Skip to main content
Log in

Effect of equity holding on a supply chain’s pricing and emission reduction decisions considering information sharing

  • S.I. : Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Against the backdrop of cap-and-trade regulations, we construct a low-carbon supply chain in which a seller holds the manufacturer’s equity. We investigate the impact of the seller’s equity holding and the cap-and-trade regulations on the supply chain members’ optimal decisions, profits and coordination in the cases of information symmetry and asymmetry. We find that, regardless of whether there is information asymmetry or symmetry, the manufacturer always benefits from an equity holding, while the seller can only earn higher profits through equity holding if the percentage of equity holding and the level of consumer low-carbon awareness are both sufficiently high. Both the seller and the manufacturer prefer the information asymmetry scenario when the manufacturer’s efficiency in emission reduction is below a particular threshold. In addition, equity holding can incentivize the manufacturer to share its information with the seller. Equity holding is beneficial for emission reduction and market demand but is not always beneficial for improving the supply chain’s total profit and reducing the supply chain’s total carbon emissions. Finally, with a transfer payment contract, a decentralized supply chain can obtain the same optimal profits as in the centralized supply chain scenario, and both the manufacturer and seller can earn higher profits than before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • AliResearch, & Alibaba Foundation. (2016). Green Consumer Reports of China 2016. http://i.aliresearch.com/file/20160803/20160803103534.pdf.

  • Bai, Q., & Meng, F. (2020). Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints. Journal of Industrial & Management Optimization, 16(4), 949–957. https://doi.org/10.3934/jimo.2019037.

    Article  Google Scholar 

  • Bai, Q., Jin, M., & Xu, X. (2019). Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. International Journal of Production Economics, 208, 83–99.

    Google Scholar 

  • Bazan, E., Jaber, M. Y., & El Saadany, A. M. A. (2015). Carbon emissions and energy effects on manufacturing–remanufacturing inventory models. Computers & Industrial Engineering, 88, 307–316.

    Google Scholar 

  • Bazan, E., Jaber, M. Y., & Zanoni, S. (2016). A review of mathematical inventory models for reverse logistics and the future of its modelling: An environmental perspective. Applied Mathematical Modelling, 40(5–6), 4151–4178.

    Google Scholar 

  • Bonney, M., & Jaber, M. Y. (2011). Environmentally responsible inventory models: Non-classical models for a non-classical era. International Journal of Production Economics, 133(1), 43–53.

    Google Scholar 

  • Brito, D., Ribeiro, R., & Vasconcelos, H. (2019). Can partial horizontal ownership lessen competition more than a monopoly? Economics Letters, 176, 90–95.

    Google Scholar 

  • Cao, K., Xu, X., Wu, Q., & Zhang, Q. (2017). Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. Journal of cleaner production, 167, 505–513.

    Google Scholar 

  • Chen, J., Hu, Q., & Song, J. S. (2017). Effect of partial cross ownership on supply chain performance. European Journal of Operational Research, 258(2), 525–536.

    Google Scholar 

  • Chen, X., Yang, H., Wang, X., et al. (2020). Optimal carbon tax design for achieving low carbon supply chains. Annals of Operations Research., 1–28,. https://doi.org/10.1007/s10479-020-03621-9.

    Article  Google Scholar 

  • Du, S., Hu, L., & Wang, L. (2017). Low-carbon supply policies and supply chain performance with carbon concerned demand. Annals of Operations Research, 255(1–2), 569–590.

    Google Scholar 

  • European Commission. (2009). “Sustainability Report.” ISBN: 978-92-79-11370-3. https://doi.org/10.2765/87726

  • Fu, H., & Ma, Y. (2019). Optimization and coordination of decentralized supply chains with vertical cross-shareholding. Computers & Industrial Engineering, 132, 23–35.

    Google Scholar 

  • Fu, H., Ma, Y., & Cai, X. (2018). Downstream firm’s investment with equity holding in decentralized assembly systems. Omega, 75, 27–56.

    Google Scholar 

  • Gaigné, C., Latouche, K., & Turolla, S. (2017). Vertical ownership and export performance: Firm-level evidence from France. American Journal of Agricultural Economics, 100(1), 46–72.

    Google Scholar 

  • García-Alvarado, M., Paquet, M., Chaabane, A., et al. (2017). Inventory management under joint product recovery and cap-and-trade constraints. Journal of Cleaner Production, 167, 1499–1517.

    Google Scholar 

  • Guo, F., Foropon, C., & Ma, X. (2020). Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03671-z.

    Article  Google Scholar 

  • Güth, W., Nikiforakis, N., & Normann, H. T. (2007). Vertical cross-shareholding: Theory and experimental evidence. International Journal of Industrial Organization, 25(1), 69–89.

    Google Scholar 

  • Halat, K., & Hafezalkotob, A. (2019). Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Computers & Industrial Engineering, 128, 807–830.

    Google Scholar 

  • He, Y., Wang, L., & Wang, J. (2012). Cap-and-trade vs. carbon taxes: a quantitative comparison from a generation expansion planning perspective. Computers & Industrial Engineering, 63(3), 708–716.

