Skip to main content
Log in

Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences

  • S.I. : MIM2019
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We incorporate consumer low-carbon awareness and social preferences, including relationship and status preferences, into a game of emissions reduction and promotion involving one manufacturer and one retailer using a long-term perspective. We investigate the channel members’ decision making and performance under three scenarios, including a decentralized scenario both with and without a cost-sharing contract as well as a centralized scenario. In addition, we examine the effects of some key parameters on the channel members’ decisions and performance. Our study finds that improving consumer low-carbon awareness is beneficial for carbon emissions reduction and both channel members’ utilities. A cost-sharing contract can incentivize the retailer to improve promotion efforts, and the manufacturer’s optimal emissions reduction effort is independent of the cost-sharing contract used. The cost-sharing proportion increases as the manufacturer gives more weight to the relationship and decreases as the retailer gives more weight to the relationship. A cost-sharing contract changes the effect of channel members’ social preferences and marginal profits on their decisions. Most importantly, the supply chain system can achieve Pareto improvement with a cost-sharing contract. If the manufacturer aims to optimize the supply chain’s total profit, then the supply chain system can achieve perfect coordination with a cost-sharing contract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • AliResearch, & Alibaba Foundation (2016). Green Consumer Reports of China 2016. http://i.aliresearch.com/file/20160803/20160803103534.pdf.

  • Bai, Q., Xu, J., & Zhang, Y. (2020). The distributionally robust optimization model for a remanufacturing system under cap-and-trade policy: A newsvendor approach. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03642-4.

    Article  Google Scholar 

  • Bendoly, E., Donohue, K., & Schultz, K. L. (2006). Behavior in operations management: Assessing recent findings and revisiting old assumptions. Journal of Operations Management, 24(6), 737–752.

    Google Scholar 

  • Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.

    Google Scholar 

  • Bertinelli, L., Camacho, C., & Zou, B. (2014). Carbon capture and storage and transboundary pollution: A differential game approach. European Journal of Operational Research, 237, 721–728.

    Google Scholar 

  • Bostian, A. A., Holt, C. A., & Smith, A. M. (2008). Newsvendor “pull-to-center” effect: Adaptive learning in a laboratory experiment. Manufacturing and Service Operations Management, 10(4), 590–608.

    Google Scholar 

  • Bowles, S. (2004). Microeconomics: behavior, institutions, and evolution (pp. 121–122). Princeton: Princeton University Press.

    Google Scholar 

  • Chan, H. L., Choi, T. M., Cai, Y. J., & Shen, B. (2018a). Environmental taxes in newsvendor supply chains: A mean-downside-risk analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2018.2870881.

    Article  Google Scholar 

  • Chan, H. L., Shen, B., & Cai, Y. (2018b). Quick response strategy with cleaner technology in a supply chain: Coordination and win-win situation analysis. International Journal of Production Research, 56(10), 3397–3408.

    Google Scholar 

  • Chen, X., Benjaafar, S., & Elomri, A. (2019). On the effectiveness of emission penalties in decentralized supply chains. European Journal of Operational Research, 274, 1155–1167.

    Google Scholar 

  • Choi, T. M. (2013). Optimal apparel supplier selection with forecast updates under carbon emission taxation scheme. Computers & Operations Research, 40(11), 2646–2655.

    Google Scholar 

  • Com, J.D. (2017). Green consumption development report. 2017. http://finance.ce.cn/gsxw/201710/13/t20171013_26524031.shtml.

  • Cui, T. H., Raju, J., & Zhang, J. (2007). Fairness and channel coordination. Management Science, 53(8), 1303–1304.

    Google Scholar 

  • Dai, R., Zhang, J., & Tang, W. (2017). Cartelization or Cost-sharing? Comparison of cooperation modes in a green supply chain. Journal of Cleaner Production, 156, 159–173.

    Google Scholar 

  • Ding, Y., & Jin, M. (2019). Service and pricing strategies in online retailing under carbon emission regulation. Journal of Cleaner Production, 217, 85–94.

    Google Scholar 

  • Dong, C., Liu, Q., & Shen, B. (2019). To be or not to be green? Strategic investment for green product development in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 131, 193–227.

    Google Scholar 

  • Dong, C., Shen, B., Chow, P. S., Yang, L., & Chi, T. N. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240(2), 509–531.

    Google Scholar 

  • Du, S., Nie, T., Chu, C., et al. (2014). Newsvendor model for a dyadic supply chain with Nash bargaining fairness concerns. International Journal of Production Research, 52(17), 5070–5085.

    Google Scholar 

  • Du, S., Zhu, J., Jiao, H., et al. (2015). Game-theoretical analysis for supply chain with consumer preference to low carbon. International Journal of Production Research, 53(12), 3753–3768.

    Google Scholar 

  • Du, S., Zhu, Y., Zhu, Y., & Tang, W. (2020). Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system. Annals of Operations Research, 290, 543–565.

    Google Scholar 

  • European Commission. (2008). Attitudes of Europeans citizens towards the environment. European Commission, 295. http://ec.europa.eu/public_opinion/archives/ebs/ebs_295_en.pdf.

  • Fehr, E., & Gächter, S. (2000). Fairness and retaliation: The economics of reciprocity. Journal of Economic Perspective, 14, 159–181.

    Google Scholar 

  • Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.

    Google Scholar 

  • Han, Y., & Liu, X. (2010). Measurement of incremental cost for CO2 Mitigation in China. Management Review, 22(6), 100–105.

    Google Scholar 

  • He, P., He, Y., Shi, C. V., Xu, H., & Zhou, L. (2020). Cost-sharing contract design in a low-carbon service supply chain. Computers & Industrial Engineering, 139, 1–17. https://doi.org/10.1016/j.cie.2019.106160.

    Article  Google Scholar 

  • He, X., Prasad, A., & Sethi, S. P. (2009). Cooperative advertising and pricing in a dynamic stochastic supply Chain: Feedback Stackelberg strategies. Production & Operations Management, 18(1), 78–94.

    Google Scholar 

  • Huang, Z., & Li, S. X. (2001). Co-op advertising models in manufacturer-retailer supply chains: A game theory approach. European Journal of Operational Research, 135(3), 527–544.

    Google Scholar 

  • Jabbour, C. J. C., Neto, A. S., Gobbo, J. A., Jr., et al. (2015). Eco-innovations in more sustainable supply chains for a low-carbon economy: A multiple case study of human critical success factors in Brazilian leading companies. International Journal of Production Economics, 164, 245–257.

    Google Scholar 

  • Jiang, W., & Chen, X. (2016). Optimal strategies for manufacturer with strategic customer behavior under carbon emissions-sensitive random demand. Industrial Management & Data Systems, 116(4), 759–776.

    Google Scholar 

  • Kagermann, H., Lukas, W., & Wahlster, W. (2015). Abschotten ist keine Alternative. In: VDI Nachrichten, Issue 16.

  • Katok, E., & Pavlov, V. (2013). Fairness in supply chain contracts: A laboratory study. Journal of Operations Management, 31(3), 129–137.

    Google Scholar 

  • Katok, E., & Wu, D. Y. (2009). Contracting in supply chains: A laboratory investigation. Management Science, 55(12), 1953–1968.

    Google Scholar 

  • Kuo, T. C., Tseng, M. L., Chen, H. M., et al. (2018). Design and analysis of supply chain networks with low carbon emissions. Computational Economics, 52, 1353–1374.

    Google Scholar 

  • Liu, Z., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply Chains. European Journal of Operational Research, 218(3), 602–613.

    Google Scholar 

  • Liu, M., Wan, M., & Fu, H. (2018). Low-carbon technology selection for supply chain under cap and trade mechanism with low-carbon preference. Chinese Journal of Management Science, 26(1), 152–162.

    Google Scholar 

  • Loch, C. H., & Wu, Y. (2008). Social preferences and supply chain performance: An experimental study. Management Science, 54(11), 1835–1849.

    Google Scholar 

  • Manavalan, E., & Jayakrishna, K. (2019). A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers & Industrial Engineering, 127(1), 925–953.

    Google Scholar 

  • Marufuzzaman, M., Eksioglu, S. D., & Huang, Y. (2014). Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment. Computers & Operations Research, 49(10), 1–17.

    Google Scholar 

  • Modak, N. M., Ghosh, D. K., Panda, S., et al. (2017). Managing greenhouse gas emission cost and pricing policies in a two-echelon supply chain. CIRP Journal of Manufacturing Science and Technology, 432(11), 1–12.

    Google Scholar 

  • National Development and Reform Commission of the People’s Republic of China. (2008). Report on China’s consumer development of 2017. People’s Publishing House.

  • Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.

    Google Scholar 

  • Plambeck, E. L. (2012). Reducing greenhouse gas emissions through operations and supply chain management. Energy Economics, 34, 64–74.

