Skip to main content
Log in

Considering the traceability awareness of consumers: should the supply chain adopt the blockchain technology?

  • S.I.: Data-Driven OR in Transportation and Logistics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Blockchain technology is an emerging technology developed in recent years. It has powerful information traceability function. The blockchain technology plays an important role in monitoring product quality and responding to product safety problems. Under considering the traceability awareness of consumers and the cost of using the blockchain technology, should the supply chain adopt the blockchain technology? The research on this issue deserves great attentions. In this paper, for a three-stage supply chain consisting of a supplier, a manufacturer and a retailer, we study the optimal pricing strategies of the supply chain considering the traceability awareness of consumers in two scenarios. These two scenarios are: scenario N (i.e., the supply chain does not adopt the blockchain technology) and scenario B (i.e., the supply chain adopts the blockchain technology). On this basis, we discuss the conditions that the supply chain adopts the blockchain technology by comparing the optimal profits of the supply chain and its members in two scenarios. Further, we discuss the problem of supply chain coordination when adopting the blockchain technology. The results show that it is conditional for the supply chain to adopt the blockchain technology, and the condition is related to the traceability awareness of consumers, the production costs of the supplier and manufacturer, and the cost of using the blockchain technology. We also find that under a certain condition, the revenue sharing contract can realize a Pareto improvement for the supply chain that adopts the blockchain technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiello, G., Enea, M., & Muriana, C. (2015). The expected value of the traceability information. European Journal of Operational Research, 244(1), 176–186.

    Article  Google Scholar 

  • Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184.

    Article  Google Scholar 

  • Azzi, R., Chamoun, R. K., & Sokhn, M. (2019). The power of a blockchain-based supply chain. Computer and Industrial Engineering, 135, 582–592.

    Article  Google Scholar 

  • Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48.

    Article  Google Scholar 

  • Charlebois, S. (2017). How blockchain technology could transform the food industry. http://theconversation.com/how-blockchain-technologycould-transform-the-food-industry-89348. Accessed 20 Dec 2017.

  • Chod, J., Trichakis, N., Tsoukalas, G., et al. (2020). On the financing benefits of supply chain transparency and blockchain adoption. Management Science. https://doi.org/10.1287/mnsc.2019.3434.

    Article  Google Scholar 

  • Choi, T. M., Guo, S., Liu, N., et al. (2020). Optimal pricing in on-demand-service-platform-operations with hired agents and risk-sensitive customers in the blockchain era. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.01.049.

    Article  Google Scholar 

  • Dai, H., Ge, L., & Zhou, W. (2015). A design method for supply chain traceability systems with aligned interests. International Journal of Production Economics, 170, 14–24.

    Article  Google Scholar 

  • Egels-Zandén, N., Hulthén, K., & Wulff, G. (2014). Trade-offs in supply chain transparency: The case of Nudie Jeans Co. Journal of Cleaner Production, 107, 95–104.

    Article  Google Scholar 

  • Epelbaum, F., & Martinez, M. (2014). The technological evolution of food traceability systems and their impact on firm sustainable performance: A RBV approach. International Journal of Production Economics, 150, 215–224.

    Article  Google Scholar 

  • Galvez, F. J., Mejuto, J. C., & Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. Trac-Trends in Analytical Chemistry, 107, 222–232.

    Article  Google Scholar 

  • George, R. V., Harsh, H. O., Ray, P., et al. (2019). Food quality traceability prototype for restaurants using blockchain and food quality data index. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118021.

    Article  Google Scholar 

  • Heyder, M., Theuvsen, L., & Hollmann-Hespos, T. (2012). Investments in tracking and tracing systems in the food industry: A PLS Analysis. Food Policy, 37, 102–113.

    Article  Google Scholar 

  • Hofmann, E., Strewe, U. M., & Bosia, N. (2017). Supply chain finance and blockchain technology. Heidelberg: Springer.

