Abstract
We extend the notion of a two-part fractional regression model with conditional free disposal hull efficiency responses to accommodate two-stage regression analysis. The two-part regression model includes the binomial model with a nonlinear specification for the expected response in (0,1] and is a more general formulation in the context of fractional regressions. We use nonlinear least squares to assess the effect of covariates in the conditional efficiency response. The approach is applied to Brazilian agricultural county data, as reported in the Brazilian agricultural census of 2006. The efficiency measure is output oriented and assumes variable returns to scale. Output is rural gross income and inputs are land expenses, labor expenses and expenses on other technological inputs. The covariates affecting production are credit, technical assistance, a rural development index, income concentration, measured by the Gini index, and regional dummies. Overall Brazilian rural production performance responds positively to all covariates.



Similar content being viewed by others
References
Ali, M., & Flinn, J. C. (1989). Profit efficiency among basmati rice producers in Pakistan Punjab. American Journal of Agricultural Economics, 71(2), 303–310.
Alves, E. R. A., Souza, G. S., & Marra, R. (2017). Uma viagem pelas regiões e estados guiada pelo Censo Agropecuário 2006. Revista de Política Agrícola, 26(1), 113–150.
Bădin, L., Daraio, C., & Simar, L. (2010). Optimal bandwidth selection for conditional efficiency measures: A data-driven approach. European Journal of Operational Research, 201, 633–640.
Bădin, L., Daraio, C., & Simar, L. (2012). How to measure the impact of environmental factors in a nonparametric production model. European Journal of Operational Research, 223, 818–833.
Bădin, L., Daraio, C., & Simar, L. (2014). Explaining inefficiency in nonparametric production models: The state of the art. Annals of Operations Research, 214(1), 5–30.
Bădin, L., Daraio, C., & Simar, L. (2019). A bootstrap approach for bandwidth selection in estimating conditional efficiency measures. European Journal of Operational Research, 277, 784–797.
Blancard, S., Boussemart, J.-P., Briec, W., & Kerstens, K. (2006). Short- and long-run credit constraints in French agriculture: A directional distance function framework using expenditure-constrained profit functions. American Journal of Agricultural Economics, 88(2), 351–364.
Cesaroni, G., Kerstens, K., & Van de Woestyne, I. (2017). Estimating scale economies in non-convex production models. Journal of the Operational Research Society, 68(11), 1442–1451.
Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroek, T. (2007). An introduction to ‘benefit of the doubt’ composite indicators. Social Indicators Research, 82, 111–145.
Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis. New York: Springer.
Daraio, C., Simar, L., & Wilson, P. W. (2018). Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production. The Econometrics Journal, 21, 170–191.
Djokoto, J. G. (2015). Technical efficiency of organic agriculture: A quantitative review. Studies in Agricultural Economics, 117, 61–71.
Djokoto, J. G., & Gidiglo, K. F. (2016). Technical efficiency in agribusiness: A meta-analysis on Ghana. Agribusiness, 32(3), 397–415.
Djokoto, J. G., Srofenyo, F. Y., & Arthur, A. A. A. (2016). Technical inefficiency effects in agriculture—a meta-regression. Journal of Agricultural Science, 8(2), 109–121.
Färe, R., & Karagiannis, G. (2014). Benefit-of-the-doubt aggregation and the diet problem. Omega, 47, 33–35.
Fletschner, D., Guirkinger, C., & Boucher, S. (2010). Risk, credit constraints and financial efficiency in Peruvian agriculture. Journal of Development Studies, 46(6), 981–1002.
Gasques, J.G, Bacchi, M.R.P., Rodrigues, L., Bastos, E.T., & Valdes, C. (2016). Produtividade da agricultura brasileira: A hipótese da desaceleração. In J.E.R. Vieira Filho, & J.G. Gasques, Agricultura, transformação produtiva e sustentabilidade (pp. 142–163). Brasília IPEA.
Gelan, A., & Muriithi, B. W. (2012). Measuring and explaining technical efficiency of dairy farms: A case study of smallholder farms in East Africa. Agrekon, 51(2), 53–74.
Gomes, E. G., Abreu, U. G. P., Soares de Mello, J. C. C. B., Carvalho, T. B., & Zen, S. (2012). Unitary input DEA model to identify beef cattle production systems typologies. Pesquisa Operacional, 32, 389–406.