    Google Scholar 

  • Shaw, K., Irfan, M., Shankar, R., et al. (2016). Low carbon chance constrained supply chain network design problem: A Benders decomposition based approach. Computers & Industrial Engineering, 98, 483–497.

    Google Scholar 

  • Shen, B., Cao, Y., & Xu, X. (2020). Product line design and quality differentiation for green and non-green products in a supply chain. International Journal of Production Research, 58(1), 148–164.

    Google Scholar 

  • Shen, B., Choi, T. M., & Chan, H. L. (2019a). Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the Big Data Era. Technological Forecasting and Social Change, 144, 412–420.

    Google Scholar 

  • Shen, B., Choi, T. M., & Minner, S. (2019b). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936.

    Google Scholar 

  • Shen, B., Ding, X., Chen, L., & Chan, H. L. (2017). Low carbon supply chain with energy consumption constraints: Case studies from China’s textile industry and simple analytical model. Supply Chain Management: An International Journal, 22(3), 258–269.

    Google Scholar 

  • Shen, B., Xu, X., & Choi, T. M. (2019c). Simplicity is beauty: Pricing coordination in two-product supply chains with simplest contracts under voluntary compliance. International Journal of Production Research, 57(9), 2769–2787.

    Google Scholar 

  • Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 40, 536–541.

    Google Scholar 

  • Tang, Christopher, S., & Veelenturf, Lucas, P. (2019). The Strategic Role of Logistics in the Industry 4.0 Era. Forthcoming. In Transportation Research Part E: Logistics and Transportation Review. Available at SSRN: https://ssrn.com/abstract=3400566.

  • Toptal, A., & Çetinkaya, B. (2017). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research, 250(2), 487–519.

    Google Scholar 

  • Wang, Y., Fan, R., Shen, L., & Miller, W. (2020). Recycling decisions of low-carbon e-commerce closed-loop supply chain under government subsidy mechanism and altruistic preference. Journal of Cleaner Production, 259, 1–13. https://doi.org/10.1016/j.jclepro.2020.120883.

    Article  Google Scholar 

  • Wang, Q., Zhao, D., & He, L. (2016). Contracting emission reduction for supply chains considering market low-carbon preference. Journal of Cleaner Production, 120, 72–84.

    Google Scholar 

  • Xia, L., Hao, W., Qin, J., et al. (2018). Carbon emission reduction and promotion policies considering social preferences and consumers’ low-carbon awareness in the cap-and-trade system. Journal of Cleaner Production, 195, 1105–1124.

    Google Scholar 

  • Xu, J., Qi, Q., & Bai, Q. (2018a). Coordinating a dual-channel supply chain with price discount contracts under carbon emission capacity regulation. Applied Mathematical Modelling, 56, 449–468.

    Google Scholar 

  • Xu, L., Wang, C., & Zhao, J. (2018b). Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. Journal of Cleaner Production, 197, 551–561.

    Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016a). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112, 4093–4106.

    Google Scholar 

  • Xu, C., Zhao, D. Z., Yuan, B. Y., et al. (2016b). Differential game model on joint carbon emission reduction and low-carbon promotion in supply chains. Journal of Management Sciences in China, 19(2), 53–65.

    Google Scholar 

  • You, D., & Zhu, G. (2016). Differential game analysis of ecological R&D, cooperative promotion and pricing in the low-carbon supply chain. Control Decis, 31(6), 1047–1056.

    Google Scholar 

  • Yu, B., Wang, J., Lu, X., & Yang, H. (2020). Collaboration in a low-carbon supply chain with reference emission and cost learning effects: Cost sharing versus revenue sharing strategies. Journal of Cleaner Production, 250, 119460. https://doi.org/10.1016/j.jclepro.2019.119460.

    Article  Google Scholar 

  • Yue, J., Austin, J., Wang, M. C., & Huang, Z. (2006). Coordination of cooperative advertising in a two-level supply chain when manufacturer offers discount. European Journal of Operational Research, 168, 65–85.

    Google Scholar 

  • Zhang, L., Wang, J., & You, J. (2015). Consumer environmental awareness and channel coordination with two substitutable products. European Journal of Operational Research, 241(1), 63–73.

    Google Scholar 

  • Zhao, D. Z., Yuan, B. Y., & Chun-Qiu, X. U. (2016). Dynamic coordination strategy of vertical cooperative on carbon emission reduction in supply chain under low-carbon Era. Journal of Industrial Engineering & Engineering Management, 30(1), 147–154.

    Google Scholar 

  • Zhou, X. (2017). Strategy on low carbon emission reduction, promotion in dual channel supply chain considering brand differentiation. Operations Research and Management Science, 26(11), 93–99.

    Google Scholar 

  • Zhou, Y., Bao, M., Chen, X., et al. (2016). Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns. Journal of Cleaner Production, 133, 402–413.

    Google Scholar 

  • Zhou, Y., & Ye, X. (2018). Differential game model of joint emission reduction strategies and contract design in a dual-channel supply chain. Journal of Cleaner Production, 190, 592–607.

    Google Scholar 

  • Zu, Y., Chen, L., & Fan, Y. (2018). Research on Low-carbon Strategies in Supply Chain with Environmental Regulations based on Differential Game. Journal of Cleaner Production, 177, 527–546.

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the editor for their helpful comments on the revision of this paper. This work was supported through NSFC Grants (No. 71502123, 71972142, and 71972141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

Prove: In the decentralized scenario without a cost-sharing contract, the manufacturer’s profit at time \( t \) from the long-run and dynamic perspectives is:

$$ \pi_{m}^{N} (\tau ) = \int_{t}^{\infty } {e^{ - \rho t} {\kern 1pt} [b_{m} Q - c_{m} (E_{m} )]{\kern 1pt} {\kern 1pt} } dt . $$
(A1)

Let \( v_{m}^{N} { = }\int_{t}^{\infty } {e^{ - \rho (s - t)} \left[ {b_{m} Q - c_{m} (E_{m}^{N} )} \right]} dt \). Then, \( \pi_{m}^{N} (\tau ){ = }e^{ - \rho t} v_{m}^{N} \). Similarly, the retailer’s profit at time \( t \) from the long-run and dynamic perspectives is \( \pi_{r}^{N} (\tau ) = e^{ - \rho t} v_{r}^{N} \) where \( v_{r}^{N} { = }\int_{t}^{\infty } {e^{ - \rho (s - t)} \left[ {b_{r} Q - c_{r} (E_{r}^{N} )} \right]} dt \). Based on \( u_{r} = \pi_{r} + \theta_{r} \pi_{m} \), the retailer’s objective function satisfies the following HJB function:

$$ \rho v_{r}^{N} (\tau ) + \rho \theta_{r} v_{m}^{N} (\tau ) = \hbox{max} \left\{ \begin{array}{l} b_{r} \left[ {a + \beta E_{r}^{N} (t) + \mu \tau^{N} (t)} \right] - \frac{1}{2}\eta_{r} (E_{r}^{N} (t))^{2} \hfill \\\quad + \theta_{r} \left\{ {b_{m} \left[ {a + \beta E_{r}^{N} (t) + \mu \tau^{N} (t)} \right] - \frac{1}{2}\eta_{m} (E_{m}^{N} (t))^{2} } \right\} \hfill \\ \quad+ \left[ {v_{r} (\tau )^{'} + \theta_{{_{r} }} v_{m} (\tau )^{'} } \right]\left[ {\gamma E_{m}^{N} (t) - \delta \tau^{N} (t)} \right] \hfill \\ \end{array} \right\} $$
(A2)

It is easy to prove that \( \rho v_{r}^{N} (\tau ) + \rho \theta_{r} v_{m}^{N} (\tau ) \) is concave in \( E_{r}^{N} \). Then, the retailer’s promotion effort can be expressed as Equation (A3) based on the first-order condition.

$$ E_{r}^{N} (t) = \frac{{(b_{r} + \theta_{r} b_{m} )\beta }}{{\eta_{r} }} $$
(A3)

Similarly, the manufacturer’s objective function satisfies the following HJB function:

$$ \rho v_{m}^{N} (\tau ) + \rho \theta_{m} v_{r}^{N} (\tau ) = \hbox{max} \left\{ \begin{array}{l} b_{m} [\alpha + \beta E_{r}^{N} (t) + \mu \tau^{N} (t)] - \frac{1}{2}\eta_{m} (E_{m}^{N} (t))^{2} \hfill \\\quad + \theta_{m} \{ b_{r} [\alpha + \beta E_{r}^{N} (t) + \mu \tau^{N} (t)] - \frac{1}{2}\eta_{r} (E_{r}^{N} (t))^{2} \} \hfill \\\quad+ \left[ {v_{m} (\tau )^{'} + \theta_{{_{m} }} v_{r} (\tau )^{'} } \right]\left[ {\gamma E_{m}^{N} (t) - \delta \tau^{N} (t)} \right] \hfill \\ \end{array} \right\}. $$
(A4)