    Google Scholar 

  • Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. Harvard Business Review, 95(1), 118–127.

    Google Scholar 

  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.

    Article  Google Scholar 

  • Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 50(7), 2009–2033.

    Article  Google Scholar 

  • Kher, S. V., Frewer, L. J., De Jonge, J., et al. (2010). Experts’ perspectives on the implementation of traceability in Europe. British Food Journal, 112(3), 261–274.

    Article  Google Scholar 

  • Koutmos, D. (2019). Market risk and Bitcoin returns. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03255-6.

    Article  Google Scholar 

  • Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89.

    Article  Google Scholar 

  • Kumar, A., Liu, R., & Shan, Z. (2019). Is blockchain a silver bullet for supply chain management? Technical challenges and research opportunities. Decision Sciences. https://doi.org/10.1111/deci.12396.

    Article  Google Scholar 

  • Li, W., Chen, J., Liang, G., et al. (2018). Money-back guarantee and personalized pricing in a Stackelberg manufacturer’s dual-channel supply chain. International Journal of Production Economics, 197, 84–98.

    Article  Google Scholar 

  • Liu, Q., & Shum, S. (2013). Pricing and capacity rationing with customer disappointment aversion. Production and Operations Management, 22(5), 1269–1286.

    Google Scholar 

  • Manning, L., & Monaghan, J. (2019). Integrity in the fresh produce supply chain: Solutions and approaches to an emerging issue. The Journal of Horticultural Science & Biotechnology, 94(4), 413–421.

    Article  Google Scholar 

  • Manupati, V. K., Schoenherr, T., Ramkumar, M., et al. (2019). A blockchain-based approach for a multi-echelon sustainable supply chain. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1683248.

    Article  Google Scholar 

  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf. Accessed 17 July 2020.

  • Pearson, S., May, D., & Leontidis, G. (2019). Are distributed ledger technologies the panacea for food traceability? Global Food Security-Agriculture Policy Economics and Environment, 20, 145–149.

    Article  Google Scholar 

  • Regattieri, A., Gamberi, M., & Manzini, R. (2007). Traceability of food products: General framework and experimental evidence. Journal of Food Engineering, 81(2), 347–356.

    Article  Google Scholar 

  • Saak, A. E. (2016). Traceability and reputation in supply chains. International Journal of Production Economics, 177, 149–162.

    Article  Google Scholar 

  • Storøy, J., Thakur, M., & Olsen, P. (2013). The Trace food framework–principles and guidelines for implementing traceability in food value chains. Journal of Food Engineering, 115(1), 41–48.

    Article  Google Scholar 

  • Tapscott, A., & Tapscott, D. (2017). How blockchain is changing finance. Harvard Business Review, 1(9), 2–5.

    Google Scholar 

  • Tian, F. (2017). A supply chain traceability system for food safety based on HACCP, Blockchain & Internet of Things. In Service systems and service management (ICSSSM), 2017 international conference (pp. 1–6).

  • Zhang, P., He, Y., & Shi, C. (2017). Retailer’s channel structure choice: Online channel, offline channel, or dual channels? International Journal of Production Economics, 191, 37–50.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Project No. 71871049) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Yan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

In scenario N, the manufacturer is leader while the supplier and retailer are followers as the same status. By Eqs. (3) and (5), we can determine the first order and second order derivatives of the supplier’s profit and retailer’s profit with respect to the supplier’s wholesale price \( w_{S}^{n} \) and the retailer’s marginal price \( x_{R}^{n} \), respectively, namely,

$$ \frac{{\partial \prod_{S}^{n} }}{{\partial w_{S}^{n} }} = 1 - 2w_{S}^{n} - x_{M}^{n} - x_{R}^{n} + c_{S}^{b} $$
(A.1)
$$ \frac{{\partial^{2} \prod_{S}^{n} }}{{\partial w_{S}^{n2} }} = - 2 < 0 $$
(A.2)
$$ \frac{{\partial \prod_{R}^{n} }}{{\partial x_{R}^{n} }} = 1 - w_{S}^{n} - x_{M}^{n} - 2x_{R}^{n} $$
(A.3)
$$ \frac{{\partial^{2} \prod_{R}^{n} }}{{\partial x_{R}^{n2} }} = - 2 < 0 $$
(A.4)