    Google Scholar 

  • Hovelaque, V., & Bironneau, L. (2015). The carbon-constrained EOQ model with carbon emission dependent demand. International Journal of Production Economics, 164, 285–291.

    Google Scholar 

  • JD. Com. (2017). Green consumption development report. http://finance.ce.cn/gsxw/201710/13/t20171013_26524031.shtml

  • Kannan, D. (2018). Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process. International Journal of Production Economics, 195, 391–418.

    Google Scholar 

  • King, I. (2012). Intel invests US $4.1-billion in chipmaker ASML. Bloomberg News, http://business.financialpost.com/fp-tech-desk/intel-invests-us4-1-billion-in-chipmaker-asml.

  • Laroche, M., Bergeron, J., & Barbaro-Forleo, G. (2001). Targeting consumers who are willing to pay more for environmentally friendly products. Journal of consumer marketing, 18(6), 503–520.

    Google Scholar 

  • Li, B., Zhu, M., Jiang, Y., & Li, Z. (2016). Pricing policies of a competitive dual-channel green supply chain. Journal of Cleaner Production, 112, 2029–2042.

    Google Scholar 

  • Li, G., Zheng, H., Ji, X., & Li, H. (2018). Game theoretical analysis of firms’ operational low-carbon strategy under various cap-and-trade mechanisms. Journal of cleaner production, 197, 124–133.

    Google Scholar 

  • Li, G., Lim, M. K., & Wang, Z. (2020). Stakeholders, green manufacturing, and practice performance: empirical evidence from Chinese fashion businesses. Annals of Operations Research, 290, 961–982.

    Google Scholar 

  • Li, J., Su, Q., & Lai, K. K. (2019a). The research on abatement strategy for manufacturer in the supply chain under information asymmetry. Journal of Cleaner Production, 236, 117–514.

    Google Scholar 

  • Li, X., & Li, Y. (2017). On green market segmentation under subsidy regulation. Supply Chain Management: An International Journal, 22(3), 284–294.

    Google Scholar 

  • Li, X., Shi, D., Li, Y., et al. (2019b). Impact of carbon regulations on the supply chain with carbon reduction effort. IEEE Transactions on Systems Man & Cybernetics Systems, 49(6), 1218–1227.

    Google Scholar 

  • Liu, Z., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research, 218(3), 602–613.

    Google Scholar 

  • Lu, X., Shang, J., Wu, S., et al. (2015). Impacts of supplier hubris on inventory decisions and green manufacturing endeavors. European Journal of Operational Research, 245(1), 121–132.

    Google Scholar 

  • Ma, X., Ho, W., Ji, P., & Talluri, S. (2018a). Contract design with information asymmetry in a supply chain under an emissions trading mechanism. Decision Sciences, 49(1), 121–153.

    Google Scholar 

  • Ma, X., Ho, W., Ji, P., & Talluri, S. (2018b). Coordinated pricing analysis with the carbon tax scheme in a supply chain. Decision Sciences, 49(5), 863–900.

    Google Scholar 

  • Peng, H., Pang, T., & Cong, J. (2018). Coordination contracts for a supply chain with yield uncertainty and low-carbon preference. Journal of cleaner production, 205, 291–302.

    Google Scholar 

  • Rezaee, A., Dehghanian, F., Fahimnia, B., et al. (2017). Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research, 250(2), 463–485.

    Google Scholar 

  • Schaefer, B., & Konur, D. (2015). Economic and environmental considerations in a continuous review inventory control system with integrated transportation decisions. Transportation Research Part E: Logistics and Transportation Review, 80, 142–165.

    Google Scholar 

  • Silver, E. A. (2008). Inventory management: An overview, Canadian publications, practical applications and suggestions for future research. INFOR: Information Systems and Operational Research, 46(1), 15–28.

    Google Scholar 

  • Sun, J., Li, G., & Lim, M. K. (2020). China’s power supply chain sustainability: an analysis of performance and technology gap. Annals of Operations Research,. https://doi.org/10.1007/s10479-020-03682-w.

    Article  Google Scholar 

  • Taleizadeh, A. A., Alizadeh-Basban, N., & Sarker, B. R. (2018). Coordinated contracts in a two-echelon green supply chain considering pricing strategy. Computers & Industrial Engineering, 124, 249–275.

    Google Scholar 

  • Tang, S., Wang, W., Cho, S., et al. (2018). Reducing emissions in transportation and inventory management: (R, Q) Policy with considerations of carbon reduction. European Journal of Operational Research, 269, 327–340.

    Google Scholar 

  • Wang, M., Li, Y., Li, M., et al. (2019). Will carbon tax affect the strategy and performance of low-carbon technology sharing between enterprises? Journal of cleaner production, 210, 724–737.

    Google Scholar 

  • Womack, J., Daniel, J., & Daniel, R. (1991). The machine that changed the world (p. 61). New York: Harper Perennial.

