Skip to main content

Advertisement

Log in

Application of Industry 4.0 technologies for effective coordination in humanitarian supply chains: a strategic approach

  • S.I. : Design and Management of Humanitarian Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The coordination in post-disaster functions is a major challenge for the humanitarian supply chains. Due to uncertainty and temporary nature of the disasters, it becomes very difficult to ensure coordination among the aid organizations engaged in the humanitarian supply chain. The increasing incidents of the natural, technological and man-made disasters have attracted the attention of the researchers, governmental and non-governmental actors. Most of the disasters are not under the control of the human being. Some of the man-made disasters also create a huge loss of the human lives with damages to the public and private properties due to some social and political causes. From literature, it is observed that the technologies of Industry 4.0 may help in improving the coordination among stakeholders of the commercial supply chains but the application of industry 4.0 technologies in humanitarian relief chains is not well explored. Therefore, the present study has bridged the existing research gaps by exploring the application of Industry 4.0 technologies for improving the coordination in humanitarian supply chains. A hybrid approach comprising of Analytic Hierarchy Process and ELECTRE has been used to propose a strategic approach for mapping the measures of coordination with critical success factors. Findings of the study will help stakeholders of humanitarian supply chains in implementing Industry 4.0 technologies across different functions for prompt service and accurate decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abidi, H., de Leeuw, S., & Klumpp, M. (2013). Measuring success in humanitarian supply chains. International Journal of Business and Management Invention, 2(8), 31–39.

    Google Scholar 

  • Agostinho, F. (2013). Humanitarian logistics: How to help even more? Presented at the 6th IFAC Conference on Management and Control of Production and Logistics, 6(1), 206–210.

    Google Scholar 

  • Akhtar, P., Marr, N. E., & Garnevska, E. V. (2012). Coordination in humanitarian relief chains: Chain coordinators. Journal of Humanitarian Logistics and Supply Chain Management., 2(1), 85–103.

    Article  Google Scholar 

  • Akoka, J., Comyn-Wattiau, I., & Laoufi, N. (2017). Research on big data-asystematic mapping study. Computer Standards and Interfaces, 54, 105–115.

    Article  Google Scholar 

  • Alexander, D. (1997). The study of natural disasters 1977–1997: Some reflections on a changing field of knowledge. Disasters, 21(4), 284–304.

    Article  Google Scholar 

  • Altay, N., & Green, W. G., III. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475–493.

    Article  Google Scholar 

  • Altay, N., Gunasekaran, A., Dubey, R., & Childe, S. J. (2018). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: A dynamic capability view. Production Planning and Control, 29(14), 1158–1174.

    Article  Google Scholar 

  • Altay, N., & Pal, R. (2014). Information diffusion among agents: Implications for humanitarian operations. Production and Operations Management, 23(6), 1015–1027.

    Article  Google Scholar 

  • Altay, N., & Ramirez, A. (2010). Impact of disasters on firms in different sectors: Implications for supply chains. Journal of Supply Chain Management, 46(4), 59–80.

    Article  Google Scholar 

  • Arshinder, K., Kanda, A., & Deshmukh, S. G. (2008). Supply chain coordination: Perspectives, empirical studies and research directions. International Journal of Production Economics, 115(2), 316–335.

    Article  Google Scholar 

  • Avison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223–246.

    Article  Google Scholar 

  • Azmat, M., & Kummer, S. (2019). Importance of key success factors for local and international NGOs in humanitarian supply chain. LogForum, 15(4), 545–555.

    Article  Google Scholar 

  • Balakrishnan, A., & Geunes, J. (2004). Collaboration and coordination in supply chain management and e-commerce. Production and Operations Management, 13(1), 1–2.

    Article  Google Scholar 

  • Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics, 11(2), 101–121.

    Article  Google Scholar 

  • Balcik, B., Beamon, B. M., Krejci, C. C., Muramatsu, K. M., & Ramirez, M. (2010). Coordination in humanitarian relief chains: Practices, challenges and opportunities. International Journal of Production Economics, 126(1), 22–34.

