Abstract
In the spot market for air cargo, airlines typically adopt dynamic pricing to tackle demand uncertainty, for which it is difficult to accurately estimate the distribution. This study addresses the problem where a dominant airline dynamically sets prices to sell its capacities within a two-phase sales period with only partial information. That partial information may show as the moments (upper and lower bounds and mean) and the median of the demand distribution. We model the problem of dynamic pricing as a distributional robust stochastic programming, which minimizes the expected regret value under the worst-case distribution in the presence of partial information. We further reformulate the proposed non-convex model to show that the closed-form formulae of the second-stage maximal expected regret are well-structured. We also design an efficient algorithm to characterize robust pricing strategies in a polynomial-sized running time. Using numerical analysis, we present several useful managerial insights for airline managers to strategically collect demand information and make prices for their capacities in different market situations. Moreover, we verify that additional information will not compromise the viability of the pricing strategies being implemented. Therefore, the method we present in this paper is easier for airlines to use.




Similar content being viewed by others
References
Aissi, H., Bazgan, C., & Vanderpooten, D. (2007). Approximation of min–max and min–max regret versions of some combinatorial optimization problems. European Journal of Operational Research, 179(2), 281–290.
Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research, 197(2), 427–438.
Alaiz-RodrÃguez, R., Guerrero-Curieses, A., & Cid-Sueiro, J. (2007). Minimax regret classifier for imprecise class distributions. Journal of Machine Learning Research, 8(Jan), 103–130.
Amaruchkul, K., Cooper, W. L., & Gupta, D. (2007). Single-leg air-cargo revenue management. Transportation Science, 41(4), 457–469.
Amaruchkul, K., Cooper, W. L., & Gupta, D. (2011). A note on air-cargo capacity contracts. Production and Operations Management, 20(1), 152–162.
Amaruchkul, K., & Lorchirachoonkul, V. (2011). Air-cargo capacity allocation for multiple freight forwarders. Transportation Research Part E: Logistics and Transportation Review, 47(1), 30–40.
Bartodziej, P., Derigs, U., Malcherek, D., & Vogel, U. (2009). Models and algorithms for solving combined vehicle and crew scheduling problems with rest constraints: An application to road feeder service planning in air cargo transportation. OR Spectrum, 31(2), 405–429.
Bartók, G., Foster, D. P., Pál, D., Rakhlin, A., & Szepesvári, C. (2014). Partial monitoring—Classification, regret bounds, and algorithms. Mathematics of Operations Research, 39(4), 967–997.
Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464–501.
Bertsimas, D., & Popescu, I. (2005). Optimal inequalities in probability theory: A convex optimization approach. SIAM Journal on Optimization, 15(3), 780–804.
Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand function: Risk bounds and near-optimal algorithms. Operations Research, 57(6), 1407–1420.
Boeing Company. (2018). World Air Cargo forecast 2018–2037. Retrieved March 22, 2019 http://www.boeing.com.
Caçador, S. C., Godinho, P. M. C., & Dias, J. M. P. C. M. (2020). A minimax regret portfolio model based on the investor’s utility loss. Operational Research, 1–36. https://doi.org/10.1007/s12351-020-00550-0.
Campos, J. R., Assunção, E., Silva, G. N., Lodwick, W. A., & Teixeira, M. C. (2019). Discrete-time interval optimal control problem. International Journal of Control, 92(8), 1778–1784.
Chen, B., Wang, J., Wang, L., He, Y., & Wang, Z. (2014). Robust optimization for transmission expansion planning: Minimax cost versus minimax regret. IEEE Transactions on Power Systems, 29(6), 3069–3077.
Chen, Y., & Farias, V. F. (2018). Robust dynamic pricing with strategic customers. Mathematics of Operations Research, 43(4), 1119–1142.
Chu, J., Huang, K., & Thiele, A. (2019). A robust optimization approach to model supply and demand uncertainties in inventory systems. Journal of the Operational Research Society, 70(11), 1885–1899.
