods with two order opportunities and Bayesian updating of demand. Part I: No capacity constraints. International Journal of Production Research, 45(7), 1643–1663.

    Article  Google Scholar 

  • Miltenburg, J., & Pong, H. C. (2007b). Order quantities for style goods with two order opportunities and Bayesian updating of demand. Part II: Capacity constraints. International Journal of Production Research, 45(8), 1707–1723.

    Article  Google Scholar 

  • Mottl, J. (2018). Why delivery is playing a starring role in the retail customer experience. https://www.retailcustomerexperience.com/blogs/why-delivery-is-playing-a-starring-role-in-the-retail-customer-experience. Accessed 29 Aug 2018.

  • Niu, B., & Zou, Z. (2017). Better demand signal, better decisions? Evaluation of big data in a licensed remanufacturing supply chain with environmental risk considerations. Risk Analysis, 37(8), 1550.

    Article  Google Scholar 

  • Perreault, W. D., Jr., & Russ, F. A. (1976). Physical distribution service in industrial purchase decisions. Journal of Marketing, 40(4), 3–10.

    Google Scholar 

  • Popescu, I., & Wu, Y. Z. (2007). Dynamic pricing strategies with reference effects. Operation Research, 55(3), 413–429.

    Article  Google Scholar 

  • Pozzi, M., Fattori, F., Bocchiaro, P., et al. (2014). Do the right thing! A study on social representation of obedience and disobedience. New Ideas Psychology, 35(2014), 18–27.

    Article  Google Scholar 

  • Ray, S., Li, S. L., & Song, Y. Y. (2005). Tailored supply chain decision making under price-sensitive stochastic demand and delivery uncertainty. Management Science, 51(12), 1873–1891.

    Article  Google Scholar 

  • Sarvary, M., & Padmanabhan, V. (2001). The informational role of manufacturer returns policies: How they can help in learning the demand. Marketing Letters, 12(4), 341–350.

    Article  Google Scholar 

  • Shang, W. X., & Liu, L. M. (2011). Promised delivery time and capacity games in time-based competition. Management Science, 57(3), 599–610.

    Article  Google Scholar 

  • Shen, B., Choi, T. M., & Minner, S. (2018). A review on supply chain contracting with information considerations: information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936.

    Google Scholar 

  • Shi, Y., Guo, X., & Yu, Y. (2017). Dynamic warehouse size, planning with demand forecast and contract flexibility. International Journal of Production Research, 56(3), 1313–1325.

    Article  Google Scholar 

  • SohuNews. (2018). Orders surged after Prime Day, and Amazon’s delivery was tested again. https://www.sohu.com/a/244304691_100089092. Accessed 27 March 2020 (in Chinese).

  • Song, H., et al. (2014). Optimal decision making in multi-product dual sourcing procurement with demand forecast updating. Computers & Operation Research, 41, 299–308.

    Article  Google Scholar 

  • Tecent. (2019). Pinduoduo how to become the third largest e-commerce platform in China without the shopping cart. https://new.qq.com/omn/20190505/20190505A06QXB.html. Accessed 5 May 2019 (in Chinese).

  • Thomson, K. L., & Solms, R. V. (2005). Information security obedience: definition. Computers & Security, 24, 69–75.

    Article  Google Scholar 

  • Wang, Z., Yao, D. Q., Yue, X., & Liu, J. J. (2016). Impact of IT capability on the performance of port operation. Production and Operation Management, 27(11), 1996–2009.

    Article  Google Scholar 

  • Wei, J., Zhao, J., & Hou, X. (2019). Bilateral information sharing in two supply chains with complementary products. Applied Mathematical Modelling, 72, 28–49.

    Article  Google Scholar 

  • Xiao, T. J., Luo, J., & Jin, J. (2009). Coordination of a supply chain with demand stimulation and random demand disruption. International Journal of Information Systems and Supply Chain Management, 2(1), 1–15.

    Article  Google Scholar 

  • Xu, X. S., & Chan, F. T. S. (2019). Optimal option purchasing decisions for the risk-averse retailer with shortage cost. Asia Pacific Journal of Operational Research, 36(2), 1940005.

    Article  Google Scholar 

  • Zhang, J., Shou, B., & Chen, J. (2013). Postponed product differentiation with demand information update. International Journal of Production Economics, 141, 529–540.

    Article  Google Scholar 

  • Zhang, Z. C., Li, Chun, F., Du, P., & Xu, L. (2015). Does overconfident effect affect the performance of a duopoly market? In A theoretical analysis. 2015 12th international conference on service systems and service management (ICSSSM).