    Article  Google Scholar 

  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.

    Article  Google Scholar 

  • Bauer, A. (2016). KUKA LBR Iiwa. Augsburg: KukaRoboter GmbH.

    Google Scholar 

  • Bealt, J., Fernández, B., Jair, C., & Mansouri, S. A. (2016). Collaborative relationships between logistics service providers and humanitarian organizations during disaster relief operations. Journal of Humanitarian Logistics and Supply Chain Management, 6, 118–144.

    Article  Google Scholar 

  • Beamon, B. M. (2004). Humanitarian relief chains: issues and challenges. In Proceedings of 34th International Conference on Computers and Industrial Engineering, San Francisco, CA, USA.

  • Beresford, A. K., & Rugamba, A. (1996). Evaluation du secteur des transports au Rwanda. CNUCED.

  • Bhattacharya, S., Hasija, S., & Van Wassenhove, L. N. (2014). Designing efficient infrastructural investment and asset transfer mechanisms in humanitarian supply chains. Production and Operations Management, 23(9), 1511–1521.

    Article  Google Scholar 

  • Blecken, A. (2010). Logistics in the context of humanitarian operations. Advanced manufacturing and sustainable logistics (pp. 85–93). Berlin: Springer.

    Chapter  Google Scholar 

  • Cozzolino, A. (2012). Humanitarian logistics: Cross-sector cooperation in disaster relief management. Berlin: Springer.

    Book  Google Scholar 

  • Da Costa, S. R. A., Bandeira, R. A. M., Mello, L., & Campos, V. B. G. (2014). Humanitarian supply chain: An analysis of response operations to natural disasters. European Journal of Transport and Infrastructure Research, 14, 290–310.

    Google Scholar 

  • Daft, R. L. (2015). Organization theory and design. London: Cengage Learning.

    Google Scholar 

  • Daft, R. L., & Marcic, D. (2004). Understanding management (4th ed.). Andover: Thomson.

    Google Scholar 

  • Dai, J., Wang, S., & Yang, X. (1994). Computerized support systems for emergency decision making. Annals of Operations Research, 51(7), 313–325.

    Article  Google Scholar 

  • Dasaklis, T. K., & Pappis, C. P. (2018). Critical success factors for implementing cholera vaccination campaigns in humanitarian emergencies: A DEMATEL-based approach. EURO Journal on Decision Processes, 6(1–2), 1–20.

    Article  Google Scholar 

  • Datta, P. P., & Christopher, M. G. (2011). Information sharing and coordination mechanisms for managing uncertainty in supply chains: A simulation study. International Journal of Production Research, 49(3), 765–803.

    Article  Google Scholar 

  • De Camargo, J. A., Mendonça, P. S. M., de Oliveira, J. H. C., Jabbour, C. J. C., & de Sousa Jabbour, A. B. L. (2019). Giving voice to the silent: A framework for understanding stakeholders’ participation in socially-oriented initiatives, community-based actions and humanitarian operations projects. Annals of Operations Research, 283(1–2), 143–158.

    Article  Google Scholar 

  • Diabat, A., Jabbarzadeh, A., & Khosrojerdi, A. (2019). A perishable product supply chain network design problem with reliability and disruption considerations. International Journal of Production Economics, 212, 125–138.

    Article  Google Scholar 

  • Dignan, L. (2005). Tricky currents; tsunami relief is a challenge when supply chains are blocked by cows and roads don’t exist. Baseline, 1(39), 30.

    Google Scholar 

  • Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or hype? [industry forum]. IEEE Industrial Electronics Magazine, 8(2), 56–58.

    Article  Google Scholar 

  • Duan, Y., Miao, M., Wang, R., Fu, Z., & Xu, M. (2017). A framework for the successful implementation of food traceability systems in China. The Information Society, 33(4), 226–242.

    Article  Google Scholar 

  • Dubey, R. (2019). Resilience and agility: the crucial properties of humanitarian supply chain. In Handbook of Ripple Effects in the Supply Chain (pp. 287–308). Springer, Cham.