Dong, C., Huang, G. H., Cai, Y. P., & Xu, Y. (2011). An interval-parameter minimax regret programming approach for power management systems planning under uncertainty. Applied Energy, 88(8), 2835–2845.
Eldar, Y. C., & Merhav, N. (2004). A competitive minimax approach to robust estimation of random parameters. IEEE Transactions on Signal Processing, 52(7), 1931–1946.
Feng, B., Li, Y., & Shen, Z. J. M. (2015). Air cargo operations: Literature review and comparison with practices. Transportation Research Part C: Emerging Technologies, 56, 263–280.
Giove, S., Funari, S., & Nardelli, C. (2006). An interval portfolio selection problem based on regret function. European Journal of Operational Research, 170(1), 253–264.
Gupta, D. (2008). Flexible carrier–forwarder contracts for air cargo business. Journal of Revenue and Pricing Management, 7(4), 341–356.
Han, D. L., Tang, L. C., & Huang, H. C. (2010). A Markov model for single-leg air cargo revenue management under a bid-price policy. European Journal of Operational Research, 200(3), 800–811.
Hayashi, T. (2008). Regret aversion and opportunity dependence. Journal of Economic Theory, 139(1), 242–268.
Hellermann, R., Huchzermeier, A., & Spinler, S. (2013). Options contracts with overbooking in the air cargo industry. Decision Sciences, 44(2), 297–327.
Jiang, R., Wang, J., Zhang, M., & Guan, Y. (2013). Two-stage minimax regret robust unit commitment. IEEE Transactions on Power Systems, 28(3), 2271–2282.
Jo, H. C., & Joo, S. K. (2015). Superconducting fault current limiter placement for power system protection using the minimax regret criterion. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.
Kasilingam, R. G. (1997a). Air cargo revenue management: Characteristics and complexities. European Journal of Operational Research, 96(1), 36–44.
Kasilingam, R. G. (1997b). An economic model for air cargo overbooking under stochastic capacity. Computers & Industrial Engineering, 32(1), 221–226.
Kazakçi, A. O., Rozakis, S., & Vanderpooten, D. (2007). Energy crop supply in France: A min–max regret approach. Journal of the Operational Research Society, 58(11), 1470–1479.
Lange, A. (2019). Does cargo matter? The impact of air cargo operations on departure on-time performance for combination carriers. Transportation Research Part A: Policy and Practice, 119, 214–223.
Leung, L. C., Van Hui, Y., Wang, Y., & Chen, G. (2009). A 0–1 LP model for the integration and consolidation of air cargo shipments. Operations Research, 57(2), 402–412.
Levin, Y., Nediak, M., & Topaloglu, H. (2012). Cargo capacity management with allotments and spot market demand. Operations Research, 60(2), 351–365.
Li, J., & Wang, L. (2020). A minimax regret approach for robust multi-objective portfolio selection problems with ellipsoidal uncertainty sets. Computers & Industrial Engineering, 147, 106646
Li, Y., Li, Z., Wen, F., & Shahidehpour, M. (2018). Minimax-regret robust co-optimization for enhancing the resilience of integrated power distribution and natural gas systems. IEEE Transactions on Sustainable Energy, 11(1), 61–71.
Lim, A., Shanthikumar, J. G., & Watewai, T. (2008). Robust multi-product pricing. Retrieved at SSRN. https://ssrn.com/abstract=1078012 or https://doi.org/10.2139/ssrn.1078012.
Lim, A. E., & Shanthikumar, J. G. (2007). Relative entropy, exponential utility, and robust dynamic pricing. Operations Research, 55(2), 198–214.
Malladi, S. S., Erera, A. L., & White III, C. C. (2018). Inventory control with modulated demand and a partially observed modulation process. arXiv preprint arXiv:1803.06742.
Milnor, J. (1951). Games against nature (No. RAND-RM-679). RAND PROJECT AIR FORCE SANTA MONICA CA.
