Skip to main content
Log in

Canonical form of ordered weighted averaging operators

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Discrete Ordered Weighted Averaging (OWA) operators as one of the most representative proposals of Yager (1988) have been widely used and studied in both theoretical and application areas. However, there are no effective and systematic corresponding methods for continuous input functions. In this study, using the language of measure (capacity) space we propose a Canonical Form of OWA operators which yield some common properties like Monotonicity and Idempotency and thus serve as a generalization of Discrete OWA operators. We provide also a representation of the Canonical Form by means of asymmetric Choquet integrals. The Canonical Form of OWA operators can effectively handle some input functions defined on ordered sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agahi, H. (2020). On fractional continuous weighted OWA (FCWOWA) operator with applications. Annals of Operations Research, 287, 1–10. https://doi.org/10.1007/s10479-019-03450-5.

    Article  Google Scholar 

  • Choquet, G. (1953-1954). Theory of capacities. Annales de l’institut Fourier, 5, 131–295.

  • Denneberg, D. (2010). Non-additive measure and integral. Theory and decision library B (p. 27). Heidelberg: Springer.

    Google Scholar 

  • Emrouznejad, A., & Marra, M. (2014). Ordered weighted averaging operators 1988–2014: a citation-based literature survey. International Journal of Intelligent Systems, 29(11), 994–1014. https://doi.org/10.1002/int.21673.

    Article  Google Scholar 

  • Filev, D., & Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, 94, 157–169.

    Article  Google Scholar 

  • Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems, 69(3), 279–298.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 175(1), 247–286.

    Article  Google Scholar 

  • Grabisch, M., Marichal, J. L., Mesiar, R., & Pap, E. (2009). Aggregation functions. Cambridge: Cambridge University Press. ISBN 1107013429.

  • Jin, L., Kalina, M., & Qian, G. (2015). Fuzzy orness measure and new orness axioms. Kybernetika, 51(4), 712–723.

    Google Scholar 

  • Jin, L., Kalina, M., & Qian, G. (2017). Discrete and continuous recursive forms of OWA operators. Fuzzy Sets and Systems, 308(1), 106–122.

    Article  Google Scholar 

  • Kishor, A., Singh, A. K., & Pal, N. R. (2014). Orness measure of OWA operators: a new approach. IEEE Transactions on Fuzzy Systems, 22(4), 1039–1045. https://doi.org/10.1109/tfuzz.2013.2282299.

    Article  Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (1999). Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems, 104(1), 3–13.

    Article  Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular norms. Berlin: Springer.

    Book  Google Scholar 

  • Liu, X. W. (2005). On the properties of equidifferent RIM quantifier with generating function. International Journal of Intelligent Systems, 34, 579–594.

    Google Scholar 

  • Liu, X. W., & Da, Q. L. (2005). A decision tree solution considering the decision maker’s attitude. Fuzzy Sets and Systems, 152, 437–454.

    Article  Google Scholar 

  • Liu, X. W., & Han, S. L. (2008). Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. International Journal of Approximate Reasoning, 48, 77–97.

    Article  Google Scholar 

  • Llamazares, B. (2007). Choosing OWA operator weights in the field of social choice. Information Sciences, 177, 4745–4756.

    Article  Google Scholar 

  • Mesiar, R., Borkotokey, S., Jin, L., & Kalina, M. (2018a). Aggregation functions and capacities. IEEE Transactions on Fuzzy Systems, 26(5), 3164–3169. 8255644.

    Article  Google Scholar 

  • Mesiar, R., Borkotokey, S., Jin, L., & Kalina, M. (2018b). Aggregation under uncertainty. IEEE Transactions on Fuzzy Systems, 26(4), 2475–2478. 8049512.

    Article  Google Scholar 

  • Narukawa, Y., Torra, V., & Sugeno, M. (2016). Choquet integral with respect to a symmetric fuzzy measure of a function on the real line. Annals of Operations Research, 244(2), 571–581.

    Article  Google Scholar 

  • Pap, E. (1995). Null-additive set functions. Dordrecht, Bratislava: Kluwer Acad. Publ., Ister Science.

    Google Scholar 

  • Paternain, D., Campion, M. J., Mesiar, R., Perfilieva, I., & Bustince, H. (2018). Internal fusion functions. IEEE Transactions on Fuzzy Systems, 26(2), 487–503.

    Article  Google Scholar 

  • Ralescu, D. A., & Sugeno, M. (1996). Fuzzy integral representation. Fuzzy Sets and Systems, 84, 127–133.

    Article  Google Scholar 

  • Riečan, B., & Neubrunn, T. (1997). Integral, measure and ordering. Dordrecht, Bratislava: Kluwer Acad. Publ., Ister Science.

    Book  Google Scholar 

  • Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis. Tokyo Institute of Technology.

  • Sugeno, M. (2015). A way to Choquet calculus. IEEE Transactions on Fuzzy Systems, 23(5), 1439–1457.

    Article  Google Scholar 

  • Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12, 153–166.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Systems, Man, and Cybernetics Society, 18(1), 183–190.

    Article  Google Scholar 

  • Yager, R. R., & Filev, D. P. (1994). Parameterized “andlike” and “orlike” OWA operators. International Journal of General Systems, 22, 297–316.

    Article  Google Scholar 

  • Yager, R. R., & Filev, D. P. (1999). Induced ordered weighted averaging operators. IEEE Systems, Man, and Cybernetics Society, 29, 141–150.

    Article  Google Scholar 

  • Yager, R. R., Kacprzyk, J., & Beliakov, G. (2011). Recent developments on the ordered weighted averaging operators: Theory and practice. Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to anonymous reviewers for valuable comments helping to improve the paper. The work of Martin Kalina was supported from the VEGA grant agency, Grant No. 1/0006/19. The work of Martin Kalina and Radko Mesiar was supported from the APVV grant agency, grant No. 18-0052 and from the project of Grant Agency of the Czech Republic (GAČR) no. 18-06915S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kalina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Mesiar, R., Kalina, M. et al. Canonical form of ordered weighted averaging operators. Ann Oper Res 295, 605–631 (2020). https://doi.org/10.1007/s10479-020-03802-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03802-6

Keywords

Mathematics Subject Classification

Navigation