    Google Scholar 

  • Xia, L., Hao, W., Qin, J., Ji, F., & Yue, X. (2018). Carbon emission reduction and promotion policies considering social preferences and consumers’ low-carbon awareness in the cap-and-trade system. Journal of cleaner production, 195, 1105–1124.

    Google Scholar 

  • Xu, J., Qi, Q., & Bai, Q. (2018a). Coordinating a dual-channel supply chain with price discount contracts under carbon emission capacity regulation. Applied Mathematical Modelling, 56, 449–468.

    Google Scholar 

  • Xu, L., Wang, C., & Zhao, J. (2018b). Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. Journal of cleaner production, 197, 551–561.

    Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112, 4093–4106.

    Google Scholar 

  • Xu, X., Zhang, W., He, P., & Xu, X. (2017). Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega, 66, 248–257.

    Google Scholar 

  • Yang, L., Zhang, Q., & Ji, J. (2017). Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation. International Journal of Production Economics, 191, 286–297.

    Google Scholar 

  • Yang, M., An, Q., Ding, T., et al. (2019). Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle. Annals of Operations Research, 278, 123–139. https://doi.org/10.1007/s10479-017-2682-1.

    Article  Google Scholar 

  • Yao, D. Q., Yue, X. H., & John, L. (2008). Vertical cost information sharing in a supply chain with value-adding retailers. Omega, 36, 838–851.

    Google Scholar 

  • Zanoni, S., Mazzoldi, L., Zavanella, L. E., & Jaber, M. Y. (2014). A joint economic lot size model with price and environmentally sensitive demand. Production & Manufacturing Research, 2(1), 341–354. https://doi.org/10.1080/21693277.2014.913125.

    Article  Google Scholar 

  • Zhou, Y., Bao, M., Chen, X., & Xu, X. (2016). Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns. Journal of Cleaner Production, 133, 402–413.

    Google Scholar 

  • Zu, Y., Chen, L., & Fan, Y. (2018). Research on low-carbon strategies in supply chain with environmental regulations based on differential game. Journal of Cleaner Production, 177, 527–546.

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the editor for their helpful comments on the revision of the paper. This work is partially supported by NSFC Grants (No. 71972142, 71972141, 72062023, 71502123,) and the Inner Mongolia Natural Science Foundation Project (No. 2019MS07026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1: Proof of Proposition 1

Based on Eq. (1), we have: \(H{ = }\left( {\begin{array}{*{20}c} {\frac{{\partial \Pi_{sc}^{{^{2} c}} }}{{\partial p^{2} }}} & {\frac{{\partial \Pi_{sc}^{{^{2} c}} }}{\partial p\partial e}} \\ {\frac{{\partial \Pi_{sc}^{{^{2} c}} }}{\partial e\partial p}} & {\frac{{\partial \Pi_{sc}^{{^{2} c}} }}{{\partial e^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2b} & {\theta - bp_{c} } \\ {\theta - bp_{c} } & { - (1 - \lambda p_{s} \delta )\eta_{m} + 2p_{c} \theta } \\ \end{array} } \right)\) and \(\left| H \right|^{{2}} { = }2b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2}\). Since \(- 2b < 0\) and \(2b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\), \(\Pi_{sc}^{C}\) is jointly concave in \(e\) and \(p\). Then, we obtain the optimal decisions of the supply chain, \(e^{C}\) and \(p^{C}\), under the centralized decision-making scenario according to the first-order conditions. By substituting \(e^{C}\) and \(p^{C}\) into \(D = a - bp + \theta e\) and using Eq. (1), we obtain the market demand and the optimal profit for the supply chain under the centralized decision-making scenario. Thus, Proposition 1 is proven.□

Appendix 2: Proof of Corollary 1

We obtain \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } = p_{s} \{ \frac{{\delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} }}{{2[2b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }} - 1\}\) based on Proposition 1. Suppose \(F(\lambda ) = \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} - 2[2b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2}\); then, \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } > 0\) if \(F(\lambda ) > 0\), and \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } \le 0\) if \(F(\lambda ) \le 0\). It is easy to show that \(F(\lambda )\) is concave in \(\lambda\). Assuming \(F(\lambda ) = 0\), we can obtain the equation roots, which can be written as \(t_{1,2} = \frac{{4b\eta_{m} - 2(\theta + bp_{c} )^{2} \mp \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{4b\eta_{m} p_{s} \delta }}\). Since \(2b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\), we obtain \(\lambda < \frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} p_{s} \delta }}\). Thus, \(t_{2}\) should be discarded since \(t_{2} > \frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} p_{s} \delta }}\). Since \(0 < \lambda < \frac{1}{2}\), we discuss the impact of \(\lambda\) on the supply chain’s profits as follows.

