Abstract
We examine price setting and the decision to disclose quality preference-revealing information in a supply chain with two competing manufacturers supplying two quality-differentiated products to a common retailer. Consumers have complete knowledge of product quality but are uncertain about how the quality will match their own preferences. We study who should provide preference-revealing information to help consumers understand their own quality preferences, and how such information disclosure affects horizontal and vertical competitions in the supply chain. We show that the manufacturer with a higher unit quality production cost has a higher incentive to provide such information, and we show how each supply chain member sets its information policy. The role of information releaser will switch from an upstream member (a manufacturer) to the downstream member (the retailer) as the market information level (the consumer’s degree of informativeness before disclosure) increases. Information disclosure softens both horizontal and vertical competitions in the supply chain. We extend our model to examine the case in which the two manufacturers make simultaneous decisions, and the case when a supply chain member incurs a cost for implementing information disclosure.




Similar content being viewed by others
References
Akerlof, G. (1970). The market for lemons: Quality uncertainty and the market mechanism. Quarterly Journal of Economics, 84(3), 488–500.
Bagwell, K., & Riordan, M. H. (1991). High and declining prices signal product quality. American Economic Review, 81(1), 224–239.
Bhardwaj, P., Chen, Y., & Godes, D. (2008). Buyer-initiated versus seller-initiated information revelation. Management Science, 54(6), 1104–1114.
Bhargava, H. K., & Chen, R. R. (2012). The benefit of information asymmetry: When to sell to informed customers? Decision Support Systems, 53(2), 345–356.
Board, O. (2009). Competition and disclosure. Journal of Industrial Economics, 57(1), 197–213.
Bradlow, E. T., Hu, Y., & Ho, T. H. (2004). A learning-based model for imputing missing levels in partial conjoint profiles. Journal of Marketing Research, 41(4), 369–381.
Chenavaz, R., & Jasimuddin, S. (2017). An analytical model of the relationship between product quality and advertising. European Journal of Operational Research, 263(1), 295–307.
Choi, C. S. (1991). Price competition in a channel structure with a common retailer. Marketing Science, 10(4), 271–296.
Choi, T. M. (2018). Launching the right new product among multiple product candidates in fashion: Optimal choice and coordination with risk consideration. International Journal of Production Economics, 202, 162–171.
Chu, J., & Chintagunta, P. K. (2011). An empirical test of warranty theories in the U.S. computer server and automobile markets. Journal of Marketing, 75(2), 75–92.
Cooper, R., & Ross, T. (1985). Warranties and double moral hazard. The RAND Journal of Economics, 16(1), 103–113.
Creane, A. (2002). Uncertain product quality, optimal pricing and product development. Annals of Operations Research, 114(1–4), 83–103.
Desmet, P. (2014). How retailer money-back guarantees influence consumer preferences for retailer versus national brands. Journal of Business Research, 67(9), 1971–1978.
Gal-Or, E. (1989). Warranties as a signal of quality. The Canadian Journal of Economics, 22(1), 50–61.
Giri, B. C., Chakraborty, A., & Maiti, T. (2015). Quality and pricing decisions in a two-echelon supply chain under multi-manufacturer competition. The International Journal of Advanced Manufacturing Technology, 78(9–12), 1927–1941.
Giri, R. N., Mondal, S. K., & Maiti, M. (2020). Bundle pricing strategies for two complementary products with different channel powers. Annals of Operations Research, 287(2), 701–725.
Ghosh, B., & Michael, R. G. (2013). The impact of consumer attentiveness and search costs on firm quality disclosure: A competitive analysis. Management Science, 59(11), 2604–2621.
Grossman, S. (1981). The informational role of warranties and private disclosure about product quality. Journal of Law & Economics, 24(3), 461–483.
Grossman, S., & Hart, O. (1980). Disclosure laws and takeover bids. Journal of Finance, 35(2), 323–334.
Gu, Z., & Liu, Y. (2013). Consumer fit search, retailer shelf layout, and channel interaction. Marketing Science, 32(4), 652–668.
