Skip to main content
Log in

On coverage limits and deductibles for SAI loss severities

  • S.I.: Networks and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies allocation of coverage limits and deductibles for dependent losses in the frame of utility theory. The optimal allocation of deductibles is derived for SAI losses without frequency impact, and the optimal allocation of coverage limits (deductibles) for SAI loss severities with RWSAI frequencies are proved to be arrayed in ascending (descending) order. Sufficient conditions to exclude the worst allocation of coverage limits are built for comonotonic loss severities with RWSAI frequencies. A real application in house property insurance is presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belzunce, F., Martínez-Puertas, H., & Ruiz, J. M. (2011). On optimal allocation of redundant components for series and parallel systems of two dependent components. Journal of Statistical Planning and Inference, 141, 3094–3104.

    Article  Google Scholar 

  • Belzunce, F., Martínez-Puertas, H., & Ruiz, J. M. (2013). On allocation of redundant components for systems with dependent components. European Journal of Operational Research, 230, 573–580.

    Article  Google Scholar 

  • Cai, J., & Wei, W. (2014). Some new notions of dependence with applications in optimal allocation problems. Insurance: Mathematics and Economics, 55, 200–209.

    Google Scholar 

  • Cai, J., & Wei, W. (2015). Notions of multivariate dependence and their applications in optimal portfolio selections with dependent risks. Journal of Multivariate Analysis, 138, 156–169.

    Article  Google Scholar 

  • Cheung, K. C. (2007). Optimal allocation of policy limits and deductibles. Insurance: Mathematics and Economics, 41, 291–382.

    Google Scholar 

  • Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., & Vyncke, D. (2002a). The concept of comonotonicity in actuarial science and finance: Applications. Insurance: Mathematics and Economics, 31, 133–161.

    Google Scholar 

  • Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., & Vyncke, D. (2002b). The concept of comonotonicity in actuarial science and finance: Theory. Insurance: Mathematics and Economics, 31, 3–33.

    Google Scholar 

  • Feng, Q., & Shanthikumar, J. G. (2018). Arrangement increasing resource allocation. Methodology and Computing in Applied Probability, 20, 935–955.

    Article  Google Scholar 

  • Fermanian, F. D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95, 119–152.

    Article  Google Scholar 

  • Gaffney, C., & Ben-Israel, A. (2016). A simple insurance model: Optimal coverage and deductible. Annals of Operations Research, 237, 263–279.

    Article  Google Scholar 

  • Genest, C., & Rémillard, B. (2004). Tests of independence and randomness based on the empirical copula process. Test, 13, 335–369.

    Article  Google Scholar 

  • Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, 199–213.

    Google Scholar 

  • Hua, L., & Cheung, K. C. (2008a). Stochastic orders of scalar products with applications. Insurance: Mathematics and Economics, 42, 865–872.

    Google Scholar 

  • Hua, L., & Cheung, K. C. (2008b). Worst allocations of policy limits and deductibles. Insurance: Mathematics and Economics, 43, 93–98.

    Google Scholar 

  • Kaas, R., Van Heerwaarden, A.E., & Goovaerts, M.J. (1994). Ordering of Actuarial Risks. In: Caire Education Series, Amsterdam.

  • Li, H., & Li, X. (Eds.). (2013). Stochastic Orders in Reliability and Risk. New York: Springer.

    Google Scholar 

  • Li, C., & Li, X. (2017). Ordering optimal deductible allocations for stochastic arrangement increasing risks. Insurance: Mathematics and Economics, 73, 31–40.

    Google Scholar 

  • Li, X., & You, Y. (2012). On allocation of coverage limits and deductibles with dependent frequencies and comonotonic severities. Insurance: Mathematics and Economics, 50, 423–429.

    Google Scholar 

  • Li, X., & You, Y. (2015). Permutation monotone functions of random vector with applications in financial and actuarial risk management. Advances in Applied Probability, 47, 270–291.

    Article  Google Scholar 

  • Lu, Z. Y., & Meng, L. L. (2011). Stochastic comparisons for allocations of coverage limits and deductibles with applications. Insurance: Mathematics and Economics, 48, 338–343.

    Google Scholar 

  • Manesh, S. F., Khaledi, B., & Dhaene, J. (2016). Optimal allocation of pocily deductibles for exchangeable risks. Insurance: Mathematics and Economics, 71, 87–92.