  • Dubey, R., & Altay, N. (2018). Drivers of coordination in humanitarian relief supply chains. In The Palgrave handbook of humanitarian logistics and supply chain management (pp. 297–325). Palgrave Macmillan, London.

  • Dubey, R., Altay, N., & Blome, C. (2019). Swift trust and commitment: The missing links for humanitarian supply chain coordination? Annals of Operations Research, 283(1), 159–177.

    Article  Google Scholar 

  • Dubey, R., & Gunasekaran, A. (2016). The sustainable humanitarian supply chain design: Agility, adaptability and alignment. International Journal of Logistics Research and Applications, 19(1), 62–82.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., Altay, N., Childe, S. J., & Papadopoulos, T. (2016). Understanding employee turnover in humanitarian organizations. Industrial and Commercial Training., 48(4), 208–214.

    Article  Google Scholar 

  • Dubey, R., Luo, Z., Gunasekaran, A., Akter, S., Hazen, B. T., & Douglas, M. A. (2018). Big data and predictive analytics in humanitarian supply chains. The International Journal of Logistics Management.

  • Eckstein, D., Goellner, M., Blome, C., & Henke, M. (2015). The performance impact of supply chain agility and supply chain adaptability: The moderating effect of product complexity. International Journal of Production Research, 53(10), 3028–3046.

    Article  Google Scholar 

  • Ergun, Ö., Gui, L., HeierStamm, J. L., Keskinocak, P., & Swann, J. (2014). Improving humanitarian operations through technology-enabled collaboration. Production and Operations Management, 23(6), 1002–1014.

    Article  Google Scholar 

  • Falasca, M., & Zobel, C. (2012). An optimization model for volunteer assignments in humanitarian organizations. Socio-Economic Planning Sciences, 46(4), 250–260.

    Article  Google Scholar 

  • Fan, H., Li, G., Sun, H., & Cheng, T. C. E. (2017). An information processing perspective on supply chain risk management: Antecedents, mechanism, and consequences. International Journal of Production Economics, 185, 63–75.

    Article  Google Scholar 

  • Fawcett, A. M., & Fawcett, S. E. (2013). Benchmarking the state of humanitarian aid and disaster relief: A systems design perspective and research agenda. Benchmarking An International Journal, 20(5), 661–692.

    Article  Google Scholar 

  • Gattullo, M., Scurati, G. W., Fiorentino, M., Uva, A. E., Ferrise, F., & Bordegoni, M. (2019). Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 56, 276–286.

    Article  Google Scholar 

  • Gillmann, N. (2009). Interagency coordination during disaster strategic choices for the UN. NGOs, and other Humanitarian Actors in the Field. Baden-Baden: Nomos.

  • Global Assistance Report, (2015). Global Humanitarian Assistance Report 2015.

  • Goswami, S., Chakraborty, S., Ghosh, S., Chakrabarti, A., & Chakraborty, B. (2018). A review on application of data mining techniques to combat natural disasters. Ain Shams Engineering Journal, 9(3), 365–378.

    Article  Google Scholar 

  • Gunasekaran, A., Dubey, R., Wamba, S. F., Papadopoulos, T., Hazen, B. T., & Ngai, E. W. T. (2018). Bridging humanitarian operations management and organisational theory. International Journal of Production Research, 56(21), 6735–6740.

    Article  Google Scholar 

  • Gunasekaran, A., & Ngai, E. W. T. (2003). The successful management of a small logistics company. International Journal of Physical Distribution and Logistics Management, 33(9), 825–842.

    Article  Google Scholar 

  • Gustavsson, L. (2003). Humanitarian logistics: Context and challenges. Forced Migration Review, 18(6), 6–8.

    Google Scholar 

  • Hart, P., & Saunders, C. (1997). Power and trust: Critical factors in the adoption and use of electronic data interchange. Organization Science, 8(1), 23–42.