Gu, Z., & Liu, Y. (2018). Why would a big retailer refuse to collaborate on manufacturer SPIFF? Quantitative Marketing and Economics, 16(4), 441–472.
Gu, Z., & Tayi, G. K. (2015). Investigating firm strategies on offering consumer-customizable products. Information Systems Research, 26(2), 456–468.
Gu, Z., & Tayi, G. K. (2017). Consumer pseudo-showrooming and omni-channel placement strategies. MIS Quarterly, 41(2), 583–606.
Gu, Z., & Xie, Y. (2013). Facilitating fit-revelation in the competitive market. Management Science, 59(5), 1196–1212.
Guan, X., & Chen, Y. J. (2017). The interplay between information acquisition and quality disclosure. Production and Operations Management, 26(3), 389–408.
Guo, L. (2009). Quality disclosure formats in a distribution channel. Management Science, 55(9), 1513–1526.
Guo, L., & Zhao, Y. (2009). Voluntary quality provision and market interaction. Marketing Science, 28(3), 488–501.
Johnson, J. P., & Myatt, D. P. (2003). Multiproduct quality competition: Fighting brands and product line pruning. American Economic Review, 93(3), 748–774.
Jovanovic, B. (1982). Truthful disclosure of information. Bell Journal of Economics, 13(1), 36–44.
Han, X., & Liu, X. (2020). Equilibrium decisions for multi-firms considering consumer quality preference. International Journal of Production Economics, 227, 107688.
Hao, L., & Tan, Y. (2019). Who wants consumers to be informed? Facilitating information disclosure in a distribution channel. Information Systems Research, 30(1), 34–49.
Kihlstrom, R. E., & Riordan, M. (1984). Advertising as a signal. Journal of Political Economy, 92(3), 427–450.
Kuksov, D., & Lin, Y. (2010). Information provision in a vertically differentiated competitive marketplace. Marketing Science, 29(1), 122–138.
Kwark, Y., Chen, J., & Raghunathan, S. (2014). Online product reviews: Implications for retailers and competing manufacturers. Information Systems Research, 25(1), 93–110.
Lan, Y., Peng, J., Wang, F., & Gao, C. (2018). Quality disclosure with information value under competition. International Journal of Machine Learning and Cybernetics, 9, 1489–1503.
Lewis, T. R., & Sappington, D. E. M. (1994). Supplying information to facilitate price discrimination. Internatinal Economics Review, 35(2), 309–327.
Li, G., Zhang, X., & Liu, M. (2019). E-tailer’s procurement strategies for drop-shipping: Simultaneous vs. sequential approach to two manufacturers. Transportation Research Part E Logistics and Transportation Review, 130, 108–127.
Lin, Y., & Pazgal, A. (2016). Hide supremacy or admit inferiority—Market entry strategies in response to consumer informational needs. Consumer Needs and Solutions, 3(2), 94–103.
Linnemer, L. (2002). Price and advertising as signals of quality when some consumers are informed. International Journal of Industrial Organization, 20(7), 931–947.
Mayzlin, D., & Shin, J. (2011). Uninformative advertising as an invitation to search. Marketing Science, 30(4), 666–685.
Milgrom, P. (1981). Good news and bad news: Representation theorems and applications. Bell Journal of Economics, 12(2), 380–391.
Milgrom, P., & Roberts, J. (1986). Price and advertising signals of product quality. Journal of Political Economy, 94(4), 796–821.
Moorthy, S., & Srinivasan, K. (1995). Signaling quality with a money-back guarantee: The role of transaction costs. Marketing Science, 14(4), 442–466.
Shen, B., Choi, T. M., & Minner, S. (2019). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936.
Sinha, S., & Sarmah, S. P. (2010). Coordination and price competition in a duopoly common retailer supply chain. Computers & Industrial Engineering, 59(2), 280–295.
Sun, M. (2011). Disclosing multiple product attributes. Journal of Economics & Management Strategy, 20(1), 195–224.
Taleizadeh, A. A., Soleymanfar, V. R., & Choi, T. M. (2017). Optimal pricing and alliance strategy in a retailer-led supply chain with the return policy: A game-theoretic analysis. Information Sciences, 420, 466–489.