Gomes, E. G., Soares de Mello, J. C. C. B., Souza, G. S., Angulo-Meza, L., & Mangabeira, J. A. C. (2009). Efficiency and sustainability assessment for a group of farmers in the Brazilian Amazon. Annals of Operations Research, 169, 167–181.
Griliches, Z. (1964). Agricultural production function. The American Economic Review, 54, 961–974.
Gutierrez, E., Aguilera, E., Lozano, S., & Gizmán, G. I. (2017). A two-stage DEA approach for quantifying and analysing the inefficiency of conventional and organic rain–fed cereals in Spain. Journal of Cleaner Production, 149, 335–348.
Hai, T. N., Bui Dung, T., & Speelman, S. (2018). Analyzing the variations in cost-efficiency of marine cage lobster aquaculture in Vietnam: A two-stage bootstrap DEA approach. Aquaculture Economics and Management, 22(4), 458–473.
Hazarika, G., & Alwang, J. (2003). Access to credit, plot size and cost inefficiency among smallholder tobacco cultivators in Malawi. Agricultural Economics, 29(1), 99–109.
IBGE (2012a). Censo Agropecuário 2006. http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/. Accessed 24 Jan 2012.
IBGE (2012b). Censo Demográfico 2010. http://censo2010.ibge.gov.br/. Accessed 24 Jan 2012.
INEP (2012). Nota Técnica do Índice de Desenvolvimento da Educação Básica. http://ideb.inep.gov.br/resultado/. Accessed 24 Jan 2012.
Islam, K. M. Z., Sipiläinen, T., & Sumelius, J. (2011). Influence of credit constraints on technical, allocative and cost efficiency in peasant farming in Bangladesh. European Journal of Scientific Research, 56(2), 229–243.
Karagiannis, G., & Lovell, C. A. K. (2016). Productivity measurement in radial DEA models with a single constant input. European Journal of Operational Research, 251(1), 323–328.
Kerstens, K., Sadeghi, J., & Van de Woestyne, I. (2019). Convex and nonconvex input-oriented technical and economic capacity measures: An empirical comparison. European Journal of Operational Research, 276(2), 699–709.
Kerstens, K., & Van de Woestyne, I. (2017). How harmless is convexification for nonparametric cost function estimates?. IESEG School of Management (Working Paper Series No. 2017-EQM-03).
Kerstens, K., & Van de Woestyne, I. (2018). Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions. Annals of Operations Research, 271(2), 1067–1078.
Krivonozhko, V. E., & Lychev, A. V. (2019). Frontier visualization and estimation of returns to scale in free disposal hull models. Computational Mathematics and Mathematical Physics, 59(3), 501–511.
Lambert, D. K., & Bayda, V. V. (2005). The impacts of farm financial structure on production efficiency. Journal of Agricultural and Applied Economics, 37(1), 277–289.
Latruffe, L. (2005). The impact of credit market imperfections on farm investment in Poland. Post-Communist Economies, 17(3), 349–362.
Luik-Lindsaar, H., Viira, A.-H., Viinalass, H., Kaart, T., & Värnik, R. (2018). How do herd’s genetic level and milk quality affect performance of dairy farms? Czech Journal of Animal Science, 63(10), 379–388.
Majiwa, E., Lee, B. L., Wilson, C., Fujii, H., & Managi, S. (2018). A network data envelopment analysis (NDEA) model of post-harvest handling: The case of Kenya’s rice processing industry. Food Security, 10, 631–648.
Ministério da Saúde (2011). IDSUS—Índice de Desempenho do SUS. http://portal.saude.gov.br/. Accessed 24 Jan 2012.
Mostafaee, A., & Soleimani-damaneh, M. (2020). Global sub-increasing and global sub-decreasing returns to scale in free disposal hull technologies: Definition, characterization and calculation. European Journal of Operational Research, 280, 230–241.
N’cho, S. A., Mourits, M., Rodenburg, J., & Oude Lansink, A. (2019). Inefficiency of manual weeding in rainfed rice systems affected by parasitic weeds. Agricultural Economics, 50(2), 151–163.
OECD. (1994). Creating rural indicators for shaping territorial policy. Paris: OECD Publications.
OECD/FAO (2015). OECD-FAO Agricultural outlook 2015. OECD Publishing, Paris. Available at: http://dx.doi.org/10.1787/agr_outlook-2015-en Accessed on: 06 March 2020.
Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. Journal of Applied Economics, 11(6), 619–632.
Poleman, T.T. (1979). Some political issues confronting world agriculture (food aid). Agricultural Economics Staff Paper, Dept. Agricultural Economics, Cornell University, 79-8. http://publications.dyson.cornell.edu/research/researchpdf/sp/1979/Cornell-Dyson-sp7908.pdf. Accessed 14 April 2019.
Raheli, H., Rezaei, R. M., Jadidi, M. R., & Mobtaker, H. G. (2017). A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Information Processing in Agriculture, 4(4), 342–350.
Ramalho, E. A., Ramalho, J. J. S., & Henriques, P. D. (2010). Fractional regression models for second stage DEA efficiency analyses. Journal of Productivity Analysis, 34, 239–255.
Rogge, N. (2018). On aggregating benefit of the doubt composite indicators. European Journal of Operational Research, 264, 364–369.
Silverman, B. W. (1986). Density estimation for statistics and data analysis. Florida: Chapman and Hall/CRC.
Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage: Semi-parametric models of production processes. Journal of Econometrics, 136, 31–64.
Soleimani-damaneh, M., Jahanshahloo, G. R., & Reshadi, M. (2006). On the estimation of returns-to-scale in FDH models. European Journal of Operational Research, 174, 1055–1059.
Soleimani-damaneh, M., & Mostafaee, A. (2009). Stability of the classification of returns to scale in FDH models. European Journal of Operational Research, 196, 1223–1228.
Souza, G. S., Alves, E. R. A., Gomes, E. G., Magalhães, E., & Rocha, D. P. (2013). Um modelo de produção para a agricultura brasileira e a importância da pesquisa da Embrapa. In E. R. A. Alves, G. S. Souza, & E. G. Gomes (Eds.), Contribuição da Embrapa para o desenvolvimento da agricultura no Brasil (1st ed., pp. 49–86). Embrapa Informação Tecnológica: Brasília.
Souza, G. S., & Gomes, E. G. (2015). Management of agricultural research centers in Brazil: A DEA application using a dynamic GMM approach. European Journal of Operational Research, 240(3), 819–824.
Souza, G.S., & Gomes, E.G. (2019). A stochastic production frontier analysis of the Brazilian agriculture in the presence of an endogenous covariate. In: G. Parlier, F. Liberatore, & M. Demange (org.), Operations Research and Enterprise Systems—ICORES 2018. Communications in Computer and Information Science (966, pp. 3–14). Switzerland: Springer Nature.
Souza, G.S., Gomes, E.G., & Alves, E.R.A. (2016). Determinantes da dispersão da renda no meio rural brasileiro. In Blucher marine engineering proceedings, 2, 173–184.
Souza, G. S., Gomes, E. G., & Alves, E. R. A. (2017). Conditional FDH efficiency to assess performance factors for Brazilian agriculture. Pesquisa Operacional, 37, 93–106.
Souza, G. S., Gomes, E. G., & Staub, R. B. (2010). Probabilistic measures of efficiency and the influence of contextual variables in nonparametric production models: An application to agricultural research in Brazil. International Transactions in Operational Research, 17(3), 351–363.
Stata. (2017). Stata base reference manual. College Station: Stata Press.
Tan, X., Na, S., Guo, L., Chen, J., & Ruan, Z. (2019). External financing efficiency of rural revitalization listed companies in China-based on two-stage DEA and grey relational analysis. Sustainability, 11(16), 1–21.
Tone, K., & Sahoo, B. (2003). Scale, indivisibilities and production function in data envelopment analysis. International Journal of Production Economics, 84(2), 165–192.
Van Puyenbroek, T., & Rogge, N. (2017). Geometric mean quantity index numbers with Benefit-of-the-Doubt weights. European Journal of Operational Research, 256, 1004–1014.
World Bank. (2003). Rural poverty alleviation in Brazil: Toward an integrated strategy. Danvers: Clearance Center.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
da Silva e Souza, G., Gomes, E.G. & de Andrade Alves, E.R. Two-part fractional regression model with conditional FDH responses: an application to Brazilian agriculture. Ann Oper Res 314, 393–409 (2022). https://doi.org/10.1007/s10479-020-03752-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-020-03752-z