Mohammadi, S. E., & Mohammadi, E. (2018). Robust portfolio optimization based on minimax regret approach in Tehran stock exchange market. Journal of Industrial and Systems Engineering, 11(Special issue: 14th International Industrial Engineering Conference), 51–62.
Ni, G., Feng, X., & Chen, L. (2019). Hotel room allocation with multiple sales channels: A perspective of minimax regret. Journal of Control and Decision, 7, 1–20.
Perakis, G., & Roels, G. (2008). Regret in the newsvendor model with partial information. Operations Research, 56(1), 188–203.
Perakis, G., & Roels, G. (2010). Robust controls for network revenue management. Manufacturing & Service Operations Management, 12(1), 56–76.
Perakis, G., & Sood, A. (2006). Competitive multi-period pricing for perishable products: A robust optimization approach. Mathematical Programming, 107(1–2), 295–335.
Popescu, A., Keskinocak, P., Johnson, E., LaDue, M., & Kasilingam, R. (2006). Estimating air-cargo overbooking based on a discrete show-up-rate distribution. Interfaces, 36(3), 248–258.
Qin, C. R., Luo, L., You, Y., & Xiao, Y. X. (2012). An optimization model of the single-leg air cargo space control based on Markov decision process. Journal of Applied Mathematics, 2012, 1.
Qu, H., Ryzhov, I. O., Fu, M. C., Bergerson, E., Kurka, M., & Kopacek, L. (2020). Learning demand curves in B2B pricing: A new framework and case study. Production and Operations Management, 29(5), 1287–1306.
Razin, A. (1976). Rational insurance purchasing. The Journal of Finance, 31(1), 133–137.
Savage, L. J. (1972). The foundations of statistics. North Chelmsford: Courier Corporation.
Stoye, J. (2005). Statistical decisions under ambiguity: An axiomatic analysis. Technical report Northwestern University.
Wald, A. (1950). Statistical decision functions. New York: Wiley.
Wang, J., & Xiao, B. (2017). A minmax regret price control model for managing perishable products with uncertain parameters. European Journal of Operational Research, 258(2), 652–663.
Wang, Y. J., & Kao, C. S. (2008). An application of a fuzzy knowledge system for air cargo overbooking under uncertain capacity. Computers & Mathematics with Applications, 56(10), 2666–2675.
Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing algorithm for single-product revenue management problems. Operations Research, 62(2), 318–331.
Xidonas, P., Mavrotas, G., Hassapis, C., & Zopounidis, C. (2017). Robust multiobjective portfolio optimization: A minimax regret approach. European Journal of Operational Research, 262(1), 299–305.
Yang, C. H., Ma, X., & Talluri, S. (2019). Optimal acquisition decision in a remanufacturing system with partial random yield information. International Journal of Production Research, 57(6), 1624–1644.
Yue, J., Chen, B., & Wang, M. C. (2006). Expected value of distribution information for the newsvendor problem. Operations research, 54(6), 1128–1136.