  • Zhihu. (2018). A total of 1.882 billion pieces of business were delivered in 2018. What about satisfaction? https://zhuanlan.zhihu.com/p/51146095. Accessed 11 Nov 2018 (in Chinese).

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 71672121, 71372156). The reviewers’ comments are also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Proposition 1 and Lemma 1

1.1 Proof of the Proposition 1

  1. 1.

    Substitute \( z_{1} = Q_{1} - l\left( {s_{1} } \right) \) into the LSI’s profit function

    $$ \begin{aligned} \Pi_{I 1} & = \left[ {p - k_{c} \left( {1 - \varphi_{1} } \right)} \right]\left[ {z_{1} + l\left( {s_{1} } \right) - \int\limits_{0}^{{z_{1} }} {F\left( x \right)dx} } \right] - g\left[ {\mu_{1} - z_{1} + \int\limits_{0}^{{z_{1} }} {F\left( x \right)dx} } \right] + v\int\limits_{0}^{{z_{1} }} {F\left( x \right)dx} \\ & \quad + \left[ {k_{i} \left( {1 - \varphi_{1} } \right) - w} \right]\left[ {z_{1} + l\left( {s_{1} } \right)} \right] \\ \end{aligned} $$

    First, we develop the Hessian matrix of \( \Pi_{{_{I1} }} (\gamma_{1} ,z_{1} ) \)

    $$ H_{{\Pi_{I1} (\gamma_{1} ,z_{1} )}} = \left[ {\begin{array}{*{20}l} {\frac{{\partial^{2} \Pi_{I1} \left( {\gamma_{1} ,z_{1} } \right)}}{{\partial^{2} z_{1} }}} \hfill & {\frac{{\partial^{2} \Pi_{I1} \left( {\gamma_{1} ,z_{1} } \right)}}{{\partial z_{1} \partial \gamma_{1} }}} \hfill \\ {\frac{{\partial^{2} \Pi_{I1} \left( {\gamma_{1} ,z_{1} } \right)}}{{\partial \gamma_{1} \partial z_{1} }}} \hfill & {\frac{{\partial^{2} \Pi_{I1} \left( {\gamma_{1} ,z_{1} } \right)}}{{\partial^{2} \gamma_{1} }}} \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} { - \left[ {p - k_{c} \left( {1 - \varphi_{1} } \right) + g - v} \right]f\left( {z_{1} } \right)} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill \\ \end{array} } \right] $$

In which the principle minors are \( - \left[ {p - k_{c} \left( {1 - \varphi_{1} } \right) + g - v} \right]f\left( {z_{1} } \right) < 0 \), and then zero. Thus the Hessian matrix is negative semidefinite, and \( \Pi_{{_{I1} }} (\gamma_{1} ,z_{1} ) \) is a joint concave function of \( \gamma_{{_{1} }} \) and \( z_{1} \).

Then we take the first order derivative of \( \Pi_{I 1} \) with respect to \( z_{1} \) and we have:

$$ \frac{{\partial \Pi_{I1} }}{{\partial z_{1} }} = \left[ {p + g - k_{c} \left( {1 - \varphi_{1} } \right) + k_{i} \left( {1 - \varphi_{1} } \right) - w} \right] - \left[ {p - k_{c} \left( {1 - \varphi_{1} } \right) + g - v} \right]F\left( {z_{1} } \right) $$

We further take the second order derivative of \( \Pi_{I 1} \) with respect to \( z_{1} \):

$$ \frac{{\partial^{2} \Pi_{I1} }}{{\partial^{2} z_{1} }} = - \left[ {p - k_{c} \left( {1 - \varphi_{1} } \right) + g - v} \right]f\left( {z_{1} } \right) $$

When \( p - k_{c} \left( {1 - \varphi_{1} } \right) + g - v > 0 \), \( \frac{{\partial^{2} \Pi_{I1} }}{{\partial^{2} z_{1} }} < 0 \). There is an optimal procurement factor \( z_{1} \) in the first period. With \( \frac{{\partial \Pi_{I1} }}{{\partial z_{1} }} = 0 \), we obtain the optimal value:

$$ z_{1}^{*} = F^{ - 1} \left( {\frac{{p + g - k_{c} \left( {1 - \varphi_{1} } \right) + k_{i} \left( {1 - \varphi_{1} } \right) - w}}{{p + g - k_{c} \left( {1 - \varphi_{1} } \right) - v}}} \right). $$

According to Assumption 4, we have \( w - k_{i} \left( {1 - \varphi_{1} } \right) \le p - k_{c} \left( {1 - \varphi_{1} } \right) \), then we have \( 0 \le \frac{{w - k_{i} \left( {1 - \varphi_{1} } \right) - v}}{{p + g - k_{c} \left( {1 - \varphi_{1} } \right) - v}} \le 1 \), so it could get \( 0 \le F\left( {z_{1}^{*} } \right) \le 1 \).