According to Eqs. (A.2) and (A.4), there are the unique wholesale price and marginal price that maximize the profits of the supplier and retailer, respectively. Further, according to the first order conditions, i.e., \( {{\partial \prod_{S}^{n} } \mathord{\left/ {\vphantom {{\partial \prod_{S}^{n} } {\partial w_{S}^{n} }}} \right. \kern-0pt} {\partial w_{S}^{n} }} = 0 \) and \( {{\partial \prod_{R}^{n} } \mathord{\left/ {\vphantom {{\partial \prod_{R}^{n} } {\partial x_{R}^{n} }}} \right. \kern-0pt} {\partial x_{R}^{n} }} = 0 \), we can determine the reaction functions of the supplier’s profit and retailer’s profit with respect to the manufacturer’s marginal price, respectively, namely,

$$ w_{S}^{n} = \frac{{1 - x_{M}^{n} + 2c_{S}^{n} }}{3} $$
(A.5)
$$ x_{R}^{n} = \frac{{1 - x_{M}^{n} - c_{S}^{n} }}{3} $$
(A.6)

According to the inverse solution method based on Stackelberg game, by substituting Eqs. (A.5) and (A.6) into the manufacturer’s profit function, we can determine the first order and second order derivatives of the manufacturer’s profit with respect to the manufacturer’s marginal price \( x_{M}^{n} \), respectively, namely,

$$ \frac{{\partial \prod_{M}^{n} }}{{\partial x_{M}^{n} }} = \frac{{1 - 2x_{M}^{n} + c_{M}^{n} - c_{S}^{n} }}{3} $$
(A.7)
$$ \frac{{\partial^{2} \prod_{M}^{n} }}{{\partial x_{M}^{n2} }} = - \frac{2}{3} < 0 $$
(A.8)

According to Eq. (A.8), there is the unique marginal price that maximizes the manufacturer’s profit. According to the first order condition, i.e., \( {{\partial \prod_{M}^{n} } \mathord{\left/ {\vphantom {{\partial \prod_{M}^{n} } {\partial x_{M}^{n} }}} \right. \kern-0pt} {\partial x_{M}^{n} }} = 0 \), we can determine the manufacturer’s optimal marginal price, namely,

$$ x_{M}^{n *} = \frac{{1 + c_{M}^{n} - c_{S}^{n} }}{2} $$
(A.9)

By substituting Eq. (A.9) into Eqs. (A.5) and (A.6), we can determine the optimal wholesale price of the supplier and the optimal marginal price of the retailer, namely,

$$ w_{S}^{n*} = \frac{{1 - c_{M}^{n} + 5c_{S}^{n} }}{6} $$
(A.10)
$$ x_{R}^{n *} = \frac{{1 - c_{M}^{n} - c_{S}^{n} }}{6} $$
(A.11)

Furthermore, since \( w_{M}^{n} = w_{S}^{n} + x_{M}^{n} \) and \( p_{R}^{n} = w_{S}^{n} + x_{M}^{n} + x_{R}^{n} \), we can determine the optimal wholesale price of the manufacturer and the optimal retail price of the retailer, namely,

$$ w_{M}^{n *} = \frac{{2 + c_{M}^{n} + c_{S}^{n} }}{3} $$
(A.12)
$$ p_{R}^{n*} = \frac{{5 + c_{M}^{n} + c_{S}^{n} }}{6} $$
(A.13)

Therefore, Lemma 1 holds.