    Article  Google Scholar 

  • Hashemi, S. S., Razavi Hajiagha, S. H., & Amiri, M. (2014). Decision making with unknown data: Development of ELECTRE method based on black numbers. Informatica, 25(1), 21–36.

    Article  Google Scholar 

  • Heaslip, G., Sharif, A. M., & Althonayan, A. (2012). Employing a systems-based perspective to the identification of inter-relationships within humanitarian logistics. International Journal of Production Economics, 139(2), 377–392.

    Article  Google Scholar 

  • Hodgett, R. E. (2016). Comparison of multi-criteria decision-making methods for equipment selection. The International Journal of Advanced Manufacturing Technology, 85(5–8), 1145–1157.

    Article  Google Scholar 

  • Hozdić, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies, 7(1), 28–35.

    Google Scholar 

  • Institute, F. (2005). Logistics and the effective delivery of humanitarian relief (p. 12). San Francisco: Fritz Institute.

    Google Scholar 

  • Ivanov, D., Dolgui, A., Sokolov, B., & Ivanova, M. (2017). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.

    Article  Google Scholar 

  • Jabbour, C. J. C., & de Sousa Jabbour, A. B. L. (2016). Green human resource management and green supply chain management: Linking two emerging agendas. Journal of Cleaner Production, 112, 1824–1833.

    Article  Google Scholar 

  • Jabbour, C. J. C., Mauricio, A. L., & Jabbour, A. B. L. D. S. (2017). Critical success factors and green supply chain management proactivity: Shedding light on the human aspects of this relationship based on cases from the Brazilian industry. Production Planning and Control., 28(6–8), 671–683.

    Article  Google Scholar 

  • Jabbour, C. J. C., Sobreiro, V. A., de Sousa Jabbour, A. B. L., de Souza Campos, L. M., Mariano, E. B., & Renwick, D. W. S. (2019). An analysis of the literature on humanitarian logistics and supply chain management: Paving the way for future studies. Annals of Operations Research, 283, 289–307.

    Article  Google Scholar 

  • Jahre, M., & Jensen, L. (2010). Coordination in humanitarian logistics through clusters. International Journal of Physical Distribution and Logistics Management, 40(8/9), 657–674.

    Article  Google Scholar 

  • Jeong, K. Y., Hong, J. D., & Xie, Y. (2014). Design of emergency logistics networks, taking efficiency, risk and robustness into consideration. International Journal of Logistics Research and Applications, 17(1), 1–22.

    Article  Google Scholar 

  • Jin, S., Jeong, S., Kim, J., & Kim, K. (2015). A logisticsmodel for the transport of disaster victims with various injuries and survival probabilities. Annals of Operations Research, 230(1), 17–33.

    Article  Google Scholar 

  • John, L., Gurumurthy, A., Soni, G., & Jain, V. (2019). Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: A case of Chennai flood relief. Annals of Operations Research, 283(1), 1227–1258.

    Article  Google Scholar 

  • Kabra, G., & Ramesh, A. (2015). Segmenting critical factors for enhancing the use of IT in humanitarian supply chain management. Procedia Social and Behavioral Sciences, 189, 144–152.

    Article  Google Scholar 

  • Kahn, K. B., Barczak, G., Nicholas, J., Ledwith, A., & Perks, H. (2012). An examination of new product development best practice. Journal of Product Innovation Management, 29(2), 180–192.

    Article  Google Scholar 

  • Khan, S., Haleem, A., Khan, M. I., Abidi, M. H., & Al-Ahmari, A. (2018). Implementing traceability systems in specific supply chain management (SCM) through critical success factors (CSFs). Sustainability, 10(1), 204.

    Article  Google Scholar 

  • Kim, J., Pettit, S., Harris, I., & Beresford, A. (2018). Towards a better understanding of humanitarian supply chain integration. In The Palgrave handbook of humanitarian logistics and supply chain management (pp. 249–277). Palgrave Macmillan, London.

  • Kovacs, G., & Spens, K. M. (2007). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution and Logistics Management., 37(2), 99–114.