We again take the first order derivative of \( z_{1}^{*} \) with respect to \( \varphi_{1} \) and we have:

$$ \frac{{\partial z_{1}^{*} }}{{\partial \varphi_{ 1} }} = \frac{ 1}{{f\left( {z_{1}^{*} } \right)}} \cdot \frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v} \right]^{2} }} $$

As \( f\left( {z_{1}^{*} } \right) > 0 \), and according to the Assumption 1 in Sect. 3, \( k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right) > 0 \) is satisfied, we have \( \frac{{\partial z_{1}^{*} }}{{\partial \varphi_{ 1} }} > 0 \).

Thus \( \frac{{\partial Q_{ 1}^{ *} }}{{\partial \varphi_{ 1} }} = \frac{{\partial \left( {z_{1}^{*} { + }l\left( {s_{1} } \right)} \right)}}{{\partial \varphi_{ 1} }} = \frac{{\partial z_{1}^{*} }}{{\partial \varphi_{ 1} }} > 0 \).

  1. 2.

    We substitute \( \hat{z}_{ 2} = \hat{Q}_{ 2} - l\left( {s_{ 2} } \right) \) into the LSI’s profit and take the second order derivative of \( \hat{\Pi }_{I 2} \) with respect to \( \hat{z}_{ 2} \), and we get:

    $$ \frac{{\partial^{2} \hat{\Pi }_{I 2} }}{{\partial^{2} \hat{z}_{ 2} }} = - \left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \left[ {p - k_{c} \left( {1 - \varphi_{2} } \right) + g - v} \right]g\left( {\hat{z}_{2} } \right) $$

When \( p - k_{c} \left( {1 - \varphi_{ 2} } \right) + g - v > 0 \), we have \( \frac{{\partial^{2} \hat{\Pi }_{I 2} }}{{\partial^{2} \hat{z}_{ 2} }} < 0 \). There is an optimal procurement factor \( \hat{z}_{ 2}^{*} \) in the second period, with \( \frac{{\partial \hat{\Pi }_{I2} }}{{\partial z_{2} }} = 0 \), we get:

$$ \hat{z}_{ 2}^{*} = G^{ - 1} \left( {\frac{{p + g - k_{c} \left( {1 - \varphi_{ 2} } \right) + k_{i} \left( {1 - \varphi_{ 2} } \right) - w}}{{p + g - k_{c} \left( {1 - \varphi_{ 2} } \right) - v}}} \right) $$

As \( 0 \le G\left( {\hat{z}_{ 2}^{*} } \right) \le 1 \), \( p + g - k_{c} \left( {1 - \varphi_{ 2} } \right) + k_{i} \left( {1 - \varphi_{ 2} } \right) - w \ge 0 \) needs to be satisfied. We have \( w - k_{i} \left( {1 - \varphi_{ 2} } \right) \ge v \).

We again take the first order derivative of \( \hat{z}_{2}^{*} \) with respect to \( \varphi_{2} \) and we have:

$$ \frac{{\partial \hat{z}_{2}^{*} }}{{\partial \varphi_{2} }} = \frac{ 1}{{g\left( {\hat{z}_{2}^{*} } \right)}} \cdot \frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v} \right]^{2} }} $$

As \( g\left( {\hat{z}_{2}^{*} } \right) > 0 \), and according to the assumption in Sect. 3, \( k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right) > 0 \) is satisfied, we have \( \frac{{\partial \hat{z}_{2}^{*} }}{{\partial \varphi_{2} }} > 0 \).

Thus \( \frac{{\partial \hat{Q}_{ 2}^{ *} }}{{\partial \varphi_{ 2} }} = \frac{{\partial \left( {\hat{z}_{ 2}^{*} { + }l\left( {s_{ 2} } \right)} \right)}}{{\partial \varphi_{ 2} }} = \frac{{\partial \hat{z}_{ 2}^{*} }}{{\partial \varphi_{ 2} }} > 0 \).

1.2 The Proof of Lemma 1

$$ F\left( {\hat{z}_{ 2}^{*} } \right) - F\left( {z_{1}^{*} } \right) = \frac{{p + g - k_{c} \left( {1 - \varphi_{ 2} } \right) + k_{i} \left( {1 - \varphi_{ 2} } \right) - w}}{{p + g - k_{c} \left( {1 - \varphi_{ 2} } \right) - v}}\left[ {1 - F\left( {z_{1}^{*} } \right)} \right] \ge 0 $$

That is \( F\left( {\hat{z}_{ 2}^{*} } \right) > F\left( {z_{1}^{*} } \right) \). As \( F\left( x \right) \) is a monotone increasing function, we have \( \hat{z}_{ 2}^{*} \ge z_{1}^{*} \).