Proof of Lemma 2

In scenario B, the manufacturer is leader while the supplier and retailer are followers as the same status. By Eqs. (14) and (16), we can determine the first order and second order derivatives of the supplier’s profit and retailer’s profit with respect to the supplier’s wholesale price \( w_{S}^{b} \) and the retailer’s marginal price \( x_{R}^{b} \), respectively, namely,

$$ \frac{{\partial \prod_{S}^{b} }}{{\partial w_{S}^{b} }} = 1 - 2w_{S}^{b} - x_{M}^{b} - x_{R}^{b} + s + c_{S}^{b} $$
(B.1)
$$ \frac{{\partial^{2} \prod_{S}^{b} }}{{\partial w_{S}^{b2} }} = - 2 < 0 $$
(B.2)
$$ \frac{{\partial \prod_{R}^{b} }}{{\partial x_{R}^{b} }} = 1 - w_{S}^{b} - x_{M}^{b} - 2x_{R}^{b} + s $$
(B.3)
$$ \frac{{\partial^{2} \prod_{R}^{b} }}{{\partial x_{R}^{b2} }} = - 2 < 0 $$
(B.4)

According to Eqs. (B.2) and (B.4), there are the unique wholesale price and marginal price that maximize the profits of the supplier and retailer, respectively. Further, according to the first order conditions, i.e., \( {{\partial \prod_{S}^{b} } \mathord{\left/ {\vphantom {{\partial \prod_{S}^{b} } {\partial w_{S}^{b} }}} \right. \kern-0pt} {\partial w_{S}^{b} }} = 0 \) and \( {{\partial \prod_{R}^{b} } \mathord{\left/ {\vphantom {{\partial \prod_{R}^{b} } {\partial x_{R}^{b} }}} \right. \kern-0pt} {\partial x_{R}^{b} }} = 0 \), we can determine the reaction functions of the supplier’s profit and retailer’s profit with respect to the manufacturer’s marginal price, respectively, namely,

$$ w_{S}^{b} = \frac{{1 + s - x_{M}^{b} + 2c_{S}^{b} }}{3} $$
(B.5)
$$ x_{R}^{b} = \frac{{1 + s - x_{M}^{b} - c_{S}^{b} }}{3} $$
(B.6)

According to the inverse solution method based on Stackelberg game, by substituting Eqs. (B.5) and (B.6) into the manufacturer’s profit function, we can determine the first order and second order derivatives of the manufacturer’s profit with respect to the manufacturer’s marginal price \( x_{M}^{n} \), namely,

$$ \frac{{\partial \prod_{M}^{b} }}{{\partial x_{M}^{b} }} = \frac{{1 + s - 2x_{M}^{b} + c_{M}^{b} - c_{S}^{b} }}{3} $$
(B.7)
$$ \frac{{\partial^{2} \prod_{M}^{b} }}{{\partial x_{M}^{b2} }} = - \frac{2}{3} < 0 $$
(B.8)

According to the Eq. (B.8), there is the unique marginal price that maximizes the manufacturer’s profit function. According to first order condition, i.e., \( {{\partial \prod_{M}^{b} } \mathord{\left/ {\vphantom {{\partial \prod_{M}^{b} } {\partial x_{M}^{b} }}} \right. \kern-0pt} {\partial x_{M}^{b} }} = 0 \), we can determine the manufacturer’s optimal marginal price, namely,

$$ x_{M}^{b *} = \frac{{1 + s + c_{M}^{b} - c_{S}^{b} }}{2} $$
(B.9)

By substituting the Eq. (B.9) into Eqs. (B.5) and (B.6), we can determine the optimal wholesale price of the supplier and the optimal marginal price of the retailer, namely,

$$ w_{S}^{b*} = \frac{{1{ + }s - c_{M}^{b} + 5c_{S}^{b} }}{6} $$
(B.10)
$$ x_{R}^{b *} = \frac{{1{ + }s - c_{M}^{b} - c_{S}^{b} }}{6} $$
(B.11)