Wei, J., & Zhao, J. (2016). Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments. Annals of Operations Research, 242(2), 505–528.
Xiao, T., & Choi, T. M. (2009). Purchasing choices and channel structure strategies for a two-echelon system with risk-averse players. International Journal of Production Economics, 120(1), 54–65.
Xiao, T., Choi, T. M., & Cheng, T. C. E. (2016). Delivery leadtime and channel structure decisions for make-to-order duopoly under different game scenarios. Transportation Research-Part E, 87, 113–129.
Xiao, T., & Shi, J. (2016). Consumer returns reduction and information revelation mechanism for a supply chain. Annals of Operations Research, 240(2), 661–681.
Yang, H., Chen, J., Chen, X., & Chen, B. (2017). The impact of customer returns in a supply chain with a common retailer. European Journal of Operational Research, 256(1), 139–150.
Yang, H., Sun, F., Chen, J., & Chen, B. (2019). Financing decisions in a supply chain with a capital-constrained manufacturer as new entrant. International Journal of Production Economics, 216(10), 321–332.
Yang, R. N., & Ma, L. J. (2017). Two-part tariff contracting with competing unreliable suppliers in a supply chain under asymmetric information. Annals of Operations Research, 257(1–2), 559–585.
Zhao, M., Dong, C., & Chen, T. (2018). Quality disclosure strategies for small business enterprises in a competitive marketplace. European Journal of Operational Research, 270(1), 218–229.
Zhang, J., & Chen, J. (2017). Externality of contracts on supply chains with two suppliers and a common retailer. Journal of Industrial and Management Optimization, 6(4), 795–810.
Acknowledgements
The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 71571102, 71671081 and 71771123), the Natural Sciences and Engineering Research Council of Canada, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX19_0229).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Proof of Lemma 1
With Eq. (1), the consumer will purchase Product 1 if and only if \(U_{1}^{S} \ge 0\) (which requires \(\theta \ge \theta_{1}^{S} = \frac{{p_{1}^{S} }}{{q_{1} I}} - \frac{1 - I}{{2I}}\)) and \(U_{{1}}^{S} \ge U_{2}^{S}\) (which requires \(\theta \ge \theta_{21}^{S} = \frac{{p_{1}^{S} - p_{2}^{S} }}{{(q_{1} - q_{2} )I}} - \frac{1 - I}{{2I}}\)). Similarly, this consumer will purchase Product 2 if and only if \(U_{2}^{S} \ge 0\) (which requires \(\theta \ge \theta_{{2}}^{S} = \frac{{p_{{2}}^{S} }}{{q_{2} I}} - \frac{1 - I}{{2I}}\)) and \(U_{{1}}^{S} < U_{2}^{S}\) (which requires \(\theta < \theta_{21}^{S} = \frac{{p_{1}^{S} - p_{2}^{S} }}{{(q_{1} - q_{2} )I}} - \frac{1 - I}{{2I}}\)). With \(q_{1} > q_{2}\), \(p_{1}^{S} > p_{2}^{S}\) is necessary to have a positive \(\theta_{{2{1}}}^{S}\).
When \(\theta_{{2{1}}}^{S} > 1\) (equivalently \(\frac{{p_{1}^{S} - p_{2}^{S} }}{{q_{1} - q_{2} }} > \frac{1 + I}{2}\)), no consumer will buy Product 1 (\(d_{{1}}^{S} = 0\)) and consumers whose quality preference valuations are in the interval \([\theta_{2}^{S} ,1]\) will buy Product 2 (\(d_{2}^{S} = 1 - \theta_{2}^{S}\)). When \(\theta_{2}^{S} > \theta_{1}^{S}\) (equivalently \(\frac{{p_{2}^{S} }}{{q_{2} }} > \frac{{p_{1}^{S} }}{{q_{1} }}\)), no consumer will buy Product 2 (\(d_{2}^{S} = 0\)) and consumers whose quality preference valuations are in the interval \([\theta_{1}^{S} ,1]\) will buy Product 1 (\(d_{1}^{S} = 1 - \theta_{1}^{S}\)). This implies that Product 1 can have a market share if and only if \(\theta_{{2{1}}}^{S} \le 1\), while Product 2 can have a market share if and only if \(\theta_{2}^{S} \le \theta_{1}^{S}\). With the above analysis, we obtain the pairwise co-existence conditions of the two products under the supply chain’s two information disclosure strategies, and we can show that two products can co-exist if and only if \({0} \le \theta_{2}^{S} \le \theta_{1}^{S} \le \theta_{21}^{S} \le 1\), for\(\text{S }={\text{D}}, \text{U}\).