    Article  Google Scholar 

  • Kumar, P., Singh, R. K., & Kharab, K. (2017a). A comparative analysis of operational performance of cellular mobile telephone service providers in the Delhi working area using an approach of fuzzy ELECTRE. Applied Soft Computing, 59, 438–447.

    Article  Google Scholar 

  • Kumar, P., Singh, R. K., & Sinha, P. (2016). Optimal site selection for a hospital using a fuzzy extended ELECTRE approach. Journal of Management Analytics, 3(2), 115–135.

    Article  Google Scholar 

  • Kumar, P., Singh, R. K., & Vaish, A. (2017b). Suppliers’ green performance evaluation using fuzzy extended ELECTRE approach. Clean Technologies and Environmental Policy, 19(3), 809–821.

    Article  Google Scholar 

  • Landherr, M., Schneider, U., & Bauernhansl, T. (2016). The application center industrie 4.0-industry-driven manufacturing, research and development. Procedia CIRP, 57, 26–31.

    Article  Google Scholar 

  • Lewis, J. D., & Weigert, A. (1985). Trust as a social reality. Social Forces, 63(4), 967–985.

    Article  Google Scholar 

  • Liu, H., Ke, W., Wei, K. K., & Hua, Z. (2013). The impact of IT capabilities on firm performance: The mediating roles of absorptive capacity and supply chain agility. Decision Support Systems, 54(3), 1452–1462.

    Article  Google Scholar 

  • Liu, Y., & Xu, X. (2017). Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufacturing Science and Engineering, 139(3), 118. https://doi.org/10.1115/1.4034667.

    Article  Google Scholar 

  • Long, D. (1997). Logistics for disaster relief: Engineering on the run. IIE solutions, 29(6), 26–30.

    Google Scholar 

  • Long, D. C., & Wood, D. F. (1995). The logistics of famine relief. Journal of Business Logistics, 16(1), 213–239.

    Google Scholar 

  • Lorenz, M., Rüßmann, M., Strack, R., Lueth, K. L., & Bolle, M. (2015). Man and machine in industry 4.0: How will technology transform the industrial workforce through 2025. The Boston Consulting Group2.

  • Maghsoudi, A., Zailani, S., Ramayah, T., & Pazirandeh, A. (2018). Coordination of efforts in disaster relief supply chains: The moderating role of resource scarcity and redundancy. International Journal of Logistics-Research and Applications, 21, 407–430.

    Article  Google Scholar 

  • Maon, F., Lindgree, A., & Vanhamme, J. (2009). Developing supply chains in disaster relief operations through cross-sector socially oriented collaborations: A theoretical model. Supply Chain Management An International Journal, 14(2), 149–164.

    Article  Google Scholar 

  • Marilungo, E., Papetti, A., Germani, M., & Peruzzini, M. (2017). From PSS to CPS design: A real industrial use case toward industry 4.0. Procedia CIRP., 64, 357–362.

    Article  Google Scholar 

  • Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M., Uva, A. E., Fiorentino, M., et al. (2017). Supporting remote maintenance in industry 4.0 through augmented reality. Procedia Manufacturing, 11, 1296–1302.

    Article  Google Scholar 

  • McLachlin, R., & Larson, P. D. (2011). Building humanitarian supply chain relationships: Lessons from leading practitioners. Journal of Humanitarian Logistics and Supply Chain Management, 1(1), 32–49.

    Article  Google Scholar 

  • Moore, S., Eng, E., & Daniel, M. (2003). International NGOs and the role of network centrality in humanitarian aid operations: A case study of coordination during the 2000 Mozambique floods. Disasters, 27(4), 305–318.

    Article  Google Scholar 

  • Moshtari, M. (2016). Inter-organizational fit, relationship management capability, and collaborative performance within a humanitarian setting. Production and Operations Management, 25(9), 1542–1557.