Furthermore, according to \( w_{M}^{b} = w_{S}^{b} + x_{M}^{b} \) and \( p_{R}^{b} = w_{S}^{b} + x_{M}^{b} + x_{R}^{b} \), we can determine the optimal wholesale price of the manufacturer and the optimal retail price of the retailer, namely,

$$ w_{M}^{b *} = \frac{{2 + 2s + c_{M}^{b} + c_{S}^{b} }}{3} $$
(B.12)
$$ p_{R}^{b*} = \frac{{5 + 5s + c_{M}^{b} + c_{S}^{b} }}{6} $$
(B.13)

Therefore, Lemma 2 holds.

Proof of Proposition 1

(i) According to Eqs. (6) and (7), we have \( w_{S}^{b*} - w_{S}^{n*} = \frac{{1 + s - c_{M}^{b} + 5c_{S}^{b} }}{6} - \frac{{1 - c_{M}^{n} + 5c_{S}^{n} }}{6} \). If \( w_{S}^{b*} \ge w_{S}^{n*} \), then \( \frac{{1 + s - c_{M}^{b} + 5c_{S}^{b} }}{6} - \frac{{1 - c_{M}^{n} + 5c_{S}^{n} }}{6} \ge 0 \). By simplifying, we can obtain \( s \ge \left( {c_{M}^{b} - c_{M}^{n} } \right) - 5\left( {c_{S}^{b} - c_{S}^{n} } \right) \). Since \( 0 \le c_{M}^{b} - c_{M}^{n} < 1 \) and \( 0 \le c_{S}^{b} - c_{S}^{n} < 1 \), we discuss as follows:

① when \( \left( {c_{M}^{b} - c_{M}^{n} } \right) < 5\left( {c_{S}^{b} - c_{S}^{n} } \right) \), then \( \left( {c_{M}^{b} - c_{M}^{n} } \right) - 5\left( {c_{S}^{b} - c_{S}^{n} } \right) < 0 \). Since \( s \in \left[ {0,1} \right] \), thus \( w_{S}^{b*} \ge w_{S}^{n*} \) always holds;

② when \( \left( {c_{M}^{b} - c_{M}^{n} } \right) \ge 5\left( {c_{S}^{b} - c_{S}^{n} } \right) \), then \( 0 \le \left( {c_{M}^{b} - c_{M}^{n} } \right) - 5\left( {c_{S}^{b} - c_{S}^{n} } \right) < 1 \). Since \( s \in \left[ {0,1} \right] \), then we have \( \left( {c_{M}^{b} - c_{M}^{n} } \right) - 5\left( {c_{S}^{b} - c_{S}^{n} } \right) \le s \le 1 \), thus \( w_{S}^{b*} \ge w_{S}^{n*} \).

Let \( \left( {c_{M}^{b} - c_{M}^{n} } \right) - 5\left( {c_{S}^{b} - c_{S}^{n} } \right) = \hat{s}_{1} \). From the above, if \( \hbox{max} \left\{ {\hat{s}_{1} ,0} \right\} \le s \le 1 \), then \( w_{S}^{b*} \ge w_{S}^{n*} \).

(ii) According to Eqs. (7) and (18), we have \( w_{M}^{b*} - w_{M}^{n*} = \frac{{2 + 2s + c_{M}^{b} + c_{S}^{b} }}{3} - \frac{{2 + c_{M}^{n} + c_{S}^{n} }}{3} \). If \( w_{M}^{b*} \ge w_{M}^{n*} \), then \( \frac{{2 + 2s + c_{M}^{b} + c_{S}^{b} }}{3} - \frac{{2 + c_{M}^{n} + c_{S}^{n} }}{3} \ge 0 \). By simplifying, we can obtain \( s \ge - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{2} \). Since \( 0 \le c_{M}^{b} - c_{M}^{n} < 1 \) and \( 0 \le c_{S}^{b} - c_{S}^{n} < 1 \), thus \( - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{2} \le 0 \). Furthermore, for \( s \in \left[ {0,1} \right] \), thus \( s \ge - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{2} \) always holds. As a result, we know \( w_{M}^{b*} \ge w_{M}^{n*} \) holds.