Acknowledgements
The authors would like to acknowledge the support from the Research center for Smarter Supply chain and Jiangsu Center for Research in Contemporary Finance at Soochow University. Funding was provided by the National Social Science Funds for Major Projects (Grant No. 18ZDA059).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
Appendix 2
Proof of Proposition 2
The optimal value of problem (9) can be formulated as:
To derive the closed-form formula, we make a classified discussion to the following scenarios:
Case 1
If \(d(q)u \le c_{q} , \, d(p)u \le c_{p}\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 2
If \(d(q)u \le c_{q} , \, d(p)l \le c_{p} \le d(p)u\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 3
If \(d(q)u \le c_{q} , \, c_{p} \le d(p)l\), then (A-1) can be simplified as:
The maximum value of (A-1) is
Case 4
If \(d(q)l \le c_{q} \le d(q)u, \, d(p)u \le c_{p}\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 5
If \(d(q)l \le c_{q} \le d(q)u, \, d(p)l \le c_{p} \le d(p)u\), the structure of (A-1) depends on the relative sizes of \(c_{q} /d(q)\) and \(c_{p} /d(p)\), thus we consider the following two subcases:
Subcase 1 Suppose \(c_{q} /d(q) \le c_{p} /d(p)\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Subcase 2 Suppose \(c_{q} /d(q) > c_{p} /d(p)\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 6
If \(d(q)l \le c_{q} \le d(q)u, \, c_{p} \le d(p)l\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 7
If \(c_{q} \le d(q)l, \, d(p)u \le c_{p}\), then (A-1) can be simplified as:
The maximum value of (A-1) is
Case 8
If \(c_{q} \le d(q)l, \, d(p)l \le c_{p} \le d(p)u\), then (A-1) can be simplified to:
The maximum value of (A-1) is
Case 9
If \(c_{q} \le d(q)l, \, c_{p} \le d(p)l\), then (A-1) can be simplified to:
The maximum value of (A-1) is
In summary, the maximum value of (A-1) under any scenario is linear or piecewise linear function of \(c_{p}\) and \(c_{q}\).□
Proof of Proposition 3
Under the conditions of Lemma 2, model (8) can be written as:
By the strong duality theorem, (A-2) can be reformulated as:
where \(1\{ z \ge m\}\) is the indicator function, which is equal to one if \(z \ge m\)\(;\) otherwise, 0.
To derive the closed-form formula, we discuss the following scenarios:
Case 1
If \(d(q)u \le c_{q} , \, d(p)u \le c_{p}\), then constraint of (A-3) can be written as:
Because \(y_{0} + y_{1} 1\{ z \ge m\}\) is a step-shaped piecewise linear function, the above equation can also be further represented as:
Then we obtain
Case 2
If \(d(q)u \le c_{q} , \, d(p)l \le c_{p} \le d(p)u\), the constraint of (A-3) can be written as:
Similar to the previous scenario, we consider the following two subcases:
Subcase 1 Suppose that \(qd(q) - pd(p) \ge 0\)\(,\)
Here, the step-shaped structure of the constraint is reliant on the relative sizes of \(m\) and \(c_{p} /d(p)\).
-
(1)
When \(m \ge c_{p} /d(p)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = qd(q)\frac{(m + u)}{2} - pc_{p} . $$ -
(2)
When \(m < c_{p} /d(p)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{m}{2} + \frac{{qd(q)u - pc_{p} }}{2}. $$
Subcase 2 Suppose \(qd(q) - pd(p) < 0\),
-
(1)
When \(m \ge c_{p} /d(p)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z \le c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le m,} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = \max \left\{ {\frac{[qd(q) - pd(p)]l}{2} + \frac{{qd(q)u - pc_{p} }}{2},qd(q)\frac{m + u}{2} - pc_{p} } \right\}. $$ -
(2)
When \(m < c_{p} /d(p)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = \max \left\{ {\frac{[qd(q) - pd(p)]l}{2} + \frac{{qd(q)u - pc_{p} }}{2},\;[qd(q) - pd(p)]\frac{m + l}{2}} \right\}. $$
Case 3
If \(d(q)u \le c_{q} , \, c_{p} \le d(p)l\), constraint of (A-3) can be written as:
Since \(y_{0} + y_{1} 1\{ z \ge m\}\) is a step-shaped piecewise linear function, the above equation can be represented further as:
Then we obtain
Case 4
If \(d(q)l \le c_{q} \le d(q)u, \, d(p)u \le c_{p}\), constraint of (A-3) can be written as:
Consider the following two subcases:
Subcase 1 Suppose that \(qd(q) - pd(p) \ge 0\),
Under the subcase, the step-shaped structure of the constraint further relies on the relative sizes of \(m\) and \(c_{q} /d(q)\).
