Skip to main content
Log in

The CoMirror algorithm with random constraint sampling for convex semi-infinite programming

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2020

This article has been updated

Abstract

The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an \({\mathcal {O}}(1/\sqrt{N})\) convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to \({\mathcal {O}}(1/N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 24 September 2020

    This erratum is published as due to some technical error author names appeared reversed in the final publication.

Notes

  1. http://plato.la.asu.edu/ftp/sipampl.pdf.

References

  • Aliprantis, C. D., & Border, K. C. (2005). Infinite dimensional analysis. A hitchhiker’s guide (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Anderson, E. J., & Nash, P. (1987). Linear programming in infinite-dimensional spaces: Theory and applications. Chichester: Wiley.

    Google Scholar 

  • Aragón, F. J., Goberna, M. A., López, M. A., & Rodríguez, M. M. (2019). Nonlinear optimization. New York: Springer.

    Google Scholar 

  • Auslender, A., Ferrer, A., Goberna, M. A., & López, M. A. (2015). Comparative study of RPSALG algorithm for convex semi-infinite programming. Computational Optimization and Applications, 60, 59–87.

    Google Scholar 

  • Auslender, A., Goberna, M. A., & López, M. A. (2009). Penalty and smoothing methods for convex semi-infinite programming. Mathematics of Operations Research, 34, 303–319.

    Google Scholar 

  • Beck, A., Ben-Tal, A., Guttmann-Beck, N., & Tetruashvili, L. (2010). The comirror algorithm for solving nonsmooth constrained convex problems. Operations Research Letters, 38, 493–498.

    Google Scholar 

  • Betrò, B. (2004). An accelerated central cutting plane algorithm for linear semi-infinite programming. Mathematical Programming, 101A, 479–495.

    Google Scholar 

  • Bhat, N., Farias, V., & Moallemi, C. C. (2012). Non-parametric approximate dynamic programming via the kernel method. In Advances in Neural Information Processing Systems (pp. 386–394).

  • Calafiore, G., & Campi, M. (2005). Uncertain convex programs: Randomized solutions and confidence levels. Mathematical Programming, 102A, 25–46.

    Google Scholar 

  • Campi, M. C., & Garatti, S. (2008). The exact feasibility of randomized solutions of uncertain convex programs. SIAM Journal on Optimization, 19, 1211–1230.

    Google Scholar 

  • Dentcheva, D., & Ruszczynski, A. (2003). Optimization with stochastic dominance constraints. SIAM Journal on Optimization, 14, 548–566.

    Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2004). Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Mathematical Programming, 99A, 329–350.

    Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2009). Optimization with multivariate stochastic dominance constraints. Mathematical Programming, 117A, 111–127.

    Google Scholar 

  • Dentcheva, D., & Wolfhagen, E. (2015). Optimization with multivariate stochastic dominance constraints. SIAM Journal on Optimization, 25, 564–588.

    Google Scholar 

  • Farias, D Pd, & Roy, B. V. (2004). On constraint sampling in the linear programming approach to approximate dynamic programming. Mathematics of Operations Research, 29, 462–478.

    Google Scholar 

  • Fonseca, I., & Leoni, G. (2007). Modern methods in the calculus of variations:\(L ^{\wedge } p\)spaces. New York: Springer.

  • Goberna, M. A., & López, M. A. (2014). Post-optimal analysis in linear semi-infinite optimization. New York: Springer.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (2017). Recent contributions to linear semi-infinite optimization. 4OR, 15, 221–264.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (2018). Recent contributions to linear semi-infinite optimization: An update. Annals of Operations Research, 271, 237–278.

    Google Scholar 

  • Gribik, P. (1979). A central-cutting-plane algorithm for semi-infinite programming problems. In Semi-infinite programming (pp. 66–82). Berlin: Springer.

  • Haskell, W. B., Shanthikumar, J. G., & Shen, Z. M. (2013). Optimization with a class of multivariate integral stochastic order constraints. Annals of Operations Research, 206, 147–162.

    Google Scholar 

  • Haskell, W. B., Shanthikumar, J. G., & Shen, Z. M. (2017). Primal-dual algorithms for optimization with stochastic dominance. SIAM Journal on Optimization, 27, 34–66.

    Google Scholar 

  • Homem-de Mello, T., & Mehrotra, S. (2009). A cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraints. SIAM Journal on Optimization, 20, 1250–1273.

    Google Scholar 

  • Hu, J., Homem-de Mello, T., & Mehrotra, S. (2012). Sample average approximation of stochastic dominance constrained programs. Mathematical Programming, 133A, 171–201.

    Google Scholar 

  • Ito, S., Liu, Y., & Teo, K. L. (2000). A dual parametrization method for convex semi-infinite programming. Annals of Operations Research, 98, 189–213.

    Google Scholar 

  • Jin, P., Ling, C., & Shen, H. (2015). A smoothing Levenberg–Marquardt algorithm for semi-infinite programming. Computational Optimization and Applications, 60, 675–695.

    Google Scholar 

  • Kanamori, T., & Takeda, A. (2012). Worst-case violation of sampled convex programs for optimization with uncertainty. Journal of Optimization Theory and Applications, 152, 171–197.

    Google Scholar 

  • Kortanek, K. O., & No, H. (1993). A central cutting plane algorithm for convex semi-infinite programming problems. SIAM Journal on Optimization, 3, 901–918.

    Google Scholar 

  • Küçükyavuz, S., & Noyan, N. (2016). Cut generation for optimization problems with multivariate risk constraints. Mathematical Programming, 159A, 165–199.

