Skip to main content
Log in

A new approach for face detection using the maximum function of probability density functions

  • S.I.: Statistical Reliability Modeling and Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This article establishes some theoretical results about the maximum function of probability density functions (\(f_{\max }\)) and the integration of \(f_{\max }\) (\(If_{\max }\)). Using the probability density function extracted from the image as a relatively stable feature of the image and \(If_{\max }\) as a measure the similarity between a “face” candidate region and a group of training face images, we propose a new face detection method, one of the most challenging tasks related to image analysis. The experiments demonstrate the competitiveness of the proposed method, especially in the case of rotated images. It also shows potential in real application of the researched problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1966). Recognition using class specific linear projection. In B. Buxton & R. Cipolla (Eds.), European conference on computer vision (pp. 43–58). Berlin: Springer.

    Google Scholar 

  • Chen, D., Ren, S., Wei, Y., Cao, X., & Sun, J. (2014). Joint cascade face detection and alignment. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), European conference on computer vision (pp. 109–122). Cham: Springer.

    Google Scholar 

  • Chen, Y., Liu, C., Chou, K., & Wang, S. (2016). Real-time and low-memory multi-face detection system design based on naive Bayes classifier using FPGA. International Automatic Control Conference (CACS) (pp. 7–12). Berlin: Springer.

  • Colmenarez, A. J., & Huang, T. S. (1996). Maximum likelihood face detection. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition (pp. 307–311).

  • Colmenarez, A. J., & Huang, T. S. (1997). Face detection with information-based maximum discrimination. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 782–787).

  • Dahal, B., Alsadoon, A., Prasad, P. C., & Elchouemi, A. (2016). Incorporating skin color for improved face detection and tracking system. In 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI) (pp. 173–176).

  • Diem, H. K., Trung, V. D., Trung, N. T., Tai, V. V., & Thao, N. T. (2018). A Differential evolution-based clustering for probability density functions. IEEE Access, 6, 41325–41336.

    Google Scholar 

  • Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast feature pyramids for object detection. Pattern Analysis and Machine Intelligence, IEEE Transactions, 36(8), 1532–1545.

    Google Scholar 

  • Egorov, A. D. (2018). Algorithm for optimization of Viola–Jones object detection framework parameters. Journal of Physics Conference Series, 945(1), 1–6.

    Google Scholar 

  • Egorov, A. D., Divitskii, D. U., Dolgih, A. A., & Mazurenko, G. A. (2018). Some cases of optimization face detection methodes on image (Using the Viola–Jones method as an example). In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (Vol. 945(1), pp. 1075–1078).

  • Farfade, S. S., Saberian, M. J., & Li, L.J. (2015). Multi-view face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (ACM) (pp. 643–650). New York: Springer.

  • Frey, B. J., Colmenarez, A., & Huang, T. S. (1998). Mixtures of local linear subspaces for face recognition, In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (98CB36231) (pp. 32–37).

  • Girshick, R., Donahue, J., Darrell T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580–587).

  • Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1440–1448).

  • Günther, M., Hu, P., Herrmann, C., Chan, C. H., Jiang, M., Yang, S., Dhamija, A. R., Ramanan, D., Beyerer, J., Kittler, J., Jazaery, M. A., Nouyed, M. I., Guo, G., Stankiewicz, C., & Boult, T. E. (2017). Unconstrained face detection and open-set face recognition challenge. In IEEE International Joint Conference on Biometrics (IJCB) (pp. 697–706).

  • Hiremath, P. S., & Danti, A. (2006). Detection of multiple faces in an image using skin color information and lines-of-separability face model. International Journal of Pattern Recognition and Artificial Intelligence, 20, 39–61.

    Google Scholar 

  • Hongtao, L., & Qinchuan, Z. (2016). Applications of deep convolutional neural network in computer vision. Journal of Data Acquisition and Processing, 31(1), 1–17.

    Google Scholar 

  • Johnson, C. A., McGarry, D., Cook, J. A., Devasahayam, N., Mitchell, J. B., Subramanian, S., et al. (2003). Maximum entropy reconstruction methods in electron paramagnetic resonance imaging. Annals of Operations Research, 119, 101–118.

    Google Scholar 

  • Kharrat, A., & Mahmoud, N. E. J. I. (2014). Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Applied Medical Informatics, 41(1), 9–23.

    Google Scholar 

  • Kim, L., Jung, K., & Kim, H. J. (2002). Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 9(2), 40–42.