-
(1)
When \(m \ge c_{q} /d(q)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z \le c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = qc_{q} - pd(p)\frac{{(m + c_{q} /d(q))}}{2}. $$ -
(2)
When \(m < c_{q} /d(q)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z \le m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z \le c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{{m + c_{q} /d(q)}}{2}. $$
Subcase 2 Suppose that \(qd(q) - pd(p) < 0\),
-
(1)
When \(m \ge c_{q} /d(q)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z \le c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = q\frac{{c_{q} + d(q)l}}{2} - pd(p)\frac{m + l}{2}. $$ -
(2)
When \(m < c_{q} /d(q)\)\(,\) the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z \le m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{m + l}{2}. $$
Case 5
If \(d(q)l \le c_{q} \le d(q)u, \, d(p)l \le c_{p} \le d(p)u\), to recognize the structure of the constraint, again, we consider the two subcases, namely \(qd(q) - pd(p) \ge 0\) and \(qd(q) - pd(p) < 0\). The challenge lies in further consideration of full permutation of three values \(m, \, c_{q} /d(q)\) and \(c_{p} /d(p)\) under each subcase. Accordingly, we have \(2 \times A_{3}^{3} = 12\) scenarios.
Subcase 1 Suppose that \(qd(q) - pd(p) \ge 0\)\(,\)
-
(1)
When \(c_{q} /d(q) \le m < c_{p} /d(p)\), the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = qc_{q} - pd(p)\frac{{c_{q} /d(q) + m}}{2}. $$ -
(2)
When \(c_{q} /d(q) \le c_{p} /d(p) < m\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;m \le z < u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{{c_{q} }}{2d(q)} + \frac{{qc_{q} - pc_{p} }}{2}. $$ -
(3)
When \(c_{p} /d(p) \le m < c_{q} /d(q)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < m,} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;m \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = q\frac{{c_{q} + d(q)m}}{2} - pc_{p} . $$ -
(4)
When \(c_{p} /d(p) \le c_{q} /d(q) < m\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = qc_{q} - pc_{p} . $$ -
(5)
When \(m \le c_{q} /d(q) < c_{p} /d(p)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{{m + c_{q} /d(q)}}{2}. $$ -
(6)
When \(m \le c_{p} /d(p) < c_{q} /d(q)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{{m + c_{q} /d(q)}}{2}. $$
Subcase 2 Suppose that \(qd(q) - pd(p) < 0\),
-
(1)
When \(c_{q} /d(q) \le m < c_{p} /d(p)\), the constraint translates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{l}{2} + \frac{{qc_{q} - pd(p)m}}{2}. $$ -
(2)
When \(c_{q} /d(q) \le c_{p} /d(p) < m\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{l}{2} + \frac{{qc_{q} - pc_{p} }}{2}. $$ -
(3)
When \(c_{p} /d(p) \le m < c_{q} /d(q)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < m,} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;m \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = \max \left\{ {q\frac{{c_{q} + d(q)m}}{2} - pc_{p} ,[qd(q) - pd(p)]\frac{l}{2} + \frac{{qc_{q} - pc_{p} }}{2}} \right\}. $$ -
(4)
When \(c_{p} /d(p) \le c_{q} /d(q) < m\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < c_{p} /d(p),} \hfill \\ {y_{0} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < c_{q} /d(q),} \hfill \\ {y_{0} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < m,} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;m \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = \max \left\{ {qc_{q} - pc_{p} ,[qd(q) - pd(p)]\frac{l}{2} + \frac{{qc_{q} - pc_{p} }}{2}} \right\}. $$ -