    Google Scholar 

  • Lan, G., Nemirovski, A., & Shapiro, A. (2012). Validation analysis of mirror descent stochastic approximation method. Mathematical Programming, 134A, 425–458.

    Google Scholar 

  • Lan, G., & Zhou, Z. (2020). Algorithms for stochastic optimization with function or expectation constraints. Computational Optimization and Applications, 76(2), 461–498.

    Google Scholar 

  • Li, D.-H., Qi, L., Tam, J., & Wu, S.-Y. (2004). A smoothing newton method for semi-infinite programming. Journal of Global Optimization, 30, 169–194.

    Google Scholar 

  • Lin, Q., Nadarajah, S., & Soheili, N. (2020). Revisiting approximate linear programming: Constraint-violation learning with applications to inventory control and energy storage. Management Science, 66, 1544–1562.

    Google Scholar 

  • Ling, C., Ni, Q., Qi, L., & Wu, S.-Y. (2010). A new smoothing newton-type algorithm for semi-infinite programming. Journal of Global Optimization, 47, 133–159.

    Google Scholar 

  • Liu, Y., & Teo, K. L. (2002). An adaptive dual parametrization algorithm for quadratic semi-infinite programming problems. Journal of Global Optimization, 24, 205–217.

    Google Scholar 

  • Liu, Y., Teo, K. L., & Wu, S.-Y. (2004). A new quadratic semi-infinite programming algorithm based on dual parametrization. Journal of Global Optimization, 29, 401–413.

    Google Scholar 

  • López, M., & Still, G. (2007). Semi-infinite programming. European Journal of Operational Research, 180, 491–518.

    Google Scholar 

  • Luenberger, D. G. (1968). Optimization by vector space methods. New York: Wiley.

    Google Scholar 

  • Mehrotra, S., & Papp, D. (2014). A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM Journal on Optimization, 24, 1670–1697.

    Google Scholar 

  • Mohajerin Esfahani, P., & Kuhn, D. (2018). Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical Programming, 171A, 115–166.

    Google Scholar 

  • Mohajerin Esfahani, P., Sutter, T., Kuhn, D., & Lygeros, J. (2018). From infinite to finite programs: Explicit error bounds with applications to approximate dynamic programming. SIAM Journal on Optimization, 28, 1968–1998.

    Google Scholar 

  • Mohajerin Esfahani, P., Sutter, T., & Lygeros, J. (2015). Performance bounds for the scenario approach and an extension to a class of non-convex programs. IEEE Transactions on Automatic Control, 60, 46–58.

    Google Scholar 

  • Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19, 1574–1609.

    Google Scholar 

  • Ni, Q., Ling, C., Qi, L., & Teo, K. L. (2006). A truncated projected newton-type algorithm for large-scale semi-infinite programming. SIAM Journal on Optimization, 16, 1137–1154.

    Google Scholar 

  • Noyan, N., & Rudolf, G. (2013). Optimization with multivariate conditional value-at-risk constraints. Operations Research, 61, 990–1013.

    Google Scholar 

  • Noyan, N., & Rudolf, G. (2018). Optimization with stochastic preferences based on a general class of scalarization functions. Operations Research, 66, 463–486.

    Google Scholar 

  • Okuno, T., Hayashi, S., Yamashita, N., & Gomoto, K. (2016). An exchange method with refined subproblems for convex semi-infinite programming problems. Optimization Methods and Software, 31, 1305–1324.

    Google Scholar 

  • Pang, L.-P., Lv, J., & Wang, J.-H. (2016). Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems. Computational Optimization and Applications, 64, 433–465.

    Google Scholar 

  • Qi, L., Ling, C., Tong, X., & Zhou, G. (2009). A smoothing projected newton-type algorithm for semi-infinite programming. Computational Optimization and Applications, 42, 1–30.

    Google Scholar 

  • Qi, L., Wu, S.-Y., & Zhou, G. (2003). Semismooth newton methods for solving semi-infinite programming problems. Journal of Global Optimization, 27, 215–232.

    Google Scholar 

  • Robert, C., & Casella, G. (2004). Monte Carlo statistical methods. New York: Springer.

    Google Scholar 

  • Stein, O. (2012). How to solve a semi-infinite optimization problem. European Journal of Operational Research, 223, 312–320.

    Google Scholar 

  • Still, G. (2001). Discretization in semi-infinite programming: The rate of convergence. Mathematical Programming, 91A, 53–69.

    Google Scholar 

  • Teo, K. L., Yang, X., & Jennings, L. S. (2000). Computational discretization algorithms for functional inequality constrained optimization. Annals of Operations Research, 98, 215–234.

    Google Scholar 

  • Wei, B., Haskell, W. B., & Zhao, S. (2020). An inexact primal-dual algorithm for semi-infinite programming. Mathematical Methods of Operations Research, 91(3), 501–544.

    Google Scholar 

  • Xu, Q.-J., & Jian, J.-B. (2013). A nonlinear norm-relaxed method for finely discretized semi-infinite optimization problems. Nonlinear Dynamics, 73, 85–92.

    Google Scholar 

  • Zhang, L., Wu, S.-Y., & López, M. A. (2010). A new exchange method for convex semi-infinite programming. SIAM Journal on Optimization, 20, 2959–2977.

    Google Scholar 

Download references

Funding

Funding was provided by Singapore A*STAR (Grant No. 1421200078)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Haskell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Haskell, W.B. & Zhao, S. The CoMirror algorithm with random constraint sampling for convex semi-infinite programming. Ann Oper Res 295, 809–841 (2020). https://doi.org/10.1007/s10479-020-03766-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03766-7

Keywords

Navigation