(iii) According to Eqs. (8) and (19), we have \( p_{R}^{b * } - p_{R}^{n*} = \frac{{5 + 5s + c_{M}^{b} + c_{S}^{b} }}{6} - \frac{{5 + c_{M}^{n} + c_{S}^{n} }}{6} \). If \( p_{R}^{b * } \ge p_{R}^{n*} \), then \( \frac{{5 + 5s + c_{M}^{b} + c_{S}^{b} }}{6} - \frac{{5 + c_{M}^{n} + c_{S}^{n} }}{6} \ge 0 \). By simplifying, we can obtain \( s \ge - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{5} \). Since \( 0 \le c_{M}^{b} - c_{M}^{n} < 1 \) and \( 0 \le c_{S}^{b} - c_{S}^{n} < 1 \), thus \( - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{5} \le 0 \). Furthermore, since \( s \in \left[ {0,1} \right] \), thus \( s \ge - \frac{{\left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right)}}{5} \) always holds. As a result, we know \( p_{R}^{b * } \ge p_{R}^{n*} \) holds.

(iv) According to Eqs. (9) and (20), we have \( D^{b *} - D^{n *} = \frac{{1 + s - c_{M}^{b} - c_{S}^{b} }}{6} - \frac{{1 - c_{M}^{n} - c_{S}^{n} }}{6} \). If \( D^{b *} \ge D^{n *} \), then \( \frac{{1 + s - c_{M}^{b} - c_{S}^{b} }}{6} - \frac{{1 - c_{M}^{n} - c_{S}^{n} }}{6} \ge 0 \). By simplifying, we can obtain \( s \ge \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) \). Since \( 0 \le c_{M}^{b} - c_{M}^{n} < 1 \) and \( 0 \le c_{S}^{b} - c_{S}^{n} < 1 \), we discuss as follows:

① when \( 0 \le \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) \le 1 \), since \( s \in \left[ {0,1} \right] \), if \( \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) \le s \le 1 \), we have \( D^{b *} \ge D^{n *} \);

② when \( \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) > 1 \), since \( s \in \left[ {0,1} \right] \), thus \( s \ge \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) \) does not hold, we have \( D^{b *} < D^{n *} \).

On the basis, let \( \left( {c_{M}^{b} - c_{M}^{n} } \right) + \left( {c_{S}^{b} - c_{S}^{n} } \right) = \hat{s}_{2} \), then we know that, if \( \hbox{max} \left\{ {\hat{s}_{2} ,0} \right\} \le s \le 1 \), then \( D^{b *} \ge D^{n *} \).

From the above, Proposition 1 holds.

Proof of Proposition 2

According to Eqs. (11) and (22), we have \( \prod_{M}^{b*} - \prod_{M}^{n*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{12} - \alpha_{M} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12} \). If \( \prod_{M}^{b*} \ge \prod_{M}^{n*} \), then \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{12} - \alpha_{M} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12} \ge 0 \). By simplifying, we can obtain \( \alpha_{M} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12C} \). Let \( \hat{\alpha } = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \). Since \( \alpha_{M} \in \left[ {0,1} \right] \), thus, if \( 0 \le \alpha_{M} \le \hbox{min} \left\{ {3\hat{\alpha },1} \right\} \), then \( \prod_{M}^{b*} \ge \prod_{M}^{n*} \).

Therefore, Proposition 2 holds.