    Google Scholar 

  • Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities theory of majorization and its applications. New York: Springer.

    Book  Google Scholar 

  • Pellerey, F., & Zalzadeh, S. (2015). A note on relationships between some univariate stochastic orders and the corresponding joint stochastic orders. Metrika, 78, 399–414.

    Article  Google Scholar 

  • Righter, R., & Shanthikumar, J. G. (1992). Extension of the bivariate characterization for stochastic orders. Advances in Applied Probability, 24, 506–508.

    Article  Google Scholar 

  • Shanthikumar, J. G. (1987). Stochastic majorization of random variables with proportional equilibrium rates. Advances in Applied Probability, 19, 854–872.

    Article  Google Scholar 

  • Shaked, M., & Shanthikumar, J. G. (2007). Stochastic orders. New York: Springer.

    Book  Google Scholar 

  • Shanthikumar, J. G., & Yao, D. D. (1991). Bivariate characterization of some stochastic order relations. Advances in Applied Probability, 23, 642–659.

    Article  Google Scholar 

  • You, Y., & Li, X. (2014a). Optimal capital allocations to interdependent actuarial risks. Insurance: Mathematics and Economics, 57, 104–113.

    Google Scholar 

  • You, Y., & Li, X. (2014b). On allocating redundancies to \(k\)-out-of-\(n\) reliability systems. Applied Stochastic Models in Business and Industry, 30, 361–371.

    Article  Google Scholar 

  • You, Y., & Li, X. (2015). Functional characterizations of bivariate weak SAI with an application. Insurance: Mathematics and Economics, 64, 225–231.

    Google Scholar 

  • You, Y., Fang, R., & Li, X. (2016). Allocating active redundancies to \(k\)-out-of-\(n\) reliability systems with permutation monotone component lifetimes. Applied Stochastic Models in Business and Industry, 32, 607–620.

    Article  Google Scholar 

  • You, Y., Li, X., & Santanilla, J. (2017). Optimal allocations of coverage limits for two independent random losses of insurance policy. Communications in Statistics-Theory and Methods, 46, 497–509.

    Article  Google Scholar 

  • Zhuang, W., Chen, Z., & Hu, T. (2009). Optimal allocation of policy limits and deductibles under distortion risk measures. Insurance: Mathematics and Economics, 44, 409–414.

    Google Scholar 

Download references

Acknowledgements

Dr. Yinping You’s research is supported by National Natural Science Foundation of China (11701194) and Promotion for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY503). The authors would like to thank both anonymous reviewers for the constructive comments, directing us to some closely related references on this topic and engendering the numerical example based on a real data set, and one reviewer of ‘Insurance: Mathematics and Economics’ for pointing out a logical error in the original proof of Corollary 4.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinping You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Before rolling out the proofs of three lemmas, let us present the two inequalities.

  1. (i)

    If u is increasing and convex, then, for \(\omega _1\ge \nu _1\), \(\omega _1\ge \nu _2\), and \(\omega _1-\nu _1\ge \nu _2-\omega _2\),

    $$\begin{aligned} u(\omega _1)+u(\omega _2)-u(\nu _1)-u(\nu _2)\ge 0. \end{aligned}$$
    (6.1)
  2. (ii)

    If u is increasing and concave, then, for \(\omega _1\ge \nu _1\), \(\omega _1\le \omega _2\) and \(\omega _1-\nu _1\ge \nu _2-\omega _2\),

    $$\begin{aligned} u(\omega _1)+u(\omega _2)-u(\nu _1)-u(\nu _2)\ge 0. \end{aligned}$$
    (6.2)

These two inequalities can be established as follows: Due to the increasing u, we have \(u(\omega _1)\ge u(\nu _1)\) for \(\omega _1\ge \nu _1\). If \(\omega _2\ge \nu _2\), then, we get \(u(\omega _2)\ge u(\nu _2)\). By these two facts we invoke (6.1). If \(\omega _2<\nu _2\) instead, by \(\omega _1-\nu _1\ge \nu _2-\omega _2\), the increasing and convex u implies \(u(\omega _1)-u\big (\omega _1-(\nu _2-\omega _2)\big )\ge u(\nu _2)-u(\omega _2)\) and \(u\big (\omega _1-(\nu _2-\omega _2)\big )-u(\nu _1)\ge 0\), and then (6.1) follows from adding them up. If \(\omega _2\ge \nu _2\), it is easy to get (6.2). If \(\omega _2<\nu _2\), then \(\omega _1\le \omega _2\le \nu _2\). By \(\omega _1-\nu _1\ge \nu _2-\omega _2\), the increasing and concave u implies \(u(\omega _1)-u\big (\omega _1-(\nu _2-\omega _2)\big )\ge u(\nu _2)-u(\omega _2)\) and \(u\big (\omega _1-(\nu _2-\omega _2)\big )- u(\nu _1)\ge 0\), and thus (6.2) stems from adding up the two inequalities.