Appendix B: The proof of Proposition 2 and Lemma 2

2.1 Proof of Proposition 2

  1. 1.

    The optimal service quality guarantee in the first period

We take the first order derivative of \( \Pi_{I 1} \) with respect to \( \gamma_{1} \):

$$ \frac{{\partial \Pi_{I1} }}{{\partial \gamma_{1} }} = \beta \cdot \left( {1 - \lambda } \right)\left[ {p - w + \left( {k_{i} - k_{c} } \right)\left( {1 - \varphi_{1} } \right)} \right] $$

As \( \beta \left( {1 - \lambda } \right) > 0 \), and from Assumption 1, we know that \( k_{c} > k_{i} \) holds. So when \( \varphi_{1} = 1 - \frac{p - w}{{k_{c} - k_{i} }} \), \( \frac{{\partial \Pi_{I1} }}{{\partial \gamma_{1} }} = 0 \). Because of \( \underline{\varphi } \le \varphi_{1} \le 1 \), there are two cases to consider, one is the case of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} \), and another is the case of \( \underline{\varphi } < 1 - \frac{p - w}{{k_{c} - k_{i} }} \).

  1. 1.

    The case of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} \)

Because of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} \), we can get \( \varphi_{1} > \underline{\varphi } > 1 - \frac{p - w}{{k_{c} - k_{i} }} \), and we have \( \frac{{\partial \Pi_{I1} }}{{\partial \gamma_{1} }} > 0 \).

Therefore, the LSI’s profit in the first period increases with the service quality guarantee, then \( \gamma_{1}^{*} = 1 \).

  1. 2.

    The case of \( \underline{\varphi } < 1 - \frac{p - w}{{k_{c} - k_{i} }} \)

When \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } < \varphi_{1} < 1 - \frac{p - w}{{k_{c} - k_{i} }} \), we have \( \frac{{\partial \Pi_{I1} }}{{\partial \gamma_{1} }} < 0 \) and the LSI’s profit in the first period decreases with the service quality guarantee, then \( \gamma_{1}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\gamma } \).

When \( 1 - \frac{p - w}{{k_{c} - k_{i} }} < \varphi_{1} < 1 \), we have \( \frac{{\partial \Pi_{I1} }}{{\partial \gamma_{1} }} > 0 \) and the LSI’s profit in the first period increases with the service quality guarantee, then \( \gamma_{1}^{*} = 1 \).

Overall, if \( \varphi_{1} > 1 - \frac{p - w}{{k_{c} - k_{i} }} \), then \( \gamma_{1}^{*} = 1 \); otherwise, if \( \varphi_{1} \le 1 - \frac{p - w}{{k_{c} - k_{i} }} \), then \( \gamma_{1}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\gamma } \).

  1. 2.

    The optimal service quality guarantee in the second period when market demand uncertainty is completely revealed.

We have the first order derivative of \( \tilde{\Pi }_{I2} \) with respect to \( \gamma_{2} \) as:

$$ \frac{{\partial \tilde{\Pi }_{I2} }}{{\partial \gamma_{2} }} = F\left( {z_{1}^{*} } \right)\left[ {p - w + \left( {k_{i} - k_{c} } \right)\left( {1 - \varphi_{2} } \right)} \right]\beta \left( {1 - \lambda } \right) + \eta $$

As \( \beta \left( {1 - \lambda } \right) > 0 \), and from Proposition 1, we know that \( k_{c} > k_{i} \) holds. So when \( \varphi_{2} = 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), \( \frac{{\partial \Pi_{I2} }}{{\partial \gamma_{2} }} = 0 \). Because of \( \underline{\varphi } \le \varphi_{2} \le 1 \), there are two cases to consider, one is the case of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), and another is the case of \( \underline{\varphi } < 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \).

  1. 1.

    The case of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \)

Because of \( \underline{\varphi } \ge 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), we can get \( \varphi_{2} > \underline{\varphi } > 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), and we have \( \frac{{\partial \Pi_{I2} }}{{\partial \gamma_{2} }} > 0 \).

Therefore, the LSI’s profit in the first period increases with the service quality guarantee, then \( \gamma_{2}^{*} = 1 \).

  1. 2.

    The case of \( \underline{\varphi } < 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \)

When \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } < \tilde{\varphi }_{2} < 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), we have \( \frac{{\partial \Pi_{I2} }}{{\partial \tilde{\gamma }_{2} }} < 0 \), and the LSI’s profit in the first period decreases with the service quality guarantee, then \( \tilde{\gamma }_{2}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\gamma } \).