It is easy to prove that \( \rho v_{m}^{N} (\tau ) + \rho \theta_{m} v_{r}^{N} (\tau ) \) is concave in \( E_{m}^{N} \). Then, the manufacturer’s optimal emission reduction effort can be expressed as Equation (A5) based on the first-order condition.

$$ E_{m}^{N} (t) = \frac{{\left[ {v_{m}^{N} (\tau )^{'} + \theta_{m} v_{r}^{N} (\tau )^{'} } \right]\gamma }}{{\eta_{m} }} $$
(A5)

By substituting Equations (A3) and (A5) into Equations (A2) and (A4), the HJB functions of the retailer and manufacturer can be expressed as Equations (A6) and (A7), respectively.

$$ \begin{aligned} \rho v_{r}^{N} (\tau ) + \rho \theta_{r} v_{m}^{N} (\tau ) & = \frac{{(v_{m}^{N} (\tau )^{'} + \theta_{{_{m} }} v_{r}^{N} (\tau )^{'} )\gamma^{2} (2v_{r}^{N} (\tau )^{'} + \theta_{{_{r} }} v_{m}^{N} (\tau )^{'} - \theta_{r} \theta_{m} v_{r}^{N} (\tau )^{'} )}}{{2\eta_{m} }} \\ & \quad + \;\frac{{(\beta^{2} b_{r} + \beta^{2} \theta_{r} b_{m} + 2\alpha \eta_{r} )(b_{r} + \theta_{r} b_{m} )}}{{2\eta_{r} }} \\ &\quad + \left[ {b_{r} \mu + \theta_{r} b_{m} \mu - \left( {v_{r}^{N} (\tau )^{'} + \theta_{{_{r} }} v_{m}^{N} (\tau )^{'} } \right)\delta } \right]\tau^{N} (t) \\ \end{aligned} $$
(A6)
$$ \begin{aligned} \rho v_{m}^{N} (\tau ) + \rho \theta_{m} v_{r}^{N} (\tau ) & = \frac{{\left[ {v_{m}^{N} (\tau )^{'} + \theta_{{_{m} }} v_{r}^{N} (\tau )^{'} } \right]^{2} \gamma^{2} }}{{2\eta_{m} }} + \frac{{(b_{r} - \theta_{r} b_{m} )(b_{r} + \theta_{r} b_{m} )\beta^{2} + 2b_{r} \alpha \eta_{r} }}{{2\eta_{r} }}\theta_{m} \\ & \quad + \left[ {b_{m} \mu + \theta_{m} b_{r} \mu - \left( {v_{m}^{N} (\tau )^{'} + \theta_{{_{m} }} v_{r}^{N} (\tau )^{'} } \right)\delta } \right]\tau^{N} (t) + \frac{{(b_{r} + \theta_{r} b_{m} )\beta^{2} + \alpha \eta_{r} }}{{\eta_{r} }}b_{m} \\ \end{aligned} $$
(A7)

Based on the structures of Equations (A6) and (A7), we assume that the solutions are linear about \( \tau \) and:

$$ \left\{ \begin{aligned} v_{m}^{N} (\tau ) = a_{1}^{N} \tau + d_{1}^{N} \hfill \\ v_{r}^{N} (\tau ) = a_{2}^{N} \tau + d_{2}^{N} \hfill \\ \end{aligned} \right. $$
(A8)

where \( a_{1}^{N} \), \( a_{2}^{N} \), \( d_{1}^{N} \) and \( d_{2}^{N} \) are constants. By substituting Equation (A8) into (A6) and (A7) and solving the new equations, we have \( a_{1}^{N} \), \( a_{2}^{N} \), \( d_{1}^{N} \) and \( d_{2}^{N} \) as follows:

$$ \left\{ \begin{aligned} a_{1}^{N} = \frac{{b_{m} \mu }}{\rho + \delta }{\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} d_{1}^{N} = \frac{{ab_{m} }}{\rho } + \frac{{b_{m} \beta^{2} (b_{r} + b_{m} \theta_{r} )}}{{\eta_{r} \rho }} + \frac{{\gamma^{2} \mu^{2} (b_{m}^{2} - b_{r}^{2} \theta_{m}^{2} )}}{{2\eta_{m} \rho (\rho + \delta )^{2} }}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ a_{2}^{N} = \frac{{b_{r} \mu }}{\rho + \delta },{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} d_{2}^{N} = \frac{{ab_{r} }}{\rho } + \frac{{\beta^{2} (b_{r}^{2} - b_{m}^{2} \theta_{r}^{2} )}}{{2\eta_{r} \rho }} + \frac{{\gamma^{2} \mu^{2} b_{r} (b_{m} + b_{r} \theta_{m} )}}{{\eta_{m} \rho (\rho + \delta )^{2} }} \hfill \\ \end{aligned} \right. $$
(A9)

Then, we obtain the optimal solution of the game as:

$$ \left\{ \begin{array}{l} E_{m}^{N * } (t) = \frac{{(b_{m} + b_{r} \theta_{m} )\gamma \mu }}{{\eta_{m} (\rho + \delta )}} \hfill \\ E_{r}^{N * } (t) = \frac{{(b_{r} + \theta_{r} b_{m} )\beta }}{{\eta_{r} }} \hfill \\ \end{array} \right. $$
(A10)

Moreover, based on \( \tau (0) = \tau_{0} \ge 0 \), emission reduction effort state trajectories and channel members’ optimal utilities are written as:

$$ \tau^{N} (t) = \omega^{N} + (\tau_{0} - \omega^{N} )e^{ - \delta t} $$
(A11)
$$ \left\{ \begin{aligned} \pi_{m}^{N} (\tau ) = e^{ - \rho t} (a_{1}^{N} \tau + d_{1}^{N} ) \hfill \\ \pi_{r}^{N} (\tau ) = e^{ - \rho t} (a_{2}^{N} \tau + d_{2}^{N} ) \hfill \\ \end{aligned} \right. $$
(A12)
$$ \left\{ \begin{aligned} u_{m}^{N * } = \pi_{m}^{N} + \theta_{m} \pi_{r}^{N} = e^{ - \rho t} [a_{1}^{N} \tau + d_{1}^{N} + \theta_{m} (a_{2}^{N} \tau + d_{2}^{N} )] \hfill \\ u_{r}^{N * } = \pi_{r}^{N} + \theta_{r} \pi_{m}^{N} = e^{ - \rho t} [a_{2}^{N} \tau + d_{2}^{N} + \theta_{r} (a_{1}^{N} \tau + d_{1}^{N} )] \hfill \\ \end{aligned} \right. $$
(A13)

where \( \omega^{N} = \frac{{\gamma^{2} \mu (b_{m} + b_{r} \theta_{m} )}}{{\delta \eta_{m} (\rho + \delta )}} \) denotes the manufacturer’s steady-state emission reduction level. In other words, \( \omega^{N} \) is the manufacturer’s emission reduction level when \( t \to \infty \).

Thus, Proposition 1 is proven.

Appendix B: Proof of Corollary 1

Prove: (i) We have

$$ \pi_{m}^{N} (\tau ) = e^{ - \rho t} \left\{ \begin{array}{l} \frac{{b_{m} \mu }}{\rho + \delta }\frac{{\gamma^{2} \mu (b_{m} + b_{r} \theta_{m} )}}{{\delta \eta_{m} (\rho + \delta )}} + \frac{{b_{m} \mu }}{\rho + \delta }[\tau_{0} - \frac{{\gamma^{2} \mu (b_{m} + b_{r} \theta_{m} )}}{{\delta \eta_{m} (\rho + \delta )}}]e^{ - \delta t} \hfill \\\quad + \frac{{ab_{m} }}{\rho } + \frac{{b_{m} \beta^{2} (b_{r} + b_{m} \theta_{r} )}}{{\eta_{r} \rho }} + \frac{{\gamma^{2} \mu^{2} (b_{m}^{2} - b_{r}^{2} \theta_{m}^{2} )}}{{2\eta_{m} \rho (\rho + \delta )^{2} }} \hfill \\ \end{array} \right\} $$

based on Eqs. (6) and (8). Then, we have \( \frac{{\partial \pi_{m}^{N} (\tau )}}{{\partial \theta_{r} }} = e^{ - \rho t} \frac{{\beta^{2} b_{m}^{2} }}{{\eta_{r} \rho }} \) and \( \frac{{\partial \pi_{m}^{N} (\tau )}}{{\partial \theta_{m} }} = e^{ - \rho t} \frac{{\gamma^{2} \mu^{2} b_{r} }}{{\eta_{m} (\rho + \delta )^{2} }}[\frac{{b_{m} }}{\delta }(1 - e^{ - \delta t} ) - \frac{{b_{r} \theta_{m} }}{\rho }] \).