1.1 Proof of Lemma 3.1

(i) Denote \(\omega _1(z_1,z_2)=z_1(x_1-l_1)_++z_2(x_2-l_2)_+\) and \(\nu _1(z_1,z_2)=z_1(x_1-l_2)_++z_2(x_2-l_1)_+\). Note that \(\omega _1(z_1,z_3)\ge \omega _1(z_1,z_2)\) for \(z_3\ge z_2\ge 0\). Owing to the increasing and convex \(x_+\), it holds that, for \(l_1\ge l_2\) and \(x_2\ge x_1\),

$$\begin{aligned} (x_2-l_2)_+-(x_2-l_1)_+\ge (x_1-l_2)_+-(x_1-l_1)_+\ge 0, \end{aligned}$$
(6.3)

and thus \(z_3\big ((x_2-l_2)_+-(x_2-l_1)_+\big )\ge z_1\big ((x_1-l_2)_+-(x_1-l_1)_+\big )\) for \(z_3\ge z_1\ge 0\), implying \(\omega _1(z_1,z_3)\ge \nu _1(z_1,z_3)\) for \(z_3\ge z_2\ge z_1\ge 0\). Since \(z_2[(x_2-l_2)_+-(x_2-l_1)_+]\) is increasing in \(z_2\), we have, for \(z_3\ge z_2\ge z_1\ge 0\),

$$\begin{aligned} \omega _1(z_1,z_3)- \nu _1(z_1,z_3)= & {} z_3[(x_2-l_2)_+-(x_2-l_1)_+] -z_1[(x_1-l_2)_+-(x_1-l_1)_+]\\\ge & {} z_2[(x_2-l_2)_+-(x_2-l_1)_+]-z_1[(x_1-l_2)_+-(x_1-l_1)_+]\\= & {} \omega _1(z_1,z_2)- \nu _1(z_1,z_2). \end{aligned}$$

Thus, by using (6.1) we get, for any increasing and convex u,

$$\begin{aligned}&\alpha _2(z_1,z_3)+\alpha _1(z_1,z_2)-\alpha _2(z_1,z_2)-\alpha _1(z_1,z_3)\\&\quad =u\big (\omega _1(z_1,z_3)\big )+u\big (\nu _1(z_1,z_2)\big )- u\big (\omega _1(z_1,z_2)\big )-u\big (\nu _1(z_1,z_3)\big )\ge 0, \end{aligned}$$

which is equivalent to \(\alpha _2(z_1,z_3)-\alpha _1(z_1,z_3)\ge \alpha _2(z_1,z_2)-\alpha _1(z_1,z_2)\), implying that \(\alpha _2(z_1,z_2)-\alpha _1(z_1,z_2)\) is increasing in \(z_2\in [ z_1,+\infty )\).

By (6.3), it is easy to check that \(\omega _1(z_1,z_2)\ge \nu _1(z_1,z_2)\) , \(\omega _1(z_1,z_2)\ge \nu _1(z_2,z_1)\) and

$$\begin{aligned} \omega _1(z_1,z_2)-\nu _1(z_1,z_2)= & {} z_2\big ((x_2-l_2)_+-(x_2-l_1)_+\big )-z_1\big ((x_1-l_2)_+-(x_1-l_1)_+\big )\\\ge & {} z_2\big ((x_1-l_2)_+-(x_1-l_1)_+\big )-z_1\big ((x_2-l_2)_+-(x_2-l_1)_+\big )\\= & {} \nu _1(z_2,z_1)-\omega _1(z_2,z_1), \end{aligned}$$

for \(z_2\ge z_1\ge 0\). By (6.1), we have, for increasing and convex u,

$$\begin{aligned}&\alpha _2(z_1,z_2)+\alpha _2(z_2,z_1)-\alpha _1(z_1,z_2)-\alpha _1(z_2,z_1)\\&\quad =u\big (\omega _1(z_1,z_2)\big )+u\big (\omega _1(z_2,z_1)\big )-u\big (\nu _1(z_1,z_2)\big )-u\big (\nu _1(z_2,z_1)\big )\ge 0. \end{aligned}$$