When \( 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} < \tilde{\varphi }_{2} < 1 \), we have \( \frac{{\partial \Pi_{I2} }}{{\partial \tilde{\gamma }_{2} }} > 0 \) and the LSI’s profit in the first period increases with the service quality guarantee, then \( \tilde{\gamma }_{2}^{*} = 1 \).

Overall, if \( \tilde{\varphi }_{2} > 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), then \( \tilde{\gamma }_{2}^{*} = 1 \); otherwise, if \( \tilde{\varphi }_{2} \le 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), then \( \tilde{\gamma }_{2}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\gamma } \).

  1. 3.

    When market demand uncertainty is incompletely revealed in the second period, the proof of the optimal service quality guarantee’s solution is similar to the situation that market demand uncertainty is completely revealed.

2.2 Proof of the Lemma 2

To make the optimal service quality guarantee reach its upper limit, the obedience factor should satisfy \( \varphi_{1} > 1 - \frac{p - w}{{k_{c} - k_{i} }} \) in the first period, and \( \tilde{\varphi }_{2} > 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), \( \hat{\varphi }_{2} > 1 - \frac{p - w}{{\left( {k_{c} - k_{i} } \right)}} - \frac{\eta }{{\left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \beta \left( {1 - \lambda } \right) \cdot \left( {k_{c} - k_{i} } \right)}} \) in the second period, respectively.

As \( \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} > 0 \) and \( \frac{\eta }{{\left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \beta \left( {1 - \lambda } \right) \cdot \left( {k_{c} - k_{i} } \right)}} > 0 \)

Therefore, we can get that \( 1 - \frac{p - w}{{k_{c} - k_{i} }} > 1 - \frac{p - w}{{k_{c} - k_{i} }} - \frac{\eta }{{\beta \left( {1 - \lambda } \right) \cdot F\left( {z_{1}^{*} } \right)\left( {k_{c} - k_{i} } \right)}} \), and

$$ 1 - \frac{p - w}{{k_{c} - k_{i} }} > 1 - \frac{p - w}{{\left( {k_{c} - k_{i} } \right)}} - \frac{\eta }{{\left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \beta \left( {1 - \lambda } \right) \cdot \left( {k_{c} - k_{i} } \right)}}. $$

Appendix C: The proof of Proposition 3

  1. 1.

    When LSI does not share the information to the FLSP

Take the first order derivative of \( \tilde{\Pi }_{F 2} \) with respect to \( \tilde{\varphi }_{2}^{IA} \), we have

$$ \frac{{\partial \tilde{\Pi }_{F 2} }}{{\partial \tilde{\varphi }_{2}^{IA} }} = F\left( {z_{1}^{*} } \right)Q_{1}^{*} \left( {k_{i} - \rho \tilde{\gamma }_{2}^{*} } \right) $$

If \( k_{i} - \rho \tilde{\gamma }_{2}^{*} > 0 \), then \( \frac{{\partial \tilde{\Pi }_{F 2} }}{{\partial \tilde{\varphi }_{2}^{IA} }} > 0 \) and \( \tilde{\Pi }_{F 2} \) increases with the obedience factor \( \tilde{\varphi }_{2}^{IA} \) in the second period. If \( k_{i} - \rho \tilde{\gamma }_{2}^{*} < 0 \), then \( \frac{{\partial \tilde{\Pi }_{F 2} }}{{\partial \tilde{\varphi }_{2}^{IA} }} < 0 \) and \( \tilde{\Pi }_{F 2} \) decreases with the obedience factor \( \tilde{\varphi }_{2}^{IA} \) in the second period.

  1. 2.

    When LSI shares the information to the FLSP

Take the first order derivative of \( \tilde{\Pi }_{F 2} \) with respect to \( \tilde{\varphi }_{2}^{IS} \), we have

$$ \frac{{\partial \tilde{\Pi }_{F 2} }}{{\partial \tilde{\varphi }_{2}^{IS} }} = F\left( {z_{1}^{*} } \right)\tilde{Q}_{2}^{*} \left( {k_{i} - \rho \tilde{\gamma }_{2}^{*} } \right) $$

And the analysis process is similar to the above.

Appendix D: The proof of Propositions 46 and Lemma 3

  1. 1.