  1. (a)

    If \(t_{1} \le 0\), then \(4b\eta_{m} - 2(\theta + bp_{c} )^{2} - \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] \le 0\). Define \(f(\sqrt {\eta_{m} } ) = 4b\eta_{m} - 2(\theta + bp_{c} )^{2} - \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]\). The roots of \(f(\sqrt {\eta_{m} } ){ = }0\) are \(\sqrt {\eta_{m} } { = }\frac{{\sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] \pm \sqrt {\Delta_{1} } }}{8b}\). Then, \(F(\lambda ) > 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } > 0\) for \(\lambda \in (0,\min (\frac{1}{2},\frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} p_{s} \delta }}))\) when \(0 < \eta_{m} \le \frac{{\{ \sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{1} } \}^{2} }}{{64b^{2} }}\).

  2. (b)

    \(\frac{{\{ \sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{1} } \}^{2} }}{{64b^{2} }} < \eta_{m} < \frac{{\{ \sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{2} } \}^{2} }}{{16b^{2} (2 - p_{s} \delta )^{2} }}\) if \(0 < t_{1} < \frac{1}{2}\). Then, \(F(\lambda ) \le 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } \le 0\) for \(\lambda \in (0,t_{1} ]\), \(F(\lambda ) > 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } > 0\) for \(\lambda \in (t_{1} ,\min (\frac{1}{2},\frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} p_{s} \delta }}))\). This can be proven as above.

  3. (c)

    \(\eta_{m} \ge \frac{{{{\{ }}\sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{2} } {{\} }}^{2} }}{{16b^{2} (2 - p_{s} \delta )^{2} }}\) if \(t_{1} \ge \frac{1}{2}\). Then, \(F(\lambda ) < 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{\partial \lambda } < 0\) for \(\lambda \in (0,\frac{1}{2})\). Thus, Corollary 1 is proven.□

Appendix 3: Proof of Corollary 2

We obtain \(\frac{{\partial \Pi_{sc}^{C} }}{{\partial p_{s} }} = \lambda \{ \frac{{\delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} }}{{2[2b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }} - 1\}\) based on Proposition 1. Suppose \(F(p_{s} ) = \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} - 2[2b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2}\). It is easy to prove that \(\frac{{\partial \Pi_{sc}^{C} }}{{\partial p_{s} }}\) and \(F(p_{s} )\) have the same sign and that \(F(p_{s} )\) is concave in \(p_{s}\). Assuming \(F(p_{s} ) = 0\), we can obtain the equation roots, which can be written as:

\(t_{3,4} = \frac{{4b\eta_{m} - 2(\theta + bp_{c} )^{2} \mp \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{4b\eta_{m} \lambda \delta }}\).

We have \(p_{s} < \frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} \lambda \delta }}\) based on \(2b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\). Thus, \({\text{t}}_{4}\) should be discarded since \({\text{t}}_{4} > \frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} \lambda \delta }}\). Then, we discuss the impact of \(p_{s}\) on the supply chain’s profit as follows.

  1. (a)

    If \(t_{3} \le 0\), then \(4b\eta_{m} - 2(\theta + bp_{c} )^{2} - \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] \le 0\). Define \(f(\sqrt {\eta_{m} } ) = 4b\eta_{m} - 2(\theta + bp_{c} )^{2} - \sqrt {2\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]\). Then, the discriminant of \(f(\sqrt {\eta_{m} } ){ = }0\) is \(\Delta_{1} { = }2(\theta + bp_{c} )^{2} {{\{ }}\delta [a - b(p_{c} e_{0} + c)]^{2} {{ + 16b\} }}\). It is easy to obtain the roots of \(f(\sqrt {\eta_{m} } ){ = }0\) as \(\frac{{\sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] \pm \sqrt {\Delta_{1} } }}{8b}\). Thus, \(F(p_{s} ) > 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{{\partial p_{s} }} > 0\) for \(p_{s} \in (0,\frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} \lambda \delta }})\) when \(0 < \eta_{m} \le \frac{{\{ \sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{1} } \}^{2} }}{{64b^{2} }}\).

  2. (b)

    If \(t_{3} > 0\), then \(\eta_{m} > \frac{{\{ \sqrt {2\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + \sqrt {\Delta_{1} } \}^{2} }}{{64b^{2} }}\). Thus, \(F(p_{s} ) \le 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{{\partial p_{s} }} \le 0\) in the case of \(p_{s} \in (0,t_{3} ]\), and \(F(p_{s} ) > 0\) and \(\frac{{\partial \Pi_{sc}^{C} }}{{\partial p_{s} }} > 0\) in the case where \(p_{s} \in (t_{3} ,\frac{{2b\eta_{m} - (\theta + bp_{c} )^{2} }}{{2b\eta_{m} \lambda \delta }})\). This can be proven in the same way as case (a).

    Thus, Corollary 2 is proven.□

Appendix 4: Proof of Proposition 2

Based on Eq. (5), we have \(\frac{{\partial^{2} \Pi_{r}^{DS} }}{{\partial p^{2} }} = - 2b < 0\) and \(\Pi_{r}^{DS}\) is concave in \(p\). Thus, we obtain \(p^{*} (e,w) = \frac{a + \theta e + b\lambda c + (1 - \lambda )bw}{{2b}}\) based on \(\frac{{\partial \Pi_{r}^{DS} }}{\partial p} = 0\). By substituting \(p^{*} (e,w)\) into Eq. (4), the Hessian matrix can be obtained as.