(ii) Let us verify the increasing property case by case. For \(x_1\le x_2\le l_2\le l_1\), it holds that \(\gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)=0\) for \(z_2\ge z_1\). For \(x_1\le l_2\le x_2\le l_1\), clearly \(\gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)=u\big (z_2(x_2-l_2)\big )-u\big (z_1(x_2-l_2)\big )\) is increasing in \(z_2\in [ z_1,+\infty )\). For \(x_1\le l_2\le l_1\le x_2\), in a similar manner to (i), it can be shown that \(u\big (z_2(x_2-l_2)\big )-u\big (z_2(x_2-l_1)\big )\) is increasing in \(z_2\in [ z_1,+\infty )\). Then, \(\gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)=u\big (z_2(x_2-l_2)\big )-u\big (z_2(x_2-l_1)\big )+u\big (z_1(x_2-l_1)\big )-u\big (z_1(x_2-l_2)\big )\) is increasing in \(z_2\in [ z_1,+\infty )\). For \( l_2\le x_1\le x_2\le l_1\), it is plain that \(\gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)=u\big (z_2(x_2-l_2)\big )+u\big (z_2(x_1-l_2)\big )-u\big (z_1(x_1-l_2)\big )-u\big (z_1(x_2-l_2)\big )\) is increasing in \(z_2\in [ z_1,+\infty )\). For \( l_2\le x_1\le l_1\le x_2\), similar to (i), \(u\big (z_2(x_2-l_2)\big )-u\big (z_1(x_1-l_2)+z_2(x_2-l_1)\big )\) can be shown increasing in \(z_2\in [ z_1,+\infty )\). Since \(u\big (z_1(x_2-l_1)+z_2(x_1-l_2)\big )\) is increasing in \(z_2\in [ z_1,+\infty )\), we conclude that

$$\begin{aligned} \gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)= & {} u\big (z_2(x_2-l_2)\big )+u\big (z_1(x_2-l_1)+z_2(x_1-l_2)\big )\nonumber \\&-u\big (z_1(x_1-l_2)+z_2(x_2-l_1)\big )-u\big (z_1(x_2-l_2)\big ) \end{aligned}$$

is increasing in \(z_2\in [ z_1,+\infty )\). For \( l_2\le l_1\le x_1\le x_2\), similar to (i), we can show that \(u\big (z_1(x_1-l_1)+z_2(x_2-l_2)\big )-u\big (z_1(x_1-l_2)+z_2(x_2-l_1)\big )\) and \(u\big (z_1(x_2-l_1)+z_2(x_1-l_2)\big )-u\big (z_1(x_2-l_2)+z_2(x_1-l_1)\big )\) are both increasing in \(z_2\in [ z_1,+\infty )\). Consequently, it follows that

$$\begin{aligned} \gamma _2(z_1,z_2)-\gamma _1(z_1,z_2)= & {} u\big (z_1(x_1-l_1)+z_2(x_2-l_2)\big )+u\big (z_1(x_2-l_1)+z_2(x_1-l_2)\big )\\&-u\big (z_1(x_1-l_2)+z_2(x_2-l_1)\big ) -u\big (z_1(x_2-l_2)+z_2(x_1-l_1)\big ) \end{aligned}$$

is increasing in \(z_2\in [ z_1,+\infty )\).

(iii) For \(b_1\ge b_2\) and \(a_1\ge a_2\), the majorization \((b_1,b_2)\preceq _m (a_1,a_2)\) implies \(a_1\ge b_1\ge b_2\ge a_2\) and \(b_2-a_2=a_1-b_1\), by the increasing and convex \(x_+\), it is easy to check that, for \(x_2\ge x_1\),

$$\begin{aligned} (x_2-a_2)_+-(x_2-b_2)_+\ge (x_1-b_1)_+-(x_1-a_1)_+\ge 0. \end{aligned}$$
(6.4)