    We take the first order derivative of \( \Pi_{F1} \) with respect to \( \varphi_{1} \)

    $$ \frac{{\partial \Pi_{F1} }}{{\partial \varphi_{1} }} = \frac{{\partial z_{1}^{*} }}{{\partial \varphi_{ 1} }}\left[ {w - c - \rho \varphi_{1} \gamma_{1}^{*} - k_{i} \left( {1 - \varphi_{1} } \right)} \right] + \left[ {z_{1}^{*} + l\left( {s_{1} } \right)} \right]\left[ { - \rho \gamma_{1}^{*} + k_{i} } \right] $$

If \( - \rho \gamma_{1}^{*} + k_{i} > 0 \), that is \( k_{i} > \rho \gamma_{1}^{*} \), then \( \frac{{\partial \Pi_{F1} \left( {\varphi_{1} } \right)}}{{\partial \varphi_{1} }} > 0 \), the FLSP’s profit increases with obedience factor \( \varphi_{1} \). Thus the FLSP’s optimal obedience factor in the first period is \( \varphi_{1}^{*} = 1 \).

If \( - \rho \gamma_{1}^{*} + k_{i} < 0 \), with the second order derivative of \( \Pi_{F1} \) with respect to \( \varphi_{1} \), we have

$$ \frac{{\partial^{2} \Pi_{F 1} \left( {\varphi_{1} } \right)}}{{\partial^{2} \varphi_{ 1} }} = \frac{{\partial^{2} z_{ 1}^{*} }}{{\partial^{2} \varphi_{ 1} }}\left[ {w - c - \rho \varphi_{ 1} \gamma_{ 1}^{*} - k_{i} \left( {1 - \varphi_{ 1} } \right)} \right] + 2\left( { - \rho \gamma_{ 1}^{*} + k_{i} } \right)\frac{{\partial z_{ 1}^{*} }}{{\partial \varphi_{ 1} }} $$

where

$$ \begin{aligned} \frac{{\partial^{2} z_{1}^{*} }}{{\partial^{2} \varphi_{1} }} & = \frac{ 1}{{f\left( {z_{1}^{*} } \right)}} \cdot \frac{{2k_{c} \left[ {k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)} \right]}}{{\left[ {p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v} \right]^{3} }} - \frac{1}{{f^{2} \left( {z_{1}^{*} } \right)}}\frac{{\partial z_{1}^{*} }}{{\partial \varphi_{1} }}\frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v} \right]^{2} }} \\ & = \frac{ 1}{{f\left( {z_{1}^{*} } \right)}} \cdot \frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v} \right]^{3} }}\left[ { - 2k_{c} - \frac{1}{{f^{2} \left( {z_{1}^{*} } \right)}}\frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{p - k_{c} \left( {1 - \varphi_{ 1} } \right) + g - v}}} \right] < 0 \\ \end{aligned} $$

As \( w - c - \rho \varphi_{ 1} \gamma_{ 1}^{*} - k_{i} \left( {1 - \varphi_{ 1} } \right) > 0 \) and \( \frac{{\partial z_{ 1}^{*} }}{{\partial \varphi_{ 1} }} > 0 \), we have \( \frac{{\partial^{2} \Pi_{F 1} \left( {\varphi_{1} } \right)}}{{\partial^{2} \varphi_{ 1} }} < 0 \).

Let \( \frac{{\partial \Pi_{F1} \left( {\varphi_{1} } \right)}}{{\partial \varphi_{1} }} = 0 \) and we obtain \( \varphi_{1}^{*} = \frac{{w - c - k_{i} }}{{\rho \gamma_{1}^{*} - k_{i} }} - \frac{{z_{1}^{*} + l\left( {s_{1} } \right)}}{{{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}}} \).

Since the range of \( \varphi \) is \( \varphi \in \left[ {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } ,1} \right] \), so if \( \frac{{w - c - k_{i} }}{{\rho \gamma_{1}^{*} - k_{i} }} - \frac{{z_{1}^{*} + l\left( {s_{1} } \right)}}{{{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}}} < \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } \).

That is \( k_{i} < \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \), \( \varphi_{1}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } \).

If \( \frac{{w - c - k_{i} }}{{\rho \gamma_{1}^{*} - k_{i} }} - \frac{{z_{1}^{*} + l\left( {s_{1} } \right)}}{{{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}}} > 1 \), that is \( k_{i} > \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{{{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \), \( \varphi_{1}^{*} { = 1} \).

From the above, if \( k_{i} < \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \), \( \varphi_{1}^{*} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } \).

If \( \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{{{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} < k_{i} < \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \),

$$ \varphi_{1}^{*} = \frac{{w - c - k_{i} }}{{\rho \gamma_{1}^{*} - k_{i} }} - \frac{{z_{1}^{*} + l\left( {s_{1} } \right)}}{{{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}}}. $$

If \( k_{i} > \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \), \( \varphi_{1}^{*} { = 1} \).

  1. 2.