    Article  Google Scholar 

  • Moshtari, M., & Gonçalves, P. (2016). Factors influencing interorganizational collaboration within a disaster relief context. VOLUNTAS International Journal of Voluntary and Nonprofit Organizations, 28, 1673–1694.

    Article  Google Scholar 

  • Mrugalska, B., & Wyrwicka, M. K. (2017). Towards lean production in Industry 4.0. Procedia Engineering, 182, 466–473.

    Article  Google Scholar 

  • Neugebauer, R., Hippmann, S., Leis, M., & Landherr, M. (2016). Industrie 4.0-From the perspective of applied research. 2–7.

  • Oloruntoba, R., & Gray, R. (2006). Humanitarian aid: An agile supply chain? Supply Chain Management An International Journal, 11(2), 115–120.

    Article  Google Scholar 

  • Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of big data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142, 1108–1118.

    Article  Google Scholar 

  • Pettit, S., & Beresford, A. (2009). Critical success factors in the context of humanitarian aid supply chains. International Journal of Physical Distribution and Logistics Management, 29(6), 450–468.

    Article  Google Scholar 

  • Prieto, I. M., & Pérez-Santana, M. P. (2014). Managing innovative work behavior: The role of human resource practices. Personnel Review, 43(2), 184–208.

    Article  Google Scholar 

  • Rietjens, S. J., Voordijk, H., & De Boer, S. J. (2007). Co-ordinating humanitarian operations in peace support missions. Disaster Prevention and Management An International Journal., 16(1), 56–69.

    Article  Google Scholar 

  • Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and decisions, 31(1), 49–73.

    Article  Google Scholar 

  • Sabaei, D., Erkoyuncu, J., & Roy, R. (2015). A review of multi-criteria decision making methods for enhanced maintenance delivery. Procedia CIRP, 37, 30–35.

    Article  Google Scholar 

  • Samii, R., & Van Wassenhove, L. N. (2003). The United Nations Joint Logistics Centre: The Afghanistan crisis (No. 052003-5092). Fontainebleau, France: INSEAD.

  • Santarelli, G., Abidi, H., Klumpp, M., & Regattieri, A. (2015). Humanitarian supply chains and performance measurement schemes in practice. International Journal of Productivity and Performance Management., 64(60), 784–810.

    Article  Google Scholar 

  • Sarkis, J., Gonzalez-Torre, P., & Adenso-Diaz, B. (2010). Stakeholder pressure and the adoption of environmental practices: The mediating effect of training. Journal of operations Management, 28(2), 163–176.

    Article  Google Scholar 

  • Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., & Verl, A. (2015). Making existing production systems Industry 4.0-ready. Production Engineering, 9(1), 143–148.

    Article  Google Scholar 

  • Schulz, S. F., & Heigh, I. (2007). Logistics performance management in action–design and piloting of a development indicator tool for regional logistics units of IFRC. In Proceedings of the 1st Cardiff-Cranfield humanitarian logistics initiative conference, Shrivenham, November.

  • Seaman, J. (1999). Malnutrition in emergencies: How can we do better and where do the responsibilities lie? Disasters, 23(4), 306–315.

    Article  Google Scholar 

  • Seybolt, T. B. (2009). Harmonizing the humanitarian aid network: Adaptive change in a complex system. International Studies Quarterly, 53(4), 1027–1050.

    Article  Google Scholar 

  • Shamim, S., Cang, S., Yu, H., & Li, Y. (2016, July). Management approaches for Industry 4.0: A human resource management perspective. In 2016 IEEE congress on evolutionary computation (CEC) (pp. 5309–5316). IEEE.

  • Shanian, A., & Savadogo, O. (2006). ELECTRE I decision support model for material selection of bipolar plates for Polymer Electrolyte Fuel Cells applications. Journal of New Materials for Electrochemical Systems, 9(3), 191.

    Google Scholar 

  • Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2020). Research progress on deprivation costs in humanitarian logistics. International Journal of Disaster Risk Reduction, 42, 101343.