(5)
When \(m \le c_{q} /d(q) < c_{p} /d(p)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pd(p)z,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = [qd(q) - pd(p)]\frac{m + l}{2}. $$ -
(6)
When \(m \le c_{p} /d(p) < c_{q} /d(q)\), the constraint tranlates to:
$$ \left\{ {\begin{array}{*{20}l} {y_{0} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;l \le z < m,} \hfill \\ {y_{0} + y_{1} \ge [qd(q) - pd(p)]z,} \hfill & {{\text{for}}\;m \le z < c_{p} /d(p),} \hfill \\ {y_{0} + y_{1} \ge qd(q)z - pc_{p} ,} \hfill & {{\text{for}}\;c_{p} /d(p) \le z < c_{q} /d(q),} \hfill \\ {y_{0} + y_{1} \ge qc_{q} - pc_{p} ,} \hfill & {{\text{for}}\;c_{q} /d(q) \le z \le u.} \hfill \\ \end{array} } \right. $$Then we obtain
$$ \min_{{y_{0} ,y_{1} }} \frac{1}{2}(y_{0} + y_{1} ) + \frac{1}{2}y_{0} = \max \left\{ {[qd(q) - pd(p)]\frac{m + l}{2},[qd(q) - pd(p)]\frac{l}{2} + \frac{{qc_{q} - pc_{p} }}{2}} \right\}. $$
Case 6
If \(d(q)l \le c_{q} \le d(q)u, \, c_{p} \le d(p)l\), constraint of (A-3) can be written as:
Next consider the relative sizes of \(m\,{\text{and}}\,c_{q} /d(q)\):
Subcase 1 If \(m \ge c_{q} /d(q)\), the constraint translates to:
Then we obtain
Subcase 2 If \(m < c_{q} /d(q)\), the constraint translates to:
Then we obtain
Case 7
If \(c_{q} \le d(q)l, \, d(p)u \le c_{p}\), constraint of (A-3) can be written as:
Then we obtain
Case 8
If \(c_{q} \le d(q)l, \, d(p)l \le c_{p} \le d(p)u\), constraint of (A-3) can be written as:
Next consider the relative sizes of \(m\,{\text{and}}\,c_{p} /d(p)\):
Subcase 1 If \(m \ge c_{p} /d(p)\), the constraint translates to:
Then we obtain
Subcase 2 If \(m < c_{p} /d(p)\), the constraint translates to:
Then we obtain
Case 9
If \(c_{q} \le d(q)l, \, c_{p} \le d(p)l\), constraint of (A-3) can be written as:
Then
Based on the above observation, we can deduce that the closed-form solutions to the problem (9) in each small domain \(\Delta t\) are either linear functions or piecewise linear functions of \(c_{p}\, {\text{and}}\,c_{q}\).□
Proof of Proposition 4
By the strong duality theorem, the dual form of model (9) is represented as follows:
The constraint of model (A-4) is equivalent to the linear programming as follows:
Let
Then (A-5) is represented as follows:
Function \(\varphi (z|p,c_{p} )\) exhibits different formations depending on the relative sizes of \(c_{p} /d(p), \, m,\,{\text{and}}\,2m\).
Case 1
\(c_{p} /d(p) \ge m, \, c_{q} /d(q) \ge m\).
The shape of function \(q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\) further relies on the relative sizes of \(2d(p)m\,{\text{and}}\,2d(q)m\). Thus, we consider the following subcases:
-
(1)
If \(c_{p} \le 2d(p)m, \, c_{q} \le 2d(q)m,\)
$$ \begin{aligned} & \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ), \\ & \quad = \left\{ {\begin{array}{*{20}l} {\max \left\{ {[qd(q) - pd(p)]m,[qd(q) - pd(p)]m + \frac{{pd(p)c_{q} }}{2d(q)} - \frac{{pc_{p} }}{2}} \right\},} \hfill & {{\text{if}}\;qd(q) - pd(p) \ge 0,} \hfill \\ {[qd(q) - pd(p)]m} \hfill & {{\text{if}}\;qd(q) - pd(p) < 0,\;\frac{{c_{p} }}{d(p)} \ge \frac{{c_{q} }}{d(q)},\;qc_{q} { - }pc_{p} \le 2[qd(q) - pd(p)]m,} \hfill \\ {\frac{{qc_{q} - pc_{p} }}{2},} \hfill & {{\text{otherwise}}.} \hfill \\ \end{array} } \right. \\ \end{aligned} $$ -