Therefore, \( \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{m} }} \ge 0 \) if \( \frac{{b_{m} }}{{b_{r} }} \ge \frac{{\delta \theta_{m} }}{{\rho (1 - e^{ - \delta t} )}} \Leftrightarrow \theta_{m} \le \frac{{\rho b_{m} }}{{\delta b_{r} }}(1 - e^{ - \delta t} ) \); otherwise, \( \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{m} }} < 0 \); \( \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{r} }} > 0 \).

(ii) We have \( \pi_{r}^{N} (\tau ) = e^{ - \rho t} \left\{ \begin{aligned} \frac{{\gamma^{2} \mu^{2} b_{r} (b_{m} + b_{r} \theta_{m} )}}{{\eta_{m} (\rho + \delta )^{2} }}[\frac{1}{\delta }(1 - e^{ - \delta t} ) + \frac{1}{\rho }] \hfill \\ + \frac{{b_{r} \mu }}{\rho + \delta }\tau_{0} e^{ - \delta t} + \frac{{ab_{r} }}{\rho } + \frac{{\beta^{2} (b_{r}^{2} - b_{m}^{2} \theta_{r}^{2} )}}{{2\eta_{r} \rho }} \hfill \\ \end{aligned} \right\} \) based on Eqs. (6) and (8). Then,\( \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} = - e^{ - \rho t} \frac{{\beta^{2} b_{m}^{2} \theta_{r} }}{{\eta_{r} \rho }} \) and \( \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{m} }} = e^{ - \rho t} \frac{{\gamma^{2} \mu^{2} b_{r} b_{r} }}{{\eta_{m} (\rho + \delta )^{2} }}[\frac{1}{\delta }(1 - e^{ - \delta t} ) + \frac{1}{\rho }] \). Thus, we have \( \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{m} }} > 0 \); \( \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} \ge 0 \) if \( \theta_{r} \le 0 \); otherwise, \( \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} < 0 \).

(iii) We have \( \frac{{\partial u_{r}^{N * } }}{{\partial \theta_{m} }} = \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{m} }} + \theta_{r} \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{m} }} \) and \( \frac{{\partial u_{r}^{N * } }}{{\partial \theta_{r} }} = \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} + \pi_{m}^{N} + \theta_{r} \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{r} }} \) based on \( u_{r}^{N * } = \pi_{r}^{N} + \theta_{r} \pi_{m}^{N} \). Then,\( \frac{{\partial u_{r}^{N * } }}{{\partial \theta_{m} }} = \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{m} }} + \theta_{r} \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{m} }} = e^{ - \rho t} \frac{{\gamma^{2} \mu^{2} b_{r} }}{{\eta_{m} (\rho + \delta )^{2} }}\left\{ {\frac{1}{\delta }(1 - e^{ - \delta t} )(b_{r} + b_{m} \theta_{r} ) + \frac{1}{\rho }b_{r} (1 - \theta_{m} \theta_{r} )} \right\} \ge 0 \). Thus, we have \( \frac{{\partial u_{r}^{N * } }}{{\partial \theta_{m} }} \ge 0 \) based on \( b_{r} + b_{m} \theta_{r} \ge 0 \) and \( 1 - \theta_{m} \theta_{r} \ge 0 \). Similarly, we have\( \frac{{\partial u_{r}^{N * } }}{{\partial \theta_{r} }} = \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} + \pi_{m}^{N} + \theta_{r} \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{r} }} = - e^{ - \rho t} \frac{{\beta^{2} b_{m}^{2} \theta_{r} }}{{\eta_{r} \rho }} + \pi_{m}^{N} + \theta_{r} e^{ - \rho t} \frac{{\beta^{2} b_{m}^{2} }}{{\eta_{r} \rho }} = \pi_{m}^{N} \ge 0 \).

We have \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{m} }} = \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{m} }} + \pi_{r}^{N} + \theta_{m} \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{m} }} \) and \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{r} }} = \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{r} }} + \theta_{m} \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} \) based on \( u_{m}^{N * } = \pi_{m}^{N} + \theta_{m} \pi_{r}^{N} \). Then,

$$ \begin{aligned} \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{m} }} & = e^{ - \rho t} \frac{{\gamma^{2} \mu^{2} b_{r} }}{{\eta_{m} (\rho + \delta )^{2} }}\left[ {\frac{{b_{m} }}{\delta }(1 - e^{ - \delta t} ) - \frac{{b_{r} \theta_{m} }}{\rho }} \right] \\ &\quad + e^{ - \rho t} \left\{ \begin{aligned} \frac{{\gamma^{2} \mu^{2} b_{r} (b_{m} + b_{r} \theta_{m} )}}{{\eta_{m} (\rho + \delta )^{2} }}\left[ {\frac{1}{\delta }(1 - e^{ - \delta t} ) + \frac{1}{\rho }} \right] \hfill \\ + \frac{{b_{r} \mu \tau_{0} e^{ - \delta t} }}{\rho + \delta } + \frac{{ab_{r} }}{\rho } + \frac{{\beta^{2} (b_{r}^{2} - b_{m}^{2} \theta_{r}^{2} )}}{{2\eta_{r} \rho }} \hfill \\ \end{aligned} \right\} \\ & {\kern 1pt} + \theta_{m} e^{ - \rho t} \frac{{\gamma^{2} \mu^{2} b_{r} b_{r} }}{{\eta_{m} (\rho + \delta )^{2} }}\left[ {\frac{1}{\delta }(1 - e^{ - \delta t} ) + \frac{1}{\rho }} \right] \\ \end{aligned} $$

and \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{m} }}e^{\rho t} = e^{\rho t} \pi_{r}^{N} (\tau ) + \frac{{\gamma^{2} \mu^{2} b_{r} (b_{m} + b_{r} \theta_{m} )}}{{\eta_{m} (\rho + \delta )^{2} }}\frac{1}{\delta }(1 - e^{ - \delta t} ) \ge 0 \). Thus, \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{m} }} \ge 0 \).

In addition, we have \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{r} }} = \frac{{\partial \pi_{m}^{N} }}{{\partial \theta_{r} }} + \theta_{m} \frac{{\partial \pi_{r}^{N} }}{{\partial \theta_{r} }} = e^{ - \rho t} \frac{{\beta^{2} b_{m}^{2} }}{{\eta_{r} \rho }}(1 - \theta_{m} \theta_{r} ) \) based on Corollary 1(i) and (ii). Thus, \( \frac{{\partial u_{m}^{N * } }}{{\partial \theta_{r} }} \ge 0 \).

(iv) Based on Eq. (8), we have

$$ \frac{{\partial v_{r}^{N} }}{\partial \mu } = \frac{{2\gamma^{2} b_{r} \mu (b_{m} + b_{r} \theta_{m} )(e^{\delta t} \rho - \rho + e^{\delta t} \delta ) + b_{r} (\eta_{m} \tau_{0} \rho^{2} \delta + \eta_{m} \tau_{0} \rho \delta^{2} )}}{{e^{\delta t} \eta_{m} \rho \delta (\rho + \delta )^{2} }} $$

and\( \frac{{\partial v_{m}^{N} }}{\partial \mu } = \frac{{b_{m} \eta_{m} \tau_{0} \rho \delta^{2} - \gamma^{2} \mu (b_{m} + b_{r} \theta_{m} )(2b_{m} \rho - 2b_{m} e^{\delta t} \rho - b_{m} e^{\delta t} \delta + b_{r} e^{\delta t} \delta \theta_{m} ) + b_{m} \eta_{m} \tau_{0} \rho^{2} \delta }}{{e^{\delta t} \eta_{m} \rho \delta (\rho + \delta )^{2} }} \).

Since \( \pi_{m}^{N} (\tau ){ = }e^{ - \rho t} v_{m}^{N} \), \( \pi_{r}^{N} (\tau ) = e^{ - \rho t} v_{r}^{N} \), \( b_{m} + b_{r} \theta_{m} \ge 0 \), \( e^{\delta t} \rho - \rho + e^{\delta t} \delta \ge 0 \) and \( 2b_{m} \rho - 2b_{m} e^{\delta t} \rho - b_{m} e^{\delta t} \delta + b_{r} e^{\delta t} \delta \theta_{m} \le 0 \), we have \( \frac{{\partial \pi_{m}^{N} }}{\partial \mu } \ge 0 \) and \( \frac{{\partial \pi_{r}^{N} }}{\partial \mu } \ge 0 \).

Then, Corollary 1 is proven.