    Article  Google Scholar 

  • Shinohara, A. C., da Silva, E. H. D. R., de Lima, E. P., Deschamps, F., & da Costa, S. E. G. (2017). Critical success factors for digital manufacturing implementation in the context of Industry 4.0. In IIE Annual Conference. Proceedings (pp. 199–204). Institute of Industrial and Systems Engineers (IISE).

  • Simons, S., Abé, P., & Neser, S. (2017). Learning in the AutFab-the fully automated Industrie 4.0. Learning factory of the University of Applied Sciences Darmstadt Procedia Manuf., 9, 81–88.

    Google Scholar 

  • Singh, R. K., Gupta, A., & Gunasekaran, A. (2018). Analysing the interaction of factors for resilient humanitarian supply chain. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1424373.

    Article  Google Scholar 

  • Singh, R.K., Kumar, P and Chand, M. (2019), Evaluation of supply chain coordination index in context to Industry 4.0 environment. Benchmarking An International Journal 1463–5771. https://doi.org/10.1108/bij-07-2018-0204.

  • Sinha, A., Kumar, P., Rana, N. P., Islam, R., & Dwivedi, Y. K. (2019). Impact of internet of things (IoT) in disaster management: A task-technology fit perspective. Annals of Operations Research, 283(1–2), 759–794.

    Article  Google Scholar 

  • Sodhi, M. S. (2016). Natural disasters, the economy and population vulnerability as a vicious cycle with exogenous hazards. Journal of Operations Management, 45, 101–113.

    Article  Google Scholar 

  • Soin, S. S. (2004). Critical success factors in supply chain management at high technology companies (Doctoral dissertation, University of Southern Queensland).

  • Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849–1867.

    Article  Google Scholar 

  • Tabaklar, T., Halldórsson, Á., & Kovács, G. (2015). Borrowing theories in humanitarian supply chain management. Journal of Humanitarian Logistics and Supply Chain Management, 5(3), 281–299.

    Article  Google Scholar 

  • Tatham, P., & Kovács, G. (2007). The humanitarian supply network in rapid onset disasters. In Proceedings of the 19th annual conference for Nordic researchers in logistics, NOFOMA (pp. 1059–1074).

  • Tatham, P., & Kovács, G. (2010). The application of “swift trust” to humanitarian logistics. International Journal of Production Economics, 126(1), 35–45.

    Article  Google Scholar 

  • Taylor, D., & Pettit, S. (2009). A consideration of the relevance of lean supply chain concepts for humanitarian aid provision. International Journal of Services, Technology and Management, 12(4), 430–444.

    Article  Google Scholar 

  • Thomas, A. (2003). Why logistics? Forced Migration Review, 18(4), 4.

    Google Scholar 

  • Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain? Procedia Manufacturing, 13, 1175–1182.

    Article  Google Scholar 

  • Tomasini, R. M., & Van Wassenhove, L. N. (2009). From preparedness to partnerships: Case study research on humanitarian logistics. International Transactions in Operational Research, 16(5), 549–559.

    Article  Google Scholar 

  • Torres Saenz, A. (2018). Identifying Challenges and success factors towards Implementing Industry 4.0 technologies in the Shipbuilding Industry. http://resolver.tudelft.nl/uuid:958e592d-0316-4ca8-9029-3c0961f63843.

  • Trunick, P. A. (2005). Special report: Delivering relief to tsunami victims. Logistics today, 46(2), 1–3.

    Google Scholar 

  • Tscheikner-Gratl, F., Egger, P., Rauch, W., & Kleidorfer, M. (2017). Comparison of multi-criteria decision support methods for integrated rehabilitation prioritization. Water, 9(2), 68.

    Article  Google Scholar 

  • UNDP. (1993). Logistics (1st ed.). Geneva: United Nations Development Programme.

    Google Scholar 

  • Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia Manufacturing, 20, 233–238.

    Article  Google Scholar 

  • Van Lopik, K., Sinclair, M., Sharpe, R., Conway, P., & West, A. (2020). Developing augmented reality capabilities for industry 4.0 small enterprises: Lessons learnt from a content authoring case study. Computers in Industry, 117, 103208.