Proof of Proposition 3

According to Eqs. (13) and (24), we have \( \prod_{SC}^{b*} - \prod_{SC}^{n*} = \frac{{5\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - C - \frac{{5\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \). If \( \prod_{SC}^{b*} \ge \prod_{SC}^{n*} \), then \( \frac{{5\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - C - \frac{{5\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \ge 0 \). By simplifying, we can obtain \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \ge \frac{1}{5} \). Thus, if \( \hat{\alpha } \ge \frac{1}{5} \), then \( \prod_{SC}^{b*} \ge \prod_{SC}^{n*} \).

Furthermore, according to Eqs. (10)–(12) and (21)–(23), we have \( \prod_{S}^{b*} - \prod_{S}^{n*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - \alpha_{S} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \), \( \prod_{M}^{b*} - \prod_{M}^{n*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{12} - \alpha_{M} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12} \), and \( \prod_{R}^{b*} - \prod_{R}^{n*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - \alpha_{R} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \). If \( \prod_{S}^{b*} \ge \prod_{S}^{n*} \), \( \prod_{M}^{b*} \ge \prod_{M}^{n*} \) and \( \prod_{R}^{b*} \ge \prod_{R}^{n*} \) simultaneously holds, the prerequisites should be held, i.e., \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - \alpha_{S} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \ge 0 \), \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{12} - \alpha_{M} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12} \ge 0 \) and \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{36} - \alpha_{R} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \ge 0 \) should be held firstly. By simplifying, the prerequisites can be converted into \( \alpha_{S} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \), \( \alpha_{M} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{12C} \) and \( \alpha_{R} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \). On the basis, since \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \ge \frac{1}{5} \), thus we know that, if \( 0 \le \alpha_{S} \le \hbox{min} \left\{ {\hat{\alpha },1} \right\} \), \( 0 \le \alpha_{M} \le \hbox{min} \left\{ {3\hat{\alpha },1} \right\} \), \( 0 \le \alpha_{R} \le \hbox{min} \left\{ {\hat{\alpha },1} \right\} \) and \( \alpha_{S} + \alpha_{R} + \alpha_{M} = 1 \) simultaneously hold, then \( \prod_{S}^{b*} \ge \prod_{S}^{n*} \), \( \prod_{M}^{b*} \ge \prod_{M}^{n*} \) and \( \prod_{R}^{b*} \ge \prod_{R}^{n*} \) holds.

Since \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} = \hat{\alpha } \), then \( \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} = \hat{\alpha }C \). Therefore, through the above analysis, it can be seen that in the case that the supply chain adopts the blockchain technology, the supplier’s profit increase \( \Delta \prod_{S} = \prod_{S}^{b*} - \prod_{S}^{n*} = \left( {\hat{\alpha } - \alpha_{S} } \right)C \), the manufacturer’s profit increase \( \Delta \prod_{M} = \prod_{M}^{b*} - \prod_{M}^{n*} = \left( {3\hat{\alpha } - \alpha_{M} } \right)C \) and the retailer’s profit increases \( \Delta \prod_{R} = \prod_{R}^{b*} - \prod_{R}^{n*} = \left( {\hat{\alpha } - \alpha_{R} } \right)C \).

Therefore, Proposition 3 holds.

Proof of Proposition 4

In scenario B, the profit function of the whole supply chain is \( \prod_{SC}^{b} = \left( {p_{R}^{b} - c_{S}^{b} - c_{M}^{b} } \right)D^{b} - C \). We can obtain the optimal pricing strategies of the supply chain in centralized decision, that is \( p_{R}^{b/c*} = \frac{{1 + s + c_{M}^{b} + c_{S}^{b} }}{2} \). Furthermore, we can obtain the optimal profit of the whole supply chain, i.e., \( \prod_{SC}^{b/c*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{4} - C \). According to Eq. (24), we can easily know that \( \prod_{SC}^{b*} < \prod_{SC}^{b/c*} \). Therefore, the contract should be designed to increase the profit of the whole supply chain.