Appendix C: Proof of Proposition 2

Prove: In the decentralized scenario with a cost-sharing contract, the channel members’ profits at time \( t \) from the long-run and dynamic perspectives are \( \pi_{r}^{Y} = e^{ - \rho t} v_{r}^{Y} (\tau ) \) and \( \pi_{m}^{Y} = e^{ - \rho t} v_{m}^{Y} (\tau ) \) where:

$$ \left\{ \begin{aligned} v_{r}^{Y} (\tau ) = \int_{t}^{\infty } {e^{ - \rho (s - t)} \left[ {b_{r} Q - (1 - X)c_{r} (E_{r}^{Y} )} \right]} dt \hfill \\ v_{m}^{Y} (\tau ) = \int_{t}^{\infty } {e^{ - \rho (s - t)} \left[ {b_{m} Q - c_{m} (E_{m}^{Y} ) - Xc_{r} (E_{r}^{Y} )} \right]} dt \hfill \\ \end{aligned} \right. . $$
(C1)

Then, the retailer’s objective function satisfies the following HJB function:

$$ \rho v_{r}^{Y} (\tau ) + \rho \theta_{r} v_{m}^{Y} (\tau ) = \hbox{max} \left\{ \begin{array}{l} b_{r} \left[ {a + \beta E_{r}^{Y} (t) + \mu \tau^{Y} (t)} \right] - \frac{1}{2}(1 - X)\eta_{r} (E_{r}^{Y} (t))^{2} \hfill \\ \quad + \theta_{r} \{ b_{m} \left[ {a + \beta E_{r}^{Y} (t) + \mu \tau^{Y} (t)} \right] - \frac{1}{2}\eta_{m} (E_{m}^{Y} (t))^{2} \hfill \\ \quad- \frac{1}{2}X\eta_{r} (E_{r}^{Y} (t))^{Y} \} + \left[ {v_{r}^{Y} (\tau )^{'} + \theta_{{_{r} }} v_{m}^{Y} (\tau )^{'} } \right]\left[ {\gamma E_{m}^{Y} (t) - \delta \tau^{Y} (t)} \right] \hfill \\ \end{array} \right\} $$
(C2)

It is easy to prove that \( \rho v_{r}^{Y} (\tau ) + \rho \theta_{r} v_{m}^{Y} (\tau ) \) is concave in \( E_{r}^{Y} \). Then, the retailer’s promotion effort can be expressed as Equation (C3) based on the first-order condition.

$$ E_{r}^{Y} (t) = \frac{{(b_{r} + \theta_{r} b_{m} )\beta }}{{(1 - X + X\theta_{r} )\eta_{r} }} $$
(C3)

Similarly, the manufacturer’s objective function satisfies the following HJB function:

$$ \rho v_{m}^{Y} (\tau ) + \rho \theta_{m} v_{r}^{Y} (\tau ) = \hbox{max} \left\{ \begin{array}{l} b_{m} [\alpha + \beta E_{r}^{Y} (t) + \mu \tau^{Y} (t)] - \frac{1}{2}\eta_{m} (E_{m}^{Y} (t))^{2} - \frac{1}{2}X\eta_{r} (E_{r}^{Y} (t))^{2} \hfill \\ \quad + \left[ {v_{m}^{Y} (\tau )^{'} + \theta_{{_{m} }} v_{r}^{Y} (\tau )^{'} } \right]\left[ {\gamma E_{m}^{Y} (t) - \delta \tau^{Y} (t)} \right] \hfill \\ + \theta_{m} \{ b_{r} [\alpha + \beta E_{r}^{Y} (t) + \mu \tau^{Y} (t)] - \frac{1}{2}(1 - X)\eta_{r} (E_{r}^{Y} (t))^{2} \} \hfill \\ \end{array} \right\} $$
(C4)

It is easy to prove that \( \rho v_{m}^{Y} (\tau ) + \rho \theta_{m} v_{r}^{Y} (\tau ) \) is concave in \( E_{m}^{Y} \) and \( X \). Then, the manufacturer’s optimal emission reduction effort can be expressed as Equation (C5) based on the first-order condition.

$$ \left\{ \begin{array}{l} E_{m}^{Y} (t) = \frac{{\left[ {v_{m}^{Y} (\tau )^{'} + \theta_{m} v_{r}^{Y} (\tau )^{'} } \right]\gamma }}{{\eta_{m} }} \hfill \\ X = \frac{{2b_{m} - b_{r} - 3b_{m} \theta_{r} + b_{r} \theta_{m} + 2b_{m} \theta_{m} \theta_{r}^{2} - b_{m} \theta_{m} \theta_{r} }}{{(1 - \theta_{r} )[(b_{r} - b_{m} \theta_{r} - 2b_{r} \theta_{r} )\theta_{m} + 2b_{m} + b_{r} - b_{m} \theta_{r} ]}} \hfill \\ \end{array} \right. $$
(C5)

By substituting Equations (C3) and (C5) into Equations (C2) and (C4), the HJB functions of the retailer and manufacturer can be expressed as Equations (C6) and (C7), respectively.

$$ \begin{aligned} \rho v_{r}^{Y} (\tau ) + \rho \theta_{r} v_{m}^{Y} (\tau ) & = \frac{{\left[ {v_{m}^{Y} (\tau )^{'} + \theta_{m} v_{r}^{Y} (\tau )^{'} } \right]\gamma^{2} \left[ {(2 - \theta_{m} \theta_{r} )v_{r}^{Y} (\tau )^{'} + v_{m}^{Y} (\tau )^{'} \theta_{r} } \right]}}{{2\eta_{m} }} \\ & \quad + \frac{{(\beta^{2} b_{r} + \beta^{2} \theta_{r} b_{m} + 2\alpha \eta_{r} )(b_{r} + \theta_{r} b_{m} )}}{{2\eta_{r} }} \\ &\quad + \left[ {b_{r} \mu + \theta_{r} b_{m} \mu - \left( {v_{r}^{Y} (\tau )^{'} + \theta_{r} v_{m}^{Y} (\tau )^{'} } \right)\delta } \right]\tau^{Y} (t) \\ \end{aligned} $$
(C6)
$$ \begin{aligned} \rho v_{m}^{Y} (\tau ) + \rho \theta_{m} v_{r}^{Y} (\tau ) & = [b_{m} \mu + \theta_{m} b_{r} \mu - \left( {v_{m} (\tau )^{'} + \theta_{{_{m} }} v_{r} (\tau )^{'} } \right)\delta ]\tau (t) \\ &\quad + b_{m} \left[ {\alpha + \frac{{(b_{r} + \theta_{r} b_{m} )\beta^{2} }}{{(1 - X + X/\theta_{m} )\eta_{r} }}} \right] + \frac{{[v_{m} (\tau )^{'} + \theta_{{_{m} }} v_{r} (\tau )^{'} ]^{2} \gamma^{2} }}{{2\eta_{m} }} \\ &\quad + \theta_{m} \left\{ {b_{r} \left[ {\alpha + \frac{{(b_{r} + \theta_{r} b_{m} )\beta^{2} }}{{(1 - X + X/\theta_{m} )\eta_{r} }}} \right] - \frac{{(b_{r} + \theta_{r} b_{m} )^{2} \beta^{2} }}{{2(1 - X + X/\theta_{m} )\eta_{r} }}} \right\} \\ \end{aligned} $$
(C7)

Based on the structures of Equations (C6) and (C7), we assume that the solutions are linear about \( \tau \) and:

$$ \left\{ \begin{aligned} v_{m}^{Y} (\tau ) = a_{1}^{Y} \tau + d_{1}^{Y} \hfill \\ v_{r}^{Y} (\tau ) = a_{2}^{Y} \tau + d_{2}^{Y} \hfill \\ \end{aligned} \right. $$
(C8)

where \( a_{1}^{Y} \), \( a_{2}^{Y} \), \( d_{1}^{Y} \) and \( d_{2}^{Y} \) are constants. By substituting Equation (C8) into (C6) and (C7) and solving the new equations, we have \( a_{1}^{Y} \), \( a_{2}^{Y} \), \( d_{1}^{Y} \) and \( d_{2}^{Y} \) as follows:

$$ \left\{ \begin{array}{l} a_{1}^{Y} = \frac{{b_{m} \mu }}{\rho + \delta },{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} a_{2}^{Y} = \frac{{b_{r} \mu }}{\rho + \delta } \hfill \\ d_{1}^{Y} = \frac{{\beta^{2} \theta_{m} (b_{r} + b_{m} \theta_{r} )\left[ {(1 - X + X/\theta_{m} )\eta_{r} (b_{r} + b_{m} \theta_{r} ) + (1 - X + X\theta_{r} )\eta_{r} (b_{m} \theta_{r} - b_{r} )} \right]}}{{2[(1 - X) + X\theta_{r} ]^{2} \eta_{r}^{2} \rho (\theta_{m} \theta_{r} - 1)}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{\alpha b_{m} }}{\rho } + \frac{{\gamma^{2} \mu^{2} (b_{m}^{2} - b_{r}^{2} \theta_{m}^{2} )}}{{2\eta_{m} \rho (\rho + \delta )^{2} }}\left[ {b_{r}^{2} + \frac{{b_{m} \beta^{2} (b_{r} + b_{m} \theta_{r} )}}{{(1 - X + X\theta_{r} )\eta_{r} \rho (1 - \theta_{m} \theta_{r} )}}} \right] \hfill \\ d_{2}^{Y} = \frac{{\beta^{2} \theta_{m} \theta_{r} \left[ {(1 - X + X/\theta_{m} )\eta_{r} (b_{m} \theta_{r} + b_{r} )^{2} - 2b_{r} (1 - X + X\theta_{r} )\eta_{r} (b_{r} + b_{m} \theta_{r} )} \right]}}{{2(1 - X + X\theta_{r} )^{2} \eta_{r}^{2} \rho (1 - \theta_{m} \theta_{r} )}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{\alpha b_{r} }}{\rho } + \frac{{(b_{r}^{2} - b_{m}^{2} \theta_{r}^{2} )\beta^{2} }}{{2(1 - X + X\theta_{r} )\eta_{r} \rho (1 - \theta_{m} \theta_{r} )}} + \frac{{b_{r} \gamma^{2} (b_{m} + b_{r} \theta_{m} )}}{{\eta_{m} \rho (\rho + \delta )^{2} }} \hfill \\ \end{array} \right. $$
(C9)

Then, the optimal solution of the game is:

$$ \left\{ \begin{array}{l} E_{m}^{Y * } (t) = \frac{{(b_{m} + b_{r} \theta_{m} )\gamma \mu }}{{\eta_{m} (\rho + \delta )}} \hfill \\ E_{r}^{Y * } (t) = \frac{{(b_{m} + b_{r} \theta_{m} )(1 - \theta_{r} )\beta }}{{2(1 - \theta_{m} \theta_{r} )\eta_{r} }} + \frac{{(b_{m} + b_{r} )\beta }}{{2\eta_{r} }} \hfill \\ X^{ * } (t) = \frac{{2b_{m} - b_{r} - 3b_{m} \theta_{r} + b_{r} \theta_{m} + 2b_{m} \theta_{m} \theta_{r}^{2} - b_{m} \theta_{m} \theta_{r} }}{{(1 - \theta_{r} )[(b_{r} - b_{m} \theta_{r} - 2b_{r} \theta_{r} )\theta_{m} + 2b_{m} + b_{r} - b_{m} \theta_{r} ]}} \hfill \\ \end{array} \right. $$
(C10)

Moreover, based on \( \tau (0) = \tau_{0} \ge 0 \), we have the emission reduction effort state trajectories and the channel members’ profits and optimal utilities as:

$$ \tau^{Y} (t) = \omega^{Y} + (\tau_{0} - \omega^{Y} )e^{ - \delta t} $$
(C11)
$$ \left\{ \begin{aligned} \pi_{m}^{Y} (\tau ) = e^{ - \rho t} (a_{1}^{Y} \tau + d_{1}^{Y} ) \hfill \\ \pi_{r}^{Y} (\tau ) = e^{ - \rho t} (a_{2}^{Y} \tau + d_{2}^{Y} ) \hfill \\ \end{aligned} \right. $$
(C12)
$$ \left\{ \begin{aligned} u_{m}^{Y * } (t) = \pi_{m}^{Y} + \theta_{m} \pi_{r}^{Y} = e^{ - \rho t} [a_{1}^{Y} \tau + d_{1}^{Y} + \theta_{m} (a_{2}^{Y} \tau + d_{2}^{Y} )] \hfill \\ u_{r}^{Y * } (t) = \pi_{r}^{Y} + \theta_{r} \pi_{m}^{Y} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = e^{ - \rho t} [a_{2}^{Y} \tau + d_{2}^{Y} + \theta_{r} (a_{1}^{Y} \tau + d_{1}^{Y} )] \hfill \\ \end{aligned} \right. $$
(C13)

where \( \omega^{Y} = \frac{{\gamma^{2} \mu (b_{m} + b_{r} \theta_{m} )}}{{\delta \eta_{m} (\rho + \delta )}} \) refers to the manufacturer’s steady-state emission reduction level in the case with a cost-sharing contract. In other words, \( \omega^{Y} \) is the manufacturer’s emission reduction level when \( t \to \infty \).

Thus, Proposition 2 is proven.

Appendix D: Proof of Corollary 2

Prove: (i) We have \( \frac{\partial X(t)}{{\partial \theta_{r} }} = - \frac{{(b_{m} \theta_{r} + b_{r} )(1 - \theta_{m} )\left[ {3(b_{m} + b_{r} \theta_{m} )(1 - \theta_{r} ) + (1 - \theta_{m} \theta_{r} )(b_{m} + b_{r} )} \right]}}{{[2b_{m} + b_{r} - \theta_{r} (b_{m} \theta_{m} + b_{m} + 2b_{r} \theta_{m} ) + b_{r} \theta_{m} ]^{2} (\theta_{r} - 1)^{2} }} \) and \( \frac{\partial X(t)}{{\partial \theta_{m} }} = \frac{{2(b_{r} + b_{m} \theta_{r} )^{2} }}{{[2b_{m} + b_{r} - b_{m} \theta_{r} - \theta_{m} (b_{m} \theta_{r} - b_{r} + 2b_{r} \theta_{r} )]^{2} }} \) from Eq. (13). Since \( \theta_{m} - 1 \le 0 \),\( b_{r} + b_{m} \theta_{r} \ge 0 \) and \( b_{m} + b_{r} \theta_{m} \ge 0 \), we have \( \frac{\partial X}{{\partial \theta_{m} }} \ge 0 \) and \( \frac{\partial X}{{\partial \theta_{r} }} \le 0 \). Similarly, we have \( \frac{{\partial E_{r}^{Y * } (t)}}{\partial X} > 0 \) from \( E_{r}^{Y * } (t) = \frac{{(b_{r} + \theta_{r} b_{m} )\beta }}{{(1 - X + X\theta_{r} )\eta_{r} }} \).

(ii) We have \( \frac{{\partial \pi_{m}^{Y} (t)}}{{\partial \theta_{m} }} = - \theta_{m} \left[ {\frac{{\beta^{2} (1 - \theta_{r} )(b_{r} + b_{m} \theta_{r} )^{2} }}{{4\eta_{r} \rho (1 - \theta_{m} \theta_{r} )^{3} }} + \frac{{b_{r}^{2} \gamma^{2} \mu^{2} }}{{\eta_{m} \rho (\rho + \delta )^{2} }}} \right]e^{ - \rho t} \) from Eq. (15). Since \( 1 - \theta_{r} \ge 0 \) and \( 1 - \theta_{m} \theta_{r} \ge 0 \), \( \frac{{\partial \pi_{m}^{Y} (t)}}{{\partial \theta_{m} }} \ge \) if \( \theta_{m} \le 0 \); otherwise, \( \frac{{\partial \pi_{m}^{Y} (t)}}{{\partial \theta_{m} }} < 0 \). Similarly, \( \frac{{\partial \pi_{r}^{Y} (t)}}{{\partial \theta_{m} }} = e^{ - \rho t} (\frac{{\beta^{2} (\theta_{r} - 1)(b_{r} + b_{m} \theta_{r} )^{2} }}{{4\eta_{r} \rho (\theta_{m} \theta_{r} - 1)^{3} }} + \frac{{b_{r}^{2} \gamma^{2} \mu^{2} (e^{\delta t} \rho - \rho + e^{\delta t} \delta )}}{{e^{\delta t} \eta_{m} \rho \delta (\rho + \delta )^{2} }}) \ge 0 \) based on \( e^{\delta t} \rho - \rho \ge 0 \).

(iii) Based on Eq. (16), we have\( \frac{{\partial u_{r}^{Y} (t)}}{{\partial \theta_{m} }} = \frac{{\beta^{2} (1 - \theta_{r} )(b_{r} + b_{m} \theta_{r} )^{2} }}{{2e^{\rho t} \eta_{r} \rho (X\theta_{r} - X + 1)^{2} }}\frac{dX}{{d\theta_{m} }} - \frac{{b_{r} \gamma^{2} \mu^{2} \left[ {\rho (b_{r} + b_{m} \theta_{r} )(1 - e^{\delta t} ) + b_{r} e^{\delta t} \delta (\theta_{r} \theta_{m} - 1)} \right]}}{{e^{(\delta + \rho )t} \eta_{m} \rho \delta (\delta + \rho )^{2} }} \). Based on \( b_{r} + b_{m} \theta_{r} \ge 0 \) and \( \frac{dX(t)}{{d\theta_{m} }} \ge 0 \), we have \( \frac{{\partial u_{r}^{Y} (t)}}{{\partial \theta_{m} }} \ge 0 \).