\(\left( {\begin{array}{*{20}c} {\frac{{\partial \Pi_{m}^{{^{2} DS}} }}{{\partial e^{2} }}} & {\frac{{\partial \Pi_{m}^{{^{2} DS}} }}{\partial e\partial w}} \\ {\frac{{\partial \Pi_{m}^{{^{2} DS}} }}{\partial w\partial e}} & {\frac{{\partial \Pi_{m}^{{^{2} DS}} }}{{\partial w^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - (1 - \lambda p_{s} \delta )\eta_{m} + p_{c} \theta } & {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} \\ {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} & { - b(1 - \lambda )^{2} } \\ \end{array} } \right)\).

It is easy to prove that \(\Pi_{m}^{DS}\) is jointly concave in \(e\) and \(w\) based on \(4b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\). Then, we obtain the optimal decisions of the manufacturer, \(e^{DS}\) and \(w^{DS}\), under the information symmetry scenario according to the first order conditions. By substituting \(e^{DS}\) and \(w^{DS}\) into \(p^{*} (e,w)\), we can obtain the optimal decision of the seller \(p^{DS}\). Then, we obtain the market demand and the optimal profits of the seller and the manufacturer by substituting \(e^{DS}\), \(w^{DS}\) and \(p^{DS}\) into \(D = a - bp + \theta e\) and Eqs. (4) and (5). Thus, Proposition 2 is proven.□

Appendix 5: Proof of Corollary 3

Based on Proposition 2, we have \(\frac{{\partial e^{DS} }}{\partial \lambda } = \frac{{4bp_{s} \delta \eta_{m} (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), \(\frac{{\partial e^{DS} }}{{\partial p_{s} }} = \frac{{4b\lambda \delta \eta_{m} (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\),\(\frac{{\partial {\text{w}}^{DS} }}{{\partial p_{s} }} = \frac{{2\lambda \delta \eta_{m} (\theta + bp_{c} )(\theta - bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{(1 - \lambda )[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), \(\frac{{\partial p^{DS} }}{\partial \lambda } = \frac{{p_{s} \delta \eta_{m} (\theta + bp_{c} )(3\theta - bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), \(\frac{{\partial {\text{D}}^{DS} }}{\partial \lambda } = \frac{{bp_{s} \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\)\(\frac{{\partial p^{DS} }}{{\partial p_{s} }} = \frac{{\lambda \delta \eta_{m} (\theta + bp_{c} )(3\theta - bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), \(\frac{{\partial {\text{D}}^{DS} }}{{\partial p_{s} }} = \frac{{b\lambda \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]}}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), \(\frac{{\partial \Pi_{m}^{DS} }}{\partial \lambda } = \frac{{p_{s} \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} }}{{2[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\) and \(\frac{{\partial \Pi_{m}^{DS} }}{{\partial p_{s} }} = \frac{{\lambda \delta \eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} }}{{2[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\). Then, it is easy to prove Corollary 3 based on \([4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} > 0\) and \(a - b(p_{c} e_{0} + c) > 0\).□

Appendix 6: Proof of Corollary 4

We have \(\frac{{\partial \Pi_{r}^{DS} }}{\partial \lambda } = p_{s} \{ \frac{{2b\delta \eta_{m}^{2} (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} }}{{[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{3} }} - 1\}\) based on Proposition 2. Let \(G(\lambda ) = 2b\delta \eta_{m}^{2} (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} - [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{3}\). Then, \(\frac{{\partial \Pi_{r}^{DS} }}{\partial \lambda } > 0\) if \(G(\lambda ) > 0\) and \(\frac{{\partial \Pi_{r}^{DS} }}{\partial \lambda } \le 0\) if \(G(\lambda ) \le 0\). \(\frac{\partial G(\lambda )}{{\partial \lambda }}\) is convex in \(\lambda\). Letting \(\frac{\partial G(\lambda )}{{\partial \lambda }} = 0\), we can obtain the roots as \(t_{5,6} = \frac{{24b\eta_{m} - 6(\theta + bp_{c} )^{2} \mp \sqrt {6\delta \eta_{m} } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]}}{{24b\eta_{m} p_{s} \delta }}\). Based on \(4b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\), we have \(\lambda < \frac{{4b\eta_{m} - (\theta + bp_{c} )^{2} }}{{4b\eta_{m} p_{s} \delta }}\). Therefore,\(t_{6}\) should be discarded since \(t_{{6}} > \frac{{4b\eta_{m} - (\theta + bp_{c} )^{2} }}{{4b\eta_{m} p_{s} \delta }}\). Then, in the case where \(0 < \lambda < \frac{1}{2}\) holds, we obtain \(0 \le \eta_{m} \le \frac{{\{ \sqrt {6\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + (\theta + bp_{c} )\sqrt {6{{\{ }}\delta [a - b(p_{c} e_{0} + c)]^{2} {{ + 96b\} }}} \}^{2} }}{{2304b^{2} }}\) if \(t_{5} \le 0\). Then, \(\frac{\partial G(\lambda )}{{\partial \lambda }} < 0\) if \(\lambda \in (0,\min (\frac{1}{2},\frac{{4b\eta_{m} - (\theta + bp_{c} )^{2} }}{{4b\eta_{m} p_{s} \delta }}))\). Therefore, \(G(\lambda ) > 0\) and \(\frac{{\partial \Pi_{r}^{DS} }}{\partial \lambda } > 0\). Similarly, we can prove that in the case where \(0 < \eta_{m} \le \frac{{\{ \sqrt {6\delta } (\theta + bp_{c} )[a - b(p_{c} e_{0} + c)] + (\theta + bp_{c} )\sqrt {6{{\{ }}\delta [a - b(p_{c} e_{0} + c)]^{2} {{ + 96b\} }}} \}^{2} }}{{2304b^{2} }}\) holds, \(\frac{{\partial \Pi_{r}^{DS} }}{{\partial p_{s} }} > 0\) for \(p_{s} \in (0,p_{s0} )\). Thus, Corollary 5 is proven.□