    Google Scholar 

  • Kurita, T., & Taguchi, T. (2002). A modification of kernel-based Fisher discriminant analysis for face detection. In IEEE International Conference on Automatic Face Gesture Recognition (pp. 300-315).

  • Li, H., Lin, Z., Shen, X. , Brandt, J., & Hua, G. (2015). A convolutional neural network cascade for face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5325–5334).

  • Li, J., Wang, T., & Zhang, Y. (2011). Face detection using SURF cascade. In IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (pp. 2183–2190).

  • Li, S., Wang, Z., & Wang, J. (2018). Study of face orientation recognition based on neural network. International Journal of Pattern Recognition and Artificial Intelligence, 32, 185–193.

    Google Scholar 

  • Li, Y., Gong, M. J., Sherrah, J., & Liddell, H. (2004). Support vector machine based multi-view face detection and recognition. Image and Vision Computing, 22(5), 413–427.

    Google Scholar 

  • Lin, H. J., Yen,S. H., Yeh, J. P., & Lin, M. J. (2008). Face detection based on skin color segmentation and SVM classification. In 2nd International Conference on Secure System Integration and Reliability Improvement (pp. 230–231).

  • Mathur, M. K., & Bhati, P. (2017). Face objects detection in still images using Viola–Jones algorithm through MATLAB tools. International Journal of Innovative Research in Computer and Communication Engineering, 5(2), 2468–2476.

    Google Scholar 

  • Ng, M. K., & Kwan, W. C. (2001). High-resolution color image reconstruction with Neumann boundary conditions. Annals of Operations Research, 103, 99–113.

    Google Scholar 

  • Pavel, K., Jan, P., Jana, N., & Vaclav, S. (2016). Optimal column subset selection for image classification by genetic algorithms. Annals of Operations Research, 265(2), 205–222.

    Google Scholar 

  • Pfeuffer, F., Stiglmayr, M., & Klamroth, K. (2012). Discrete and geometric branch and bound algorithms for medical image registration. Annals of Operations Research, 196(1), 737–765.

    Google Scholar 

  • Priadana, A., & Habibi, M. (2019). Face detection using Haar Cascades to filter selfie face image on Instagram. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), IEEE (pp. 6–9).

  • Pham-Gia, T., Turkkan, N., & Tai, V. V. (2008). Statistical discrimination analysis using the maximum function. Communications in Statistics-Simulation and Computation, 37(2), 320–336.

    Google Scholar 

  • Qin, H., Yan, J., Li, X., & Hu, X. (2016). Joint training of cascaded CNN for face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3456–3465).

  • Rabiha, S. G., Kurniawan, A., Moniaga, J., Wahyudi, D. I., & Wilson, E. (2018). Face detection and recognition based e-learning for students authentication: study literature review. In 2018 International Conference on Information Management and Technology (ICIMTech), IEEE (pp. 472–476).

  • Samal, A., & Iyengar, P. A. (1995). Human face detection using silhouettes. International Journal of Pattern Recognition and Artificial Intelligence, 9, 845–867.

    Google Scholar 

  • Schneiderman, H., & Kanade, T. (1998). Probabilistic modeling of local appearance and spatial relationships for object recognition. In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 45–51).

  • Shapiro, L., & Haralick, R. (1992). Computer and robot vision. New York: Addison-Wesley.

    Google Scholar 

  • Shih, F. Y., Cheng, S., Chuang, C.-F., & Wang, P. S. P. (2008). Extracting faces and facial features from color images. International Journal of Pattern Recognition and Artificial Intelligence, 22, 515–534.

    Google Scholar 

  • Shih, P., & Liu, C. (2005). Comparative assessment of content-based face image retrieval in different color spaces. International Journal of Pattern Recognition and Artificial Intelligence, 19, 873–893.

    Google Scholar 

  • Sun, X., Wu, P., & Hoi, S. C. (2018). Face detection using deep learning: An improved faster RCNN approach. Neurocomputing, 299, 42–50.

    Google Scholar 

  • Sung, K., & Poggio, T. (1998). Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 39–51.

    Google Scholar 

  • Swets, D. L., & Weng, J. J. (1996). Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 831–836.

    Google Scholar 

  • Tai, V. V., & Pham-Gia, T. (2010). Clustering probability distributions. Journal of Applied Statistics, 37(11), 1891–1910.