According to the principle of profit maximization, using the inverse solution method to solve Eqs. (25)–(27), we can obtain the optimal profit of the supplier, manufacturer and retailer, respectively, namely

$$ \prod_{S}^{b/r*} = \frac{{\left( {2 - \gamma } \right)\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{{4\left( {\varphi - \gamma + 3} \right)^{2} }} - \alpha_{S} C $$
(C.1)
$$ \prod_{M}^{b/r*} = \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{{4\left( {\varphi - \gamma + 3} \right)}} - \alpha_{M} C $$
(C.2)
$$ \prod_{R}^{b/r*} = \frac{{\varphi \left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{{4\left( {\varphi - \gamma + 3} \right)^{2} }} - \alpha_{R} C $$
(C.3)

To realize a Pareto improvement, the condition of \( \prod_{S}^{b/r*} > \prod_{S}^{b*} \), \( \prod_{M}^{b/r*} > \prod_{M}^{b*} \) and \( \prod_{R}^{b/r*} > \prod_{R}^{b*} \) should be met. By analyzing, we can easily obtain the converted equivalent condition, i.e., \( \gamma > 3 - 3\sqrt \varphi + \varphi \). That is, if \( \gamma > 3 - 3\sqrt \varphi + \varphi \), then the supply chain that adopts the blockchain technology can realize a Pareto improvement.

Therefore, Proposition 4 holds.

Proof of Proposition 5

According to Eqs. (10) and (28), we have \( \prod_{S}^{{{b \mathord{\left/ {\vphantom {b r}} \right. \kern-0pt} r}*}} - \prod_{S}^{n*} = \frac{{\left( {2 - \gamma } \right)\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{{4\left( {\varphi - \gamma + 3} \right)^{2} }} - \alpha_{S} C - \frac{{\left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36} \). If \( \prod_{S}^{{{b \mathord{\left/ {\vphantom {b r}} \right. \kern-0pt} r}*}} \ge \prod_{S}^{n*} \), then the prerequisite \( \alpha_{S} \le \frac{{9\left( {2 - \gamma } \right)\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {\varphi - \gamma + 3} \right)^{2} \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{{36\left( {\varphi - \gamma + 3} \right)^{2} C}} \) should be satisfied. According to Proposition 3 (ii), we know that if \( \alpha_{S} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \), then \( \prod_{S}^{b * } \ge \prod_{S}^{n*} \). Let \( \Delta \alpha_{S} = \frac{{9\left( {2 - \gamma } \right)\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {\varphi - \gamma + 3} \right)^{2} \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{{36\left( {\varphi - \gamma + 3} \right)^{2} C}} - \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \), by simplifying, we can obtain \( \Delta \alpha_{S} = \frac{{\left[ {9\left( {2 - \gamma } \right) - \left( {\varphi - \gamma + 3} \right)^{2} } \right]\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} }}{{36\left( {\varphi - \gamma + 3} \right)^{2} C}} \). Since \( \gamma > 3 - 3\sqrt \varphi + \varphi \) ,then \( \Delta \alpha_{S} > 0 \), that is, when \( \alpha_{S} \le \frac{{\left( {1 + s - c_{M}^{b} - c_{S}^{b} } \right)^{2} - \left( {1 - c_{M}^{n} - c_{S}^{n} } \right)^{2} }}{36C} \), \( \prod_{S}^{{{b \mathord{\left/ {\vphantom {b r}} \right. \kern-0pt} r} * }} \ge \prod_{S}^{n*} \) also holds. So, Proposition 5 (i) holds. Similarly, Proposition 5 (ii) and (iii) are hold.

Therefore, Proposition 5 holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, ZP., Wu, XY. & Cao, BB. Considering the traceability awareness of consumers: should the supply chain adopt the blockchain technology?. Ann Oper Res 309, 837–860 (2022). https://doi.org/10.1007/s10479-020-03729-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03729-y

Keywords

Navigation