    Article  Google Scholar 

  • Van Wassenhove, L. N. (2006). Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society, 57(5), 475–489.

    Article  Google Scholar 

  • Van Wassenhove, L. N. (2017). Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society, 57, 475–489.

    Article  Google Scholar 

  • Velev, D., & Zlateva, P. (2011). Principles of cloud computing application in emergency management. IPEDR, IACSIT Press, Singapore, 25, 119–123.

    Google Scholar 

  • Wagner, S. M., & Thakur-Weigold, B. (2018). Supporting collaboration in humanitarian supply chains–insights from a design science project. Production Planning and Control, 29(14), 1130–1144.

    Article  Google Scholar 

  • Wagner, S. M., Thakur-Weigold, B., Gatti, F., & Stumpf, J. (2020). Measuring and improving the impact of humanitarian logistics consulting. Production Planning and Control, 1–21.

  • Walker, S. J. (2014). Viktor mayer-schönberger and kennethcukier—big data: A revolution that will transform how we live, work, and think. International Journal of Advertising, 33(1), 181.

    Article  Google Scholar 

  • Wankmüller, C., & Reiner, G. (2020). Coordination, cooperation and collaboration in relief supply chain management. Journal of Business Economics, 90(2), 239–276.

    Article  Google Scholar 

  • Wentz, L. (2006). Information and Communication Technologies for Civil-Military Coordination in Disaster Relief and Stabilization and Reconstruction In. Defense and Technology Paper31. Center for Technology and National Security Policy. National Defense University.

  • Whiting, M. C., & Ayala-Öström, B. E. (2009). Advocacy to promote logistics in humanitarian aid. Management Research Review, 32(11), 1081.

    Google Scholar 

  • Whybark, D. C., Melnyk, S. A., Day, J., & Davis, E. D. (2010). Disaster relief supply chain management: New realities, management challenges, emerging opportunities. Decision Line, 41(3), 4–7.

    Google Scholar 

  • Witkowski, K. (2017). Internet of things, big data, industry 4.0–innovative solutions in logistics and supply chains management. Procedia Engineering, 182, 763–769.

    Article  Google Scholar 

  • Yahyaei, M., & Bozorgi-Amiri, A. (2019). Robust reliable humanitarian relief network design: An integration of shelter and supply facility location. Annals of Operations Research, 283(1), 897–916.

    Article  Google Scholar 

  • Yan, B., & Huang, G. (2009). Supply chain information transmission based on RFID and internet of things. In 2009 ISECS International colloquium on computing, communication, control, and management (Vol. 4, pp. 166–169). IEEE.

  • Yang, T., Wen, Y. F., & Wang, F. F. (2011). Evaluation of robustness of supply chain information-sharing strategies using a hybrid Taguchi and multiple criteria decision-making method. International Journal of Production Economics, 134(2), 458–466.

    Article  Google Scholar 

  • Yang, L., Yang, S. H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854–1867.

    Article  Google Scholar 

  • Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. Transportation Research Part E Logistics and Transportation Review, 114, 371–385.

    Article  Google Scholar 

  • Zander, J., Mosterman, P. J., Padir, T., Wan, Y., & Fu, S. (2015). Cyber-physical systems can make emergency response smart. Procedia Engineering, 107, 312–318.

    Article  Google Scholar 

  • Zhang, Q., Zhu, C., Yang, L. T., Chen, Z., Zhao, L., & Li, P. (2017). An incremental CFS algorithm for clustering large data in industrial Internet of Things. IEEE Transactions on Industrial Informatics, 13(3), 1193–1201.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express sincere thanks to the Editor and reviewers for giving their constructive comments and suggestions while revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kr Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, R.K. Application of Industry 4.0 technologies for effective coordination in humanitarian supply chains: a strategic approach. Ann Oper Res 319, 379–411 (2022). https://doi.org/10.1007/s10479-020-03898-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03898-w

Keywords

Navigation