Appendix 7: Proof of Proposition 3

Based on Eq. (9), we have \(\frac{{\partial^{2} \Pi_{r}^{DA} }}{{\partial p^{2} }} = - 2b < 0\). Thus, \(\Pi_{r}^{DA}\) is concave in \(p\). Then, we obtain \(p^{*} (e,w) = \frac{a + \theta e + \lambda bc + (1 - \lambda )bw}{{2b}}\) based on \(\frac{{\partial \Pi_{r}^{DA} }}{\partial p} = 0\). By substituting \(p^{*} (e,w)\) into Eq. (8), the Hessian matrix can be obtained as.

\(\left( {\begin{array}{*{20}c} {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{{\partial e^{2} }}} & {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{\partial e\partial w}} \\ {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{\partial w\partial e}} & {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{{\partial w^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {p_{c} \theta - (1 - \lambda p_{s} \delta )\eta_{m} } & {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} \\ {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} & { - b(1 - \lambda )^{2} } \\ \end{array} } \right)\).

It is easy to prove that \(\Pi_{m}^{DA}\) is jointly concave in \(e\) and \(w\) based on \(4b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\). Then, we obtain the optimal decisions, \(e^{DA}\) and \(w^{DA}\), of the manufacturer under the information asymmetry scenario according to the first-order conditions. By substituting \(e^{DA}\) and \(w^{DA}\) into \(p^{*} (e,w)\), we can obtain the optimal decision of the seller \(p^{DA} = \int_{\mu - \varepsilon }^{\mu + \varepsilon } {\frac{{a + \theta e^{DA} + \lambda bc + (1 - \lambda )bw^{DA} }}{2b}} f(\eta_{m} )d_{{\eta_{m} }}\). Then, we have \(p^{DA} = \frac{{8b\varepsilon (1 - \lambda p_{s} \delta )[3a + b(p_{c} e_{0} + c)] + (3\theta - bp_{c} )(\theta + bp_{c} )[a - b(p_{c} e_{0} + c)]\ln \left( {\frac{{4b(1 - \lambda p_{s} \delta )\left( {\mu + \varepsilon } \right) - (\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )\left( {\mu - \varepsilon } \right) - (\theta + bp_{c} )^{2} }}} \right)}}{{32b^{2} \varepsilon (1 - \lambda p_{s} \delta )}}\). By substituting \(e^{DA}\), \(w^{DA}\) and \(p^{DA}\) into \(D = a - bp + \theta e\) and Eqs. (8) and (9), we obtain the market demand and the optimal profits of the seller and the manufacturer. Thus, Proposition 3 is proven.□

Appendix 8: Proof of Corollary 5

Based on \(\frac{{\partial p^{DA} }}{\partial \lambda } = \frac{{(3\theta - bp_{c} )(\theta + bp_{c} )p_{s} \delta [a - b(p_{c} e_{0} + c)]}}{{32b^{2} \varepsilon (1 - \lambda p_{s} \delta )^{2} }}[\frac{{8b\varepsilon (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} }}{N} + M]\), we obtain \(\frac{{\partial p^{DA} }}{\partial \lambda } > 0\) if \(3\theta - bp_{c} > 0\) and \(\frac{{\partial p^{DA} }}{\partial \lambda } \le 0\) if \(3\theta - bp_{c} \le 0\). Similarly, \(\frac{{\partial p^{DA} }}{{\partial p_{s} }} = \frac{{(3\theta - bp_{c} )(\theta + bp_{c} )\lambda \delta [a - b(p_{c} e_{0} + c)]}}{{32b^{2} \varepsilon (1 - \lambda p_{s} \delta )^{2} }}[\frac{{8b\varepsilon (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} }}{N} + M]\). Then,\(\frac{{\partial p^{DA} }}{{\partial p_{s} }} > 0\) if \(3\theta - bp_{c} > 0\), and \(\frac{{\partial p^{DA} }}{{\partial p_{s} }} \le 0\) if \(3\theta - bp_{c} \le 0\).