(iv) Based on Eq. (14), we have\( \frac{{\partial \pi_{r}^{Y} (t)}}{\partial \mu } = \frac{{b_{r} [2\mu \gamma^{2} (b_{m} + b_{r} \theta_{m} )(e^{\delta t} \rho - \rho + e^{\delta t} \delta ) + \eta_{m} \tau_{0} \rho^{2} \delta + \eta_{m} \tau_{0} \rho \delta^{2} ]}}{{e^{\delta t} \eta_{m} \rho \delta (\rho + \delta )^{2} }} \) and

\( \frac{{\partial \pi_{m}^{Y} (t)}}{\partial \mu } = \frac{{\mu \gamma^{2} [2b_{m}^{2} \rho (e^{\delta t} - 1) + 2b_{m} b_{r} \rho \theta_{m} (e^{\delta t} - 1) + b_{r}^{2} \delta e^{\delta t} (1 - \theta_{m}^{2} )] + b_{m} \eta_{m} \tau_{0} \rho \delta (\rho + \delta )}}{{e^{(\delta - \rho )t} \eta_{m} \rho \delta (\rho + \delta )^{2} }} \).

Since \( e^{\delta t} \rho - \rho + e^{\delta t} \delta \ge 0 \) and \( b_{m} + b_{r} \theta_{m} \ge 0 \), \( \frac{{\partial \pi_{m}^{Y} (t)}}{\partial \mu } \ge 0 \) and \( \frac{{\partial \pi_{r}^{Y} (t)}}{\partial \mu } \ge 0 \).

Then, Corollary 2 is proven.

Appendix E: Proof of Proposition 3

Prove: In the centralized scenario, the supply chain’s profit at time \( t \) from the long-run and dynamic perspectives is \( \prod (\tau ,t){ = }e^{ - \rho t} v^{C} \) where:

$$ v^{C} { = }\int_{t}^{\infty } {e^{ - \rho (s - t)} {\kern 1pt} {\kern 1pt} [b_{m} Q + b_{r} Q - c_{m} (E_{m} ) - c_{r} (E_{r} )]} {\kern 1pt} {\kern 1pt} dt . $$
(E1)

Then, the supply chain’s objective function satisfies the following HJB function:

$$ \rho v^{C} (\tau ) = \hbox{max} \left\{ \begin{aligned} b_{m} [\alpha + \beta E_{r} (t) + \mu \tau (t)] - \frac{1}{2}\eta_{m} E_{m}^{2} (t) - \frac{1}{2}\eta_{r} E_{r}^{2} (t) \hfill \\ +\, b_{r} [\alpha + \beta E_{r} (t) + \mu \tau (t)] + v(\tau )^{'} [\gamma E_{m} (t) - \delta \tau (t)] \hfill \\ \end{aligned} \right\} $$
(E2)

It is easy to prove that \( \rho v^{C} (\tau ) \) is concave in \( E_{r} \) and \( E_{m} \). Then, the solution can be expressed as Equation (E3) based on the first-order condition.

$$ \left\{ \begin{aligned} E_{m}^{C} (t) = v^{C} (\tau )^{'} \frac{\gamma }{{\eta_{m} }} \hfill \\ E_{r}^{C} (t) = \frac{{(b_{r} + b_{m} )\beta }}{{\eta_{r} }} \hfill \\ \end{aligned} \right.$$
(E3)

By substituting Equation (E3) into Equation (E2), we have:

$$ \begin{aligned} \rho v^{C} (\tau ) & = (b_{m} \mu + b_{r} \mu - (v^{C} )^{'} \delta )\tau^{C} (t) - \frac{1}{2}\frac{{(b_{r} + b_{m} )^{2} \beta^{2} }}{{\eta_{r} }} \\ & \quad {\kern 1pt} + \;(b_{r} + b_{m} )\left( {\alpha + \frac{{(b_{r} + b_{m} )\beta^{2} }}{{\eta_{r} }}} \right) + \frac{{(v^{C} )^{2} \gamma^{2} }}{{2\eta_{m} }} \\ \end{aligned} $$
(E4)

Based on the structure of Equation (E4), we assume that the solutions are linear about \( \tau \) and:

$$ v^{C} (\tau ) = a^{C} \tau + d^{C} $$
(E5)

where \( a^{C} \) and \( d^{C} \) are constants. By substituting Equation (E5) into Equation (E4), the HJB function of the supply chain is written as Equation (E6).

$$ \begin{aligned} \rho (a^{C} \tau + d^{C} ) = (b_{m} \mu + b_{r} \mu - a^{C} \delta )\tau (t) - \frac{{(b_{r} + b_{m} )^{2} \beta^{2} }}{{2\eta_{r} }} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (b_{r} + b_{m} )\frac{{\alpha \eta_{r} + (b_{r} + b_{m} )\beta^{2} }}{{\eta_{r} }} + \frac{{(a^{C} )^{2} \gamma^{2} }}{{2\eta_{m} }} \hfill \\ \end{aligned} $$
(E6)

Then, we have:

$$ \left\{ \begin{array}{l} \rho a^{C} = b_{m} \mu + b_{r} \mu - a^{C} \delta \hfill \\ \rho d^{C} = - \frac{1}{2}\frac{{(b_{r} + b_{m} )^{2} \beta^{2} }}{{\eta_{r} }} + (b_{r} + b_{m} )(\alpha + \frac{{(b_{r} + b_{m} )\beta^{2} }}{{\eta_{r} }}) + \frac{{(a^{C} )^{2} \gamma^{2} }}{{2\eta_{m} }} \hfill \\ \end{array} \right. $$
(E7)

By solving Equation (E7), we have:

$$ \left\{ \begin{array}{l} a^{C} = \frac{{(b_{r} + b_{m} )\mu }}{\rho + \delta } \hfill \\ d^{C} = \frac{{\alpha (b_{r} + b_{m} )}}{\rho } + \frac{{(b_{r} + b_{m} )^{2} \beta^{2} }}{{2\eta_{r} \rho }} + \frac{{\gamma^{2} \mu^{2} (b_{m} + b_{r} )^{2} }}{{2\eta_{m} \rho (\rho + \delta )^{2} }} \hfill \\ \end{array} \right. $$
(E10)

Then, the optimal solution of the game is:

$$ \left\{ \begin{array}{l} E_{m}^{C} (t) = \frac{{(b_{m} + b_{r} )\gamma \mu }}{{\eta_{m} (\rho + \delta )}} \hfill \\ E_{r}^{C} (t) = \frac{{(b_{r} + b_{m} )\beta }}{{\eta_{r} }} \hfill \\ \end{array} \right. $$
(E11)

Moreover, based on \( \tau (0) = \tau_{0} \ge 0 \), the emission reduction effort state trajectories and the channel’s optimal profit are:

$$ \tau^{C} (t) = \omega^{C} + (\tau_{0} - \omega^{C} )e^{ - \delta t} $$
(E12)
$$ \prod^{C * } = e^{ - \rho t} (a^{C} \tau + d^{C} ) $$
(E13)

where \( \omega^{C} = \frac{{\gamma^{2} \mu (b_{m} + b_{r} )}}{{\delta \eta_{m} (\rho + \delta )}} \) denotes the manufacturer’s steady-state emission reduction level in the centralized scenario. In other words, \( \omega^{C} \) is the manufacturer’s emission reduction level when \( t \to \infty \).

Thus, Proposition 3 is proven.

Appendix F: Proof of Corollary 4

Prove: From \( E_{r}^{N * } (t) = \frac{{(b_{r} + \theta_{r} b_{m} )\beta }}{{\eta_{r} }} \) and \( E_{r}^{Y * } (t) = \frac{{(b_{m} + b_{r} \theta_{m} )(1 - \theta_{r} )\beta }}{{2(1 - \theta_{m} \theta_{r} )\eta_{r} }} + \frac{{(b_{m} + b_{r} )\beta }}{{2\eta_{r} }} \), we have \( \frac{{\partial E_{m}^{j * } }}{{\partial b_{m} }} > 0 \); \( \frac{{\partial E_{m}^{j * } }}{{\partial \theta_{m} }} > 0 \); \( \frac{{\partial E_{m}^{j * } }}{{\partial b_{r} }} \ge 0 \) if \( \theta_{m} \ge 0 \); otherwise, \( \frac{{\partial E_{m}^{j * } }}{{\partial b_{r} }} < 0 \) and \( \frac{{\partial E_{r}^{N * } }}{{\partial b_{r} }} > 0 \) easily, where \( j = N,Y \).