    When the LSI shares the information to the FLSP

We take the first order derivative of \( \hat{\Pi }_{F2} \) with respect to \( \hat{\varphi }_{2}^{IS} \)

$$ \frac{{\partial \hat{\Pi }_{F2} }}{{\partial \hat{\varphi }_{2}^{IS} }} = \left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \left\{ {\frac{{\partial \hat{z}_{2}^{*} }}{{\partial \hat{\varphi }_{2}^{IS} }}\left[ {w - c - \rho \hat{\varphi }_{2}^{IS} \hat{\gamma }_{2}^{*} - k_{i} \left( {1 - \hat{\varphi }_{2}^{IS} } \right)} \right] + \left[ {\hat{z}_{2}^{*} + l\left( {s_{2} } \right)} \right]\left[ { - \rho \hat{\gamma }_{2}^{*} + k_{i} } \right]} \right\} $$

\( - \rho \hat{\gamma }_{2}^{*} + k_{i} > 0 \), that is \( k_{i} > \rho \hat{\gamma }_{2}^{*} \), because \( \frac{{\partial \hat{z}_{ 2}^{*} }}{{\partial \hat{\varphi }_{2}^{IS} }}\left[ {w - c - \rho \hat{\varphi }_{2}^{IS} \hat{\gamma }_{2}^{*} - k_{i} \left( {1 - \hat{\varphi }_{2}^{IS} } \right)} \right] > 0 \) and \( \hat{z}_{ 2}^{*} + l\left( {s_{2} } \right) > 0 \), we have \( \frac{{\partial \hat{\Pi }_{F 2} }}{{\partial \hat{\varphi }_{2} }} > 0 \) and \( \hat{\Pi }_{F 2} \) increases with the obedience factor \( \hat{\varphi }_{2}^{IS} \) in the second period. Thus \( \hat{\varphi }_{2}^{IS*} { = 1} \).

If \( - \rho \hat{\gamma }_{2}^{*} + k_{i} < 0 \), we have the second order derivative of \( \hat{\Pi }_{F 2} \) with respect to \( \hat{\varphi }_{2}^{IS} \) as

$$ \frac{{\partial^{2} \hat{\Pi }_{F 2} }}{{\partial^{2} \hat{\varphi }_{2}^{IS} }} = \left[ { 1- F\left( {z_{1}^{*} } \right)} \right] \cdot \left\{ {\frac{{\partial^{2} \hat{z}_{ 2}^{*} }}{{\partial^{2} \hat{\varphi }_{2}^{IS} }}\left[ {w - c - \rho \hat{\varphi }_{2}^{IS} \hat{\gamma }_{2}^{*} - k_{i} \left( {1 - \hat{\varphi }_{2}^{IS} } \right)} \right] + 2\left( { - \rho \hat{\gamma }_{2}^{*} + k_{i} } \right)\frac{{\partial \hat{z}_{ 2}^{*} }}{{\partial \hat{\varphi }_{2}^{IS} }}} \right\} $$

where

$$ \begin{aligned} \frac{{\partial^{2} \hat{z}_{ 2}^{*} }}{{\partial^{2} \hat{\varphi }_{2}^{IS} }} & = \frac{ 1}{{g\left( {\hat{z}_{ 2}^{*} } \right)}} \cdot \frac{{2k_{c} \left[ {k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)} \right]}}{{\left[ {p - k_{c} \left( {1 - \hat{\varphi }_{2}^{IS} } \right) + g - v} \right]^{3} }} - \frac{1}{{f^{2} \left( {\hat{z}_{ 2}^{*} } \right)}}\frac{{\partial \hat{z}_{ 2}^{*} }}{{\partial \hat{\varphi }_{2}^{IS} }}\frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \hat{\varphi }_{2}^{IS} } \right) + g - v} \right]^{2} }} \\ & = \frac{ 1}{{g\left( {\hat{z}_{ 2}^{*} } \right)}} \cdot \frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{\left[ {p - k_{c} \left( {1 - \hat{\varphi }_{2}^{IS} } \right) + g - v} \right]^{3} }}\left[ { - 2k_{c} - f^{2} \left( {\hat{z}_{ 2}^{*} } \right)\frac{{k_{c} \left( {w - v} \right) - k_{i} \left( {p + g - v} \right)}}{{p - k_{c} \left( {1 - \hat{\varphi }_{2}^{IS} } \right) + g - v}}} \right] < 0 \\ \end{aligned} $$