Similarly, we have \(\frac{{\partial D^{DA} }}{\partial \lambda } = \frac{{p_{s} \delta (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]}}{{32b\varepsilon (1 - \lambda p_{s} \delta )^{2} }}[\frac{{8b\varepsilon (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} }}{N} + M] > 0\) and \(\frac{{\partial D^{DA} }}{{\partial p_{s} }} = \frac{{\lambda \delta (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]}}{{32b\varepsilon (1 - \lambda p_{s} \delta )^{2} }}[\frac{{8b\varepsilon (1 - \lambda p_{s} \delta )(\theta + bp_{c} )^{2} }}{N} + M] > 0\). Thus, Corollary 5 is proven.□

Appendix 9: Proof of Proposition 4

It is easy to obtain \(e^{DA} = e^{DS}\), \(w^{DA} = w^{DS}\). Comparing the retail prices, we have \(p^{DA} - p^{DS} = \frac{{(\theta + bp_{c} )[a - b(p_{c} e_{0} + c)](3\theta - p_{c} )\{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} }}{{32b^{2} \varepsilon (1 - \lambda p_{s} \delta )[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]}}\). Then, \(p^{DA} > p^{DS}\) if \((3\theta - p_{c} )\{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} > 0\), which is equal to \(\theta > \frac{{p_{c} }}{3}\) and \(\eta_{m} > \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\)(or \(\theta < \frac{{p_{c} }}{3}\) and \(0 < \eta_{m} < \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\)), and \(p^{DA} \le p^{DS}\) if \((3\theta - p_{c} )\{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} \le 0\).

Comparing the market demand in the different scenarios, we have \(D^{DA} - D^{DS} = \frac{{(\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]\{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} }}{{32b\varepsilon (1 - \lambda p_{s} \delta )[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]}}\). Then, \(D^{DA} > D^{DS}\) if \(\eta_{m} > \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\), and \(D^{DA} \le D^{DS}\) if \(\eta_{m} \le \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\).Comparing the firms’ profits, we have.

\(E(\Pi_{m}^{DA} ) - \Pi_{m}^{DS} = \frac{{\eta_{m} (\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} \{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} }}{{16b\varepsilon (1 - \lambda p_{s} \delta )[4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\) and \(E(\Pi_{r}^{DA} ) - \Pi_{r}^{DS} = \frac{{R(\theta + bp_{c} )^{2} [a - b(p_{c} e_{0} + c)]^{2} \{ [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]M - 8b\varepsilon (1 - \lambda p_{s} \delta )\} }}{{b[32b\varepsilon (1 - \lambda p_{s} \delta )]^{2} [4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ]^{2} }}\), where \(R = [8b\varepsilon (1 - \lambda p_{s} \delta ) + (\theta + bp_{c} )^{2} M][4b(1 - \lambda p_{s} \delta )\eta_{m} - (\theta + bp_{c} )^{2} ] + 32b^{2} \varepsilon (1 - \lambda p_{s} \delta )^{2} \eta_{m} > 0\). Then, \(E(\Pi_{m}^{DA} ) > \Pi_{m}^{DS}\) and \(E(\Pi_{r}^{DA} ) > \Pi_{r}^{DS}\) if \(\eta_{m} > \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\), and \(E(\Pi_{m}^{DA} ) \le \Pi_{m}^{DS}\) and \(E(\Pi_{r}^{DA} ) \le \Pi_{r}^{DS}\) if \(\eta_{m} \le \frac{2\varepsilon }{M} + \frac{{(\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )}}\). Thus, Proposition 4 is proven.□

Appendix 10: Proof of Eq. (14)

Based on Eq. (13), we have \(\frac{{\partial^{2} \Pi_{r}^{DSS} }}{{\partial p^{2} }} = - 2b < 0\). Thus, \(\Pi_{r}^{DSS}\) is concave in \(p\). According to \(\frac{{\partial \Pi_{r}^{DSS} }}{\partial p} = 0\), we obtain \(p^{*} (e,w) = \frac{a + \theta e + \lambda bc + (1 - \lambda )bw}{{2b}}\). By substituting \(p^{*} (e,w)\) into Eq. (12), we have.