In addition, \( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial b_{r} }} = \frac{{(\theta_{m} - 2\theta_{m} \theta_{r} + 1)\beta }}{{2(1 - \theta_{m} \theta_{r} )\eta_{r} }} \). When \( \theta_{m} \ge 0 \), \( \theta_{m} - 2\theta_{m} \theta_{r} + 1 \ge 0 \). Then, \( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial b_{r} }} \ge 0 \). When \( \theta_{m} < 0 \),\( \theta_{m} - 2\theta_{m} \theta_{r} + 1 \ge 0 \) if \( \theta_{r} \ge \frac{{\theta_{m} + 1}}{{2\theta_{m} }} \). Then,\( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial b_{r} }} \ge 0 \) if \( \theta_{m} < 0 \) and \( \theta_{r} \ge \frac{{\theta_{m} + 1}}{{2\theta_{m} }} \);\( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial b_{r} }} < 0 \) if \( \theta_{m} < 0 \) and \( \theta_{r} < \frac{{\theta_{m} + 1}}{{2\theta_{m} }} \). Similarly, \( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial b_{m} }} = \frac{{(2 - \theta_{r} - \theta_{m} \theta_{r} )\beta }}{{2(1 - \theta_{m} \theta_{r} )\eta_{r} }} > 0 \).

We have \( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial \theta_{m} }} = \frac{\beta }{{2\eta_{r} }}\frac{{(1 - \theta_{r} )(b_{r} + b_{m} \theta_{r} )}}{{(1 - \theta_{m} \theta_{r} )^{2} }} \),\( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial \theta_{r} }} = \frac{{(b_{m} + b_{r} \theta_{m} )\beta }}{{2\eta_{r} }}\frac{{ - 1 + \theta_{m} }}{{(1 - \theta_{m} \theta_{r} )^{2} }} \) and \( \frac{{\partial E_{r}^{N * } }}{{\partial \theta_{r} }} = \frac{{b_{m} \beta }}{{\eta_{r} }} \). Thus, we have \( \frac{{\partial E_{r}^{N * } }}{{\partial \theta_{r} }} > 0 \);\( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial \theta_{r} }} \le 0 \); \( \frac{{\partial E_{r}^{N * } (t)}}{{\partial \theta_{m} }} = 0 \) and \( \frac{{\partial E_{r}^{Y * } (t)}}{{\partial \theta_{m} }} \ge 0 \) based on \( b_{r} + b_{m} \theta_{r} \ge 0 \) and \( b_{m} + b_{r} \theta_{m} \).

Thus, Corollary 4 is proven.

Appendix G: Proof of Corollary 5

Prove: (i) Based on Eqs. (5), (13) and (18), we easily have \( E_{m}^{N * } (t) = E_{m}^{Y * } (t) \le E_{m}^{C * } (t) \). Similarly, we have \( E_{r}^{C * } (t) - E_{r}^{Y * } (t) = \frac{\beta }{{2\eta_{r} }}\frac{{(b_{r} + b_{m} \theta_{r} )(1 - \theta_{m} )}}{{(1 - \theta_{m} \theta_{r} )}} \ge 0 \) and \( E_{r}^{N * } (t) \le E_{r}^{Y * } (t) \) based on \( 0 < 1 - X + X\theta_{r} \le 1 \) and \( b_{r} + \theta_{r} b_{m} \ge 0 \). Thus, \( E_{r}^{N * } (t) \le E_{r}^{Y * } (t) \le E_{r}^{C * } (t) \).

(ii) From Propositions 1, 2 and 3, we have \( u_{r}^{Y} (t) - u_{r}^{N} (t) = \frac{{X\beta^{2} (1 - \theta_{r} )(b_{r} + b_{m} \theta_{r} )^{2} }}{{2e^{\rho t} \eta_{r} \rho (X\theta_{r} - X + 1)}} \ge 0, \)\( u_{m}^{N * } (t) = e^{ - \rho t} \left[ {(b_{m} + \theta_{m} b_{r} )(a + \beta E_{r}^{N * } + \mu \tau^{N * } (t)) - C_{m} (E_{m}^{N * } ) - \theta_{m} C_{r} (E_{r}^{N * } )} \right] \) and\( u_{m}^{Y * } (t) = e^{ - \rho t} \big[ (b_{m} + \theta_{m} b_{r} )(a + \beta E_{r}^{Y * } + \mu \tau^{Y * } (t)) - C_{m} (E_{m}^{Y * } ) - X^{ * } C_{r} (E_{r}^{Y * } ) - \theta_{m} (1 - X^{ * } )C_{r} (E_{r}^{Y * } ) \big]. \)

Since \( (E_{m}^{Y * } ,X^{ * } ) \) is the manufacturer’s optimal decision made in the decentralized scenario with a cost-sharing contract,\( \begin{aligned} u_{m}^{Y * } (t) = e^{ - \rho t} \left[ {(b_{m} + \theta_{m} b_{r} )(a + \beta E_{r}^{Y * } + \mu \tau^{Y * } (t)) - C_{m} (E_{m}^{Y * } ) - X^{ * } C_{r} (E_{r}^{Y * } ) - \theta_{m} (1 - X^{ * } )C_{r} (E_{r}^{Y * } )} \right] \hfill \\ \ge u_{m}^{Y \prime } (t){ = }u_{m}^{Y} (E_{m}^{Y * } { = }E_{m}^{N * } ,X^{ * } { = }0) = e^{ - \rho t} \left[ {(b_{m} + \theta_{m} b_{r} )(a + \beta E_{r}^{Y * } + \mu \tau^{Y} (t)) - C_{m} (E_{m}^{N * } ) - \theta_{m} C_{r} (E_{r}^{Y * } )} \right] \hfill \\ \end{aligned} \). Based on \( E_{m}^{N * } (t) = E_{m}^{Y * } (t) \) and \( \tau^{N} (t) = \tau^{Y} (t) \), we have\( \begin{aligned} u_{m}^{Y \prime } (t) - u_{m}^{N * } (t) & = e^{ - \rho t} \left[ {(b_{m} + \theta_{m} b_{r} )\beta (E_{r}^{Y * } - E_{r}^{N * } ) - \theta_{m} C_{r} (E_{r}^{Y * } ) + \theta_{m} C_{r} (E_{r}^{N * } )} \right] \\ {\kern 1pt} & = e^{ - \rho t} (E_{r}^{Y * } - E_{r}^{N * } )\left[ {(b_{m} + \theta_{m} b_{r} )\beta - \frac{{\theta_{m} }}{2}\eta_{r} (E_{r}^{N * } + E_{r}^{Y * } )} \right] \\ \end{aligned} \).

Then, \( u_{m}^{Y \prime } (t) - u_{m}^{N * } (t) > 0 \) if \( \theta_{m} < 0 \); otherwise, we have\( \begin{aligned} u_{m}^{Y'} (t) - u_{m}^{N * } (t) \ge e^{ - \rho t} (E_{r}^{Y * } - E_{r}^{N * } )\left[ {(b_{m} + \theta_{m} b_{r} )\beta - \eta_{r} \theta_{m} E_{r}^{Y * } } \right] \hfill \\ = [b_{r} \theta_{m} (1 - \theta_{m} ) + b_{m} (2 - 2\theta_{m} + \theta_{m} \theta_{m} \theta_{r} - \theta_{m} \theta_{r} )]\frac{{e^{ - \rho t} \beta (E_{r}^{Y * } - E_{r}^{N * } )}}{{2(1 - \theta_{m} \theta_{r} )}} \hfill \\ \end{aligned} \) based on \( E_{r}^{N * } \le E_{r}^{Y * } \).

Let \( f(\theta_{r} ) = 2 - 2\theta_{m} + \theta_{m}^{2} \theta_{r} - \theta_{m} \theta_{r} \). \( f^{\prime}(\theta_{r} ) = \theta_{m}^{2} - \theta_{m} \le 0 \) given that \( \theta_{m} \ge 0 \). Then, \( \hbox{min} f(\theta_{r} ) = f(\theta_{r} = 1) = \theta_{m}^{2} - 3\theta_{m} + 2 \). We thus easily prove that \( \hbox{min} f(\theta_{r} ) \ge 0 \) when \( 0 \le \theta_{m} \le 1 \). Therefore, when \( \theta_{m} \ge 0 \), we have \( u_{m}^{Y'} (t) - u_{m}^{N * } (t) \ge 0 \). Thus, we prove that \( u_{m}^{Y*} (t) \ge u_{m}^{N*} (t) \).

(iii) From Propositions 1, 2 and 3, we have Corollary 5(iii).

Thus, Corollary 5 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Bai, Y., Ghose, S. et al. Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences. Ann Oper Res 310, 257–292 (2022). https://doi.org/10.1007/s10479-020-03838-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03838-8

Keywords

Navigation