(2)
If \(c_{p} \le 2d(p)m, \, c_{q} > 2d(q)m\),
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = qd(q)m - pc_{p} /2. $$ -
(3)
If \(c_{p} > 2d(p)m, \, c_{q} \le 2d(q)m\),
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = [qd(q) - pd(p)]m. $$ -
(4)
If \(c_{p} > 2d(p)m, \, c_{q} > 2d(q)m\),
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = [qd(q) - pd(p)]m. $$
Case 2
\(c_{p} /d(p) < m, \, c_{q} /d(q) \ge m\),
-
(1)
If \(c_{q} \le 2d(q)m\)
$$ \begin{aligned} & \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} \\ & \quad = \left\{ {\begin{array}{*{20}l} {\max \left\{ {[qd(q) - pd(p)]m + \frac{{pd(p)c_{q} }}{2d(q)} - \frac{{pc_{p} }}{2},qd(q)m - pc_{p} } \right\},} \hfill & {{\text{if}}\;qd(q) - pd(p) \ge 0,} \hfill \\ {} \hfill & {{\text{if}}\;qd(q) - pd(p) < 0,} \hfill \\ {qd(q)m - pc_{p} ,} \hfill & {\frac{{c_{p} }}{d(p)} + \frac{{c_{q} }}{d(q)} \le 2m,} \hfill \\ {} \hfill & {qc_{q} + pc_{p} \le 2qd(q)m,} \hfill \\ {\frac{{qc_{q} - pc_{p} }}{2},} \hfill & {{\text{otherwise}}{.}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$ -
(2)
If \(c_{q} > 2d(q)m\)
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = qd(q)m - pc_{p} . $$
Case 3
\(c_{p} /d(p) \ge m, \, c_{q} /d(q) < m\),
-
(1)
If \(c_{q} \le 2d(p)m\)
$$ \begin{aligned} & \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} \\ & \quad = \left\{ {\begin{array}{*{20}l} {\max \left\{ {\Big[qc_{q} - \frac{{pd(p)c_{q} }}{2d(q)}{-\frac{pc_p}{2}},qc_{q} - pd(p)m} \right\},} \hfill & {{\text{if}}\;qd(q) - pd(p) \ge 0,} \hfill \\ {} \hfill & {{\text{if }}\;qd(q) - pd(p) < 0,} \hfill \\ {qc_{q} - pd(p)m,} \hfill & {\frac{{c_{p} }}{d(p)} + \frac{{c_{q} }}{d(q)} \ge 2m,} \hfill \\ {} \hfill & {qc_{q} + pc_{p} \le 2pd(p)m,} \hfill \\ {\frac{{qc_{q} - pc_{p} }}{2},} \hfill & {{\text{otherwise}}{.}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$ -
(2)
If \(c_{p} > 2d(p)m\)
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = qc_{q} - pd(p)m. $$
Case 4
\(c_{p} /d(p) < m, \, c_{q} /d(q) < m\),
-
(1)
If \(qd(q) \ge pd(p)\)
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = \max \left\{ {\Big[qc_{q} - pc_{p} ,qc_{q} - \frac{{pd(p)c_{q} }}{2d(q)} - \frac{{pc_{p} }}{2}} \right\}. $$ -
(2)
If \(qd(q) < pd(p)\)
$$ \frac{1}{2}\max_{0 \le z \le m} \{ q\varphi (z|q,c_{q} ) - p\varphi (z|p,c_{p} )\} = \left\{ {\begin{array}{*{20}l} {qc_{q} - pc_{p} ,} \hfill & {{\text{if }}qc_{q} \le pc_{p} , \, \frac{{c_{q} }}{d(q)} \ge \frac{{c_{p} }}{d(p)},} \hfill \\ {\frac{{qc_{q} - pc_{p} }}{2},} \hfill & {{\text{otherwise}}{.}} \hfill \\ \end{array} } \right. $$
□
In conclusion, the closed-form formulae for problem (9) in each small domain \(\Delta t \) are either linear functions or piecewise linear functions of \(c_{p}\) and \(c_{q}\).
Rights and permissions
About this article
Cite this article
Feng, B., Zhao, J. & Jiang, Z. Robust pricing for airlines with partial information. Ann Oper Res 310, 49–87 (2022). https://doi.org/10.1007/s10479-020-03926-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-020-03926-9