\(\frac{{\partial \Pi_{m}^{DSS} }}{\partial e} = (1 - \lambda )(w - c)\frac{\theta }{2} - (1 - \lambda p_{s} \delta )\eta_{m} e + p_{c} (a - bp + \theta e + (e - e_{o} )\frac{\theta }{2}) + x_{1}\),

\(\frac{{\partial \Pi_{m}^{DSS} }}{\partial w} = (1 - \lambda )(a - bp + \theta e - b\frac{1 - \lambda }{2}(w - c)) + p_{c} (e_{0} - e)b\frac{1 - \lambda }{2} + y_{1}\),

and the Hessian matrix can be expressed as:

\(\left( {\begin{array}{*{20}c} {\frac{{\partial \Pi_{m}^{{^{2} DSS}} }}{{\partial e^{2} }}} & {\frac{{\partial \Pi_{m}^{{^{2} DSS}} }}{\partial e\partial w}} \\ {\frac{{\partial \Pi_{m}^{{^{2} DSS}} }}{\partial w\partial e}} & {\frac{{\partial \Pi_{m}^{{^{2} DSS}} }}{{\partial w^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {p_{c} \theta - (1 - \lambda p_{s} \delta )\eta_{m} } & {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} \\ {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} & { - b(1 - \lambda )^{2} } \\ \end{array} } \right)\).

Thus, \(\Pi_{m}^{DSS}\) is jointly concave in \(e\) and \(w\) when \(4b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\). Then, we obtain the optimal decisions of the manufacturer, \(e^{DSS}\) and \(w^{DSS}\), under the information symmetry scenario with a transfer payment contract according to \(\frac{{\partial \Pi_{m}^{DSS} }}{\partial e} = 0\) and \(\frac{{\partial \Pi_{m}^{DSS} }}{\partial w} = 0\). By substituting \(e^{DSS}\) and \(w^{DSS}\), we obtain \(p^{DSS}\). Thus, Eq. (14) is proven.□

Appendix 11: Proof of Eq. (21)

Based on Eq. (20), we have \(\frac{{\partial^{2} \Pi_{r}^{DAS} }}{{\partial p^{2} }} = - 2b < 0\). Thus, \(\Pi_{r}^{DAS}\) is concave in \(p\). Then, we obtain \(p^{*} (e,w) = \frac{a + \theta e + \lambda bc + (1 - \lambda )bw}{{2b}}\) based on \(\frac{{\partial \Pi_{r}^{DAS} }}{\partial p} = 0\). By substituting \(p^{*} (e,w)\) into Eq. (19), we have.

\(\frac{{\partial \Pi_{m}^{DAS} }}{\partial w} = (1 - \lambda )(a - bp + \theta e - b\frac{1 - \lambda }{2}(w - c)) + p_{c} (e_{0} - e)b\frac{1 - \lambda }{2} + y_{1}\),

\(\frac{{\partial \Pi_{m}^{DAS} }}{\partial e} = (1 - \lambda )(w - c)\frac{\theta }{2} - (1 - \lambda p_{s} \delta )\eta_{m} e + p_{c} (a - bp + \theta e + (e - e_{o} )\frac{\theta }{2}) + x_{1}\),

and the Hessian matrix can be obtained as.

\(\left( {\begin{array}{*{20}c} {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{{\partial e^{2} }}} & {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{\partial e\partial w}} \\ {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{\partial w\partial e}} & {\frac{{\partial \Pi_{m}^{{^{2} DA}} }}{{\partial w^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {p_{c} \theta - (1 - \lambda p_{s} \delta )\eta_{m} } & {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} \\ {\frac{{(1 - \lambda )(\theta - p_{c} b)}}{2}} & { - b(1 - \lambda )^{2} } \\ \end{array} } \right)\).

It is easy to prove that \(\Pi_{r}^{DAS}\) is jointly concave in \(e\) and \(w\) based on \(4b(1 - \lambda p_{s} \delta )\eta_{m} > (\theta + bp_{c} )^{2}\). Then, we obtain the optimal decisions, \(e^{DAS}\) and \(w^{DAS}\), of the manufacturer under the information asymmetry scenario with a transfer payment contract according to the first-order conditions. By substituting \(e^{DAS}\) and \(w^{DAS}\) into \(p^{*} (e,w)\), we can obtain the optimal decision of the seller \(p^{DAS} = \int_{\mu - \varepsilon }^{\mu + \varepsilon } {\frac{{a + \theta e^{DAS} + \lambda bc + (1 - \lambda )bw^{DAS} }}{2b}} f(\eta_{m} )d_{{\eta_{m} }}\).

Then, \(p^{DAS} = p^{DA} + \frac{{2b(1 - \lambda )(3\theta - bp_{c} )Mx_{2} + [8b\varepsilon (1 - \lambda p_{s} \delta ) + (3\theta - bp_{c} )(\theta - bp_{c} )M]y_{2} }}{{16b^{2} \varepsilon (1 - \lambda )(1 - \lambda p_{s} \delta )}}\) where \(M = \ln \left( {\frac{{4b(1 - \lambda p_{s} \delta )\left( {\mu + \varepsilon } \right) - (\theta + bp_{c} )^{2} }}{{4b(1 - \lambda p_{s} \delta )\left( {\mu - \varepsilon } \right) - (\theta + bp_{c} )^{2} }}} \right)\). Thus, Eq. (21) is proven.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Kong, Q., Li, Y. et al. Effect of equity holding on a supply chain’s pricing and emission reduction decisions considering information sharing. Ann Oper Res 329, 619–656 (2023). https://doi.org/10.1007/s10479-021-03930-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-03930-7

Keywords

Navigation