In a similar manner to the proof of (i), one can check that

$$\begin{aligned}&\beta _2(z_1,z_2)-\beta _1(z_1,z_2)\\&\quad =u\big (z_1(x_1-a_1)_++z_2(x_2-a_2)_+\big ) -u\big (z_1(x_1-b_1)_++z_2(x_2-b_2)_+\big ) \end{aligned}$$

is increasing in \(z_2\in [ z_1,+\infty )\). For \(x_2\ge x_1\), denote

$$\begin{aligned} n(z_1,z_2)=z_1(x_1-a_1)_++z_2(x_2-a_2)_+,\quad m(z_1,z_2)=z_1(x_1-b_1)_++z_2(x_2-b_2)_+.\nonumber \\ \end{aligned}$$
(6.5)

In view of (6.4), it is easy to check that \(n(z_1,z_2)\ge m(z_1,z_2)\), \(n(z_1,z_2)\ge m(z_2,z_1)\) and \(n(z_1,z_2)-m(z_1,z_2)\ge m(z_2,z_1)-n(z_2,z_1)\) for \(z_2\ge z_1\ge 0\). By (6.1) and (6.5), we have

$$\begin{aligned}&\beta _2(z_1,z_2)+\beta _2(z_2,z_1)-\beta _1(z_1,z_2)-\beta _1(z_2,z_1)\\&\quad u(n(z_1,z_2))+u(n(z_2,z_1))-u(m(z_1,z_2))-u(m(z_2,z_1))\ge 0, \end{aligned}$$

for any increasing and convex u and \(z_2\ge z_1\ge 0\). \(\square \)

1.2 Proof of Lemma 3.2

It can be proved in a similar way to that of Lemma 3.1. \(\square \)

1.3 Proof of Lemma 3.3

For \(b_1\ge a_1\ge a_2\ge b_2\), \(b_1+ b_2=a_1+a_2\) and any \(x_1\), the concavity of \(x_1\wedge x\) implies

$$\begin{aligned} x_1\wedge a_2-x_1\wedge b_2 \ge x_1 \wedge b_1-x_1 \wedge a_1. \end{aligned}$$
(6.6)

It is easy to check that \(x_2\wedge a_2-x_2\wedge b_2\) is increasing in \(x_2\) for \(a_2\ge b_2\). Then, we have \(x_2\wedge a_2-x_2\wedge b_2\ge x_1\wedge a_2-x_1\wedge b_2\). From (6.6) it follows that \(x_2\wedge a_2-x_2\wedge b_2 +x_1 \wedge a_1 -x_1 \wedge b_1\ge x_1\wedge a_2-x_1\wedge b_2 +x_1 \wedge a_1 -x_1 \wedge b_1\ge 0\) for \(x_2\ge x_1\). Therefore, it holds that

$$\begin{aligned} x_1 \wedge a_1+x_2\wedge a_2\ge x_1 \wedge b_1+x_2\wedge b_2. \end{aligned}$$
(6.7)

Due to (6.6), we have \(x_2\wedge a_2-x_2\wedge b_2 \ge x_2 \wedge b_1-x_2 \wedge a_1\) and \(x_1\wedge a_1-x_1\wedge b_1 \ge x_1 \wedge b_2-x_1 \wedge a_2\). Adding these two inequalities up, we get

$$\begin{aligned} x_1\wedge a_1+x_2\wedge a_2-[x_1\wedge b_1+x_2\wedge b_2]\ge x_1 \wedge b_2+x_2 \wedge b_1-[x_1 \wedge a_2+x_2 \wedge a_1]. \end{aligned}$$

Since \(x\wedge a_1-x\wedge a_2\) is increasing in x for \(a_1\ge a_2\), we have, for \(x_2\ge x_1\), \(x_2\wedge a_1-x_2\wedge a_2\ge x_1\wedge a_1-x_1 \wedge a_2\) and hence \(x_1 \wedge a_1+x_2\wedge a_2\le x_1 \wedge a_2+x_2\wedge a_1\). Combining these two inequalities with (6.7) and by (6.2) we get

$$\begin{aligned}&u(x_1 \wedge a_1+x_2\wedge a_2)+u(x_1 \wedge a_2+x_2\wedge a_1)\\&\quad -u(x_1 \wedge b_1+x_2\wedge b_2)-u(x_1 \wedge b_2+x_2\wedge b_1)\ge 0, \end{aligned}$$

for any increasing and concave function u. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Li, X. & Fang, R. On coverage limits and deductibles for SAI loss severities. Ann Oper Res 297, 341–357 (2021). https://doi.org/10.1007/s10479-020-03770-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03770-x

Keywords

Mathematics Subject Classification

Navigation