Manufacturer 2 maximizes its profit \(\pi_{{m_{2} }}^{SB} (p_{2}^{SB} ) = (p_{2}^{SB} - c_{2} )d_{2}^{SB}\) by setting \(p_{2}^{SB}\). For given \(p_{1}^{SB}\), taking the derivatives of \(\pi_{m2}^{SB}\) w.r.t. \(p_{2}^{SB}\), we have \(\frac{{\partial \pi_{{m_{2} }}^{SB} }}{{\partial p_{2}^{SB} }} = \frac{{p_{1}^{SB} - 2p_{2}^{SB} + c_{2} }}{{q_{1} - q_{2} }} + \frac{{c_{2} - 2p_{2}^{SB} }}{{q_{2} }}\). Then we can obtain \(\frac{{\partial^{2} \pi^{SB}_{{m_{2} }} }}{{\partial p^{SB2}_{2} }} = - \left( {\frac{2}{{q_{1} - q_{2} }} + \frac{2}{{q_{2} }}} \right) < 0\). We conclude that there exists a unique \(p_{2}^{SB}\), which is given by \(p_{2}^{SB} = \frac{{q_{2} \hat{p}_{1}^{S} + q_{1} c_{2} }}{{2q_{1} }}\). The demand of Product 1 is \(d_{1}^{SB} = 1 - \frac{{(2q_{1} - q_{2} )p_{1}^{SB} - q_{1} c_{2} }}{{2q_{1} (q_{1} - q_{2} )}}\). Manufacturer 1 sets \(p_{1}^{SB}\) to maximize its profit \(\pi_{{m_{1} }}^{SB} (p_{1}^{SB} ) = (p_{1}^{SB} - c_{1} )d_{1}^{SB}\), and we have \(\frac{{\partial \pi_{{m_{1} }}^{SB} }}{{\partial p_{1}^{SB} }} = 1 + \frac{{q_{1} c_{2} + (2q_{1} - q_{2} )c_{1} - 2(2q_{1} - q_{2} )p_{1}^{SB} }}{{2q_{1} (q_{1} - q_{2} )}}\) and \(\frac{{\partial^{2} \pi^{SB}_{{m_{1} }} }}{{\partial p^{SB2}_{1} }} = \frac{{ - 2q_{1} + q_{2} }}{{q_{1} (q_{1} - q_{2} )}} < 0\).
Therefore, there exists a unique solution \(p_{1}^{SB*} = \frac{{(1 + I)q_{1} }}{2} - \frac{{\Delta_{1}^{S} }}{2} - \frac{{q_{1} \Delta_{2}^{S} }}{{2(2q_{1} - q_{2} )}}\). We can derive \(p_{2}^{SB * } = \frac{{(1 + I)q_{2} }}{2} - \frac{{q_{2} \Delta_{1}^{S} }}{{4q_{1} }} - \frac{{(4q_{1} - q_{2} )\Delta_{2}^{S} }}{{4(2q_{1} - q_{2} )}}\) and (\(d_{1}^{SB*}\), \(d_{2}^{SB*}\), \(\pi_{{m_{1} }}^{SB*}\), \(\pi_{{m_{2} }}^{SB*}\)) as in Table 1.
Proof of Lemma 2
Manufacturer 2 has an incentive to disclose information when \(\Delta \pi_{{m_{2} }}^{B} = \pi_{{m_{2} }}^{DB} - \pi_{{m_{2} }}^{NB} \ge 0\). Then we can derive that when \(\gamma \ge \gamma_{2} = \left( {\frac{1}{2} - E_{2} } \right)^{2} \left( {\frac{{(4q_{1} - 3q_{2} )(q_{2} - q_{1} \underline {\rho } \phi )}}{{q_{2} (q_{1} - q_{2} )}}} \right)^{2}\), then \(\Delta \pi_{{m_{2} }}^{B} \ge 0\). Manufacturer 1 has an incentive to disclose information when \(\Delta \pi_{{m_{1} }}^{B} = \pi_{{m_{1} }}^{DB} - \pi_{{m_{1} }}^{NB} \ge 0\). Then we can derive that when \(\gamma \ge \gamma_{1} = \left( {\frac{1}{2} - E_{2} } \right)^{2} \left( {\frac{{q_{1} \overline{\rho }\phi - q_{2} }}{{q_{1} - q_{2} }}} \right)^{{2}}\), then \(\Delta \pi_{{m_{1} }}^{B} \ge 0\).
Manufacturer 2 decides its information policy (\(y_{2} = \{ P,N\}\)), we can conclude that Manufacturer 2 will choose the provision policy (\(y_{2} = P\)) when \(\gamma \ge \gamma_{2}\), and the no-provision policy (\(y_{2} = N\)), otherwise. Then we consider Manufacturer 1′s information policy (\(y_{1} = \{ P,N\}\)). With \(\gamma_{2} \le \gamma_{1}\) if \(E_{1} \le E_{2}\), and \(\gamma_{1} < \gamma_{2}\) if \(E_{1} > E_{2}\), Manufacturer 1 will choose the information provision policy (\(y_{1} = P\)) when \(E_{1} > E_{2}\) and \(\gamma_{1} \le \gamma < \gamma_{{2}}\), and choose the no-provision policy (\(y_{1} = N\)), otherwise.
Proof of Proposition 1
For given \(w_{{1}}^{S}\) and \(w_{{2}}^{S}\), taking the derivatives of \(\pi_{r}^{S}\) w.r.t. \(p_{{1}}^{S}\) and \(p_{{2}}^{S}\): \(\frac{{\partial \pi_{r}^{S} }}{{\partial p_{{1}}^{S} }} = \frac{1 + I}{{2I}} + \frac{{ - 2p_{{1}}^{S} + 2p_{2}^{S} + w_{{1}}^{S} - w_{2}^{S} }}{{(q_{{1}} - q_{2} )I}}\) and \(\frac{{\partial \pi_{r}^{S} }}{{\partial p_{2}^{S} }} = \frac{{2p_{{1}}^{S} - 2p_{2}^{S} - w_{{1}}^{S} + w_{2}^{S} }}{{(q_{{1}} - q_{2} )I}} + \frac{{ - 2p_{2}^{S} + w_{2}^{S} }}{{q_{2} I}}\). We have \(\frac{{\partial^{2} \pi_{r}^{S} }}{{\partial p_{1}^{S2} }} = - \frac{2}{{(q_{1} - q_{2} )I}} < 0\), \(\frac{{\partial^{2} \pi^{S}_{r} }}{{\partial p^{S2}_{2} }} = - \frac{{2q_{1} }}{{q_{2} (q_{1} - q_{2} )I}} < 0\), and \(\frac{{\partial^{2} \pi^{S}_{r} }}{{\partial p^{S2}_{1} }}\frac{{\partial^{2} \pi^{S}_{r} }}{{\partial p^{S2}_{2} }} - \frac{{\partial^{2} \pi^{S}_{r} }}{{\partial p^{S}_{1} \partial p^{S}_{2} }}\frac{{\partial^{2} \pi^{S}_{r} }}{{\partial p^{S}_{2} \partial p^{S}_{1} }} = \frac{4}{{(q_{1} - q_{2} )q_{2} I^{2} }} > 0\). This suggests that there exist unique optimal solutions to (\(p_{{1}}^{S}\), \(p_{{2}}^{S}\)), which are given by:
Manufacturer 2 maximizes its profit \(\pi_{{m_{2} }}^{S}\) by setting \(w_{{2}}^{S}\). With \(p_{{1}}^{S}\) and \(p_{{2}}^{S}\) in (9), the demand of Product 2 is \(d_{2}^{S} = \frac{{q_{2} w_{{1}}^{S} - q_{1} w_{{2}}^{S} }}{{{2}q_{2} (q_{{1}} - q_{2} )I}}\). Then the profit is \(\pi_{{m_{2} }}^{S} = (w_{{2}}^{S} - c_{2} )(\frac{{q_{2} w_{{1}}^{S} - q_{1} w_{{2}}^{S} }}{{{2}q_{2} (q_{{1}} - q_{2} )I}})\). For a given \(w_{{1}}^{S}\), then \(\frac{{\partial \pi_{{m_{2} }}^{S} }}{{\partial w_{{2}}^{S} }} = \frac{{w_{{1}}^{S} - {2}w_{{2}}^{S} + c_{2} }}{{{2}(q_{{1}} - q_{2} )I}} + \frac{{ - {2}w_{{2}}^{S} + c_{2} }}{{{2}q_{2} I}}\). We thus can obtain \(\frac{{\partial^{2} \pi^{S}_{{m_{2} }} }}{{\partial w^{S2}_{2} }} = - \frac{1}{{(q_{1} - q_{2} )I}} - \frac{1}{{q_{2} I}} < 0\). We conclude that there exists a unique optimal \(w_{{2}}^{S}\), which is given by:
The demand of Product 1 is \(d_{1}^{S} = \frac{1 + I}{{4I}} + \frac{{ - 2w_{{1}}^{S} q_{{1}} + w_{{1}}^{S} q_{2} + q_{{1}} c_{2} }}{{{4}(q_{{1}} - q_{2} )q_{{1}} I}}\). Manufacturer 1′s profit is \(\pi_{{m_{1} }}^{S} = (w_{{1}}^{S} - c_{1} )(\frac{1 + I}{{4I}} + \frac{{ - 2w_{{1}}^{S} q_{{1}} + w_{{1}}^{S} q_{2} + q_{{1}} c_{2} }}{{{4}(q_{{1}} - q_{2} )q_{{1}} I}})\). Then we have.
\(\frac{{\partial \pi_{{m_{{1}} }}^{S} }}{{\partial w_{{1}}^{S} }} = \frac{1 + I}{{4I}} + \frac{{ - 4w_{{1}}^{S} q_{{1}} + 2w_{{1}}^{S} q_{2} + q_{{1}} c_{2} + 2c_{{1}} q_{{1}} - c_{{1}} q_{2} }}{{{4}(q_{{1}} - q_{2} )q_{1} I}}\).\(\frac{{\partial^{2} \pi^{S}_{{m_{1} }} }}{{\partial w^{S2}_{1} }} = \frac{{ - 2q_{1} + q_{2} }}{{2(q_{1} - q_{2} )q_{1} I}} < 0\) implies that there exists a unique optimal solution \(w_{{1}}^{S*} = \frac{{(1 + I)q_{1} }}{2} - \frac{{\Delta_{1}^{S} }}{{2}} - \frac{{q_{{1}} \Delta_{2}^{S} }}{{{2}(2q_{{1}} - q_{2} )}}\). Substituting \(w_{{1}}^{S*}\) into Eq. (10), we can derive \(w_{{2}}^{S*} = \frac{{(1 + I)q_{2} }}{2} - \frac{{q_{2} \Delta_{1}^{S} }}{{4q_{{1}} }} - \frac{{(4q_{{1}} - q_{2} )\Delta_{2}^{S} }}{{4(2q_{{1}} - q_{2} )}}\). Then substituting \(w_{{1}}^{S*}\) and \(w_{{2}}^{S*}\) into Eq. (9), we derive (\(p_{{1}}^{S * }\),\(p_{{2}}^{S*}\)) for Proposition 1 and we can obtain \(d_{1}^{S*}\), \(d_{2}^{S*}\), \(\pi_{{m_{1} }}^{S*}\), \(\pi_{{m_{2} }}^{S*}\), and \(\pi_{r}^{S*}\) as summarized in Table 2.
Proof of Lemma 3
By comparing prices and demands with the supply chain’s non-disclosure strategy to those with a disclosure strategy, we can derive:