    Google Scholar 

  • Tai, V. V., Ha, C. N., & Thao, N. T. (2017). Textural features selection for image classification by Bayesian method. In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 733–739).

  • Tai, V. V. (2017a). \(L^1\)-distance and classification problem by Bayesian method. Journal of Applied Statistics, 44(3), 385–401.

    Google Scholar 

  • Tai, V. (2017b). Classifying by Bayesian method and some applications. In J. B. Tejedor (Ed.), Bayesian inference (pp. 39–61). Croatia: Intech.

    Google Scholar 

  • Tai, V. V., Loc, T. P., & Ha, C. N. (2018). Classifying two populations by Bayesian method and applications. Communications in Mathematics and Statistics,. https://doi.org/10.1007/s40304-018-0139-8.

    Article  Google Scholar 

  • Tai, V. V. (2018). Some results of classification problem by Bayesian method and application in credit operation. Statistical Theory and Related Fields, 2(2), 150–157.

    Google Scholar 

  • Tan, W. R., Chan, C. S., Yogarajah, P., & Condell, J. (2012). A fusion approach for efficient human skin detection. IEEE Transactions on Industrial Informatics, 8(1), 138–147.

    Google Scholar 

  • Thao, N. T. (2018). A new efficient approach to detect skin in color image using Bayesian classifier and connected component algorithm. Mathematical Problems in Engineering, 20, 28–43.

    Google Scholar 

  • Thao, N. T., & Tai, V. V. (2017a). A new approach for determining the prior probabilities in the classification problem by Bayesian method. Advances in Data Analysis and Classification, 11(3), 629–643.

    Google Scholar 

  • Thao, N. T., & Tai, V. V. (2017b). Fuzzy clustering of probability density functions. Journal of Applied Statistics, 44(4), 583–601.

    Google Scholar 

  • Triantafyllidou, D., & Tefas, A. (2016). Face detection based on deep convolutional neural networks exploiting incremental facial part learning. In 23rd International Conference on Pattern Recognition (ICPR) (pp. 3560–3565).

  • Triantafyllidou, D., & Tefas, A. (2017). A fast deep convolutional neural network for face detection in big visual data. In P. Angelov, Y. Manolopoulos, L. Iliadis, A. Roy, & M. Vellasco (Eds.), Advances in big data (pp. 61–70). Cham: Springer.

    Google Scholar 

  • Triantafyllidou, D., Paraskevi, N., & Tefas, A. (2017). Fast deep convolutional face detection in the wild exploiting hard sample mining. Big Data Research, 11, 65–76.

    Google Scholar 

  • Turk, D., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3, 71–86.

    Google Scholar 

  • Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Google Scholar 

  • Wang, L., & Zhu, J. (2010). Image denoising via solution paths. Annals of Operations Research, 174(1), 3–17.

    Google Scholar 

  • Wu, J., Brubaker, S. C., Mullin, M. D., & Rehg, J. M. (2008). Fast asymmetric learning for cascade face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 369–382.

    Google Scholar 

  • Y, C., & Yang, Y. (2017). Study on the method of face detection based on chaos genetic algorithm optimization adaBoost algorithm. In MATEC Web of Conferences (pp. 1–5).

  • Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., & Zhu, Y. (2018). Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Computer Vision and Image Understanding, 155(2), 256–269.

    Google Scholar 

  • Zhang, C., & Zhang, Z. (2014). Improving multiview face detection with multi-task deep convolutional neural networks. In IEEE Winter Conference on Applications of Computer Vision (pp. 1036–1041).

  • Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499–1503.

    Google Scholar 

  • Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D. L., & Weng, J. (1998). Discriminant analysis of principal components for face recognition BT - face recognition: From theory to applications. Berlin: Springer.

    Google Scholar 

  • Zhou, S. M., Gan, J. Q., Xu, L., & John, R. I. (2009). Fuzziness index driven fuzzy relaxation algorithm and applications to image processing. Annals of Operations Research, 168(1), 119–131.

    Google Scholar 

  • Zitnick, C., Lawrence, & Dollar, P. (2014). Edge boxes: Locating object proposals from edges. In Computer Vision-ECCV, Springer International Publishing (pp. 391–405).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Vo-Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che-Ngoc, H., Nguyen-Trang, T., Nguyen-Bao, T. et al. A new approach for face detection using the maximum function of probability density functions. Ann Oper Res 312, 99–119 (2022). https://doi.org/10.1007/s10479-020-03823-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03823-1

Keywords

Navigation