As \( w - c - \rho \hat{\varphi }_{2} \hat{\gamma }_{2}^{*} - k_{i} \left( {1 - \hat{\varphi }_{2}^{IS} } \right) > 0 \) and \( \frac{{\partial \hat{z}_{ 2}^{*} }}{{\partial \hat{\varphi }_{2}^{IS} }} > 0 \), thus, when \( - \rho \hat{\gamma }_{2}^{*} + k_{i} < 0 \), we have \( \frac{{\partial^{2} \hat{\Pi }_{F 2} \left( {\varphi_{2} } \right)}}{{\partial^{2} \hat{\varphi }_{2}^{IS} }} < 0 \). Accordingly, there is an optimal \( \hat{\varphi }_{2}^{IS*} \) to maximize the FLSP’s profit. Let \( \frac{{\partial \hat{\Pi }_{F 2} \left( {\hat{\varphi }_{2}^{IS} } \right)}}{{\partial \hat{\varphi }_{2}^{IS} }} = 0 \), we have \( \hat{\varphi }_{2}^{IS*} = \frac{{w - c - k_{i} }}{{\rho \hat{\gamma }_{2}^{*} - k_{i} }} - \frac{{\hat{z}_{2}^{*} + l\left( {s_{2} } \right)}}{{{{\partial \hat{z}_{2}^{*} } \mathord{\left/ {\vphantom {{\partial \hat{z}_{2}^{*} } {\partial \varphi_{2} }}} \right. \kern-0pt} {\partial \varphi_{2} }}}} \).

Similar to above proof process, the optimal \( \hat{\varphi }_{2}^{IS*} \) is proved.

4.1 Proof of the Lemma 3

When LSI does not share the information to the FLSP

We take the first order derivative of \( \hat{\Pi }_{F2} \) with respect to \( \hat{\varphi }_{2}^{IA} \)

$$ \frac{{\partial \hat{\Pi }_{F 2} }}{{\partial \hat{\varphi }_{2}^{IA} }} = F\left( {\hat{z}_{2}^{*} } \right)Q_{1}^{*} \left( {k_{i} - \rho \hat{\gamma }_{2}^{*} } \right) $$

If \( k_{i} - \rho \hat{\gamma }_{2}^{*} > 0 \), then \( \frac{{\partial \hat{\Pi }_{F 2} }}{{\partial \hat{\varphi }_{2}^{IA} }} > 0 \) and \( \hat{\Pi }_{F 2} \) increases with the obedience factor \( \hat{\varphi }_{2}^{IA} \) in the second period. If \( k_{i} - \rho \hat{\gamma }_{2}^{*} < 0 \), then \( \frac{{\partial \hat{\Pi }_{F 2} }}{{\partial \hat{\varphi }_{2}^{IA} }} < 0 \) and \( \hat{\Pi }_{F 2} \) decreases with the obedience factor \( \hat{\varphi }_{2}^{IA} \) in the second period.

4.2 Proof of Proposition 5

Because \( \rho \hat{\gamma }_{2}^{*} > B_{2} = \rho \hat{\gamma }_{2}^{*} - \frac{{w - c - \rho \hat{\gamma }_{2}^{*} }}{{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {\hat{z}_{2}^{*} + l\left( {s_{2} } \right)} \right)} \mathord{\left/ {\vphantom {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {\hat{z}_{2}^{*} + l\left( {s_{2} } \right)} \right)} {\left( {{{\partial \hat{z}_{2}^{*} } \mathord{\left/ {\vphantom {{\partial \hat{z}_{2}^{*} } {\partial \hat{\varphi }_{2}^{{}} }}} \right. \kern-0pt} {\partial \hat{\varphi }_{2}^{{}} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial \hat{z}_{2}^{*} } \mathord{\left/ {\vphantom {{\partial \hat{z}_{2}^{*} } {\partial \hat{\varphi }_{2}^{{}} }}} \right. \kern-0pt} {\partial \hat{\varphi }_{2}^{{}} }}} \right)}}}} \), according to the “Appendix C”, and Propositions 3 and 4, we can derive the Proposition 5.

4.3 Proof of Proposition 6

Similar, because \( \rho \hat{\gamma }_{2}^{*} > B_{1} = \rho \gamma_{1}^{*} - \frac{{w - c - \rho \gamma_{1}^{*} }}{{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi } - 1 + \left( {z_{1}^{*} + l\left( {s_{1} } \right)} \right)} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}} \right. \kern-0pt} {\left( {{{\partial z_{1}^{*} } \mathord{\left/ {\vphantom {{\partial z_{1}^{*} } {\partial \varphi_{1}^{*} }}} \right. \kern-0pt} {\partial \varphi_{1}^{*} }}} \right)}}}} \), according to the “Appendix C”, and Propositions 3 and 4, we can derive the Proposition 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Shen, X., Wang, D. et al. Service quality guarantee design: obedience behavior, demand updating and information asymmetry. Ann Oper Res 329, 157–189 (2023). https://doi.org/10.1007/s10479-020-03623-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03623-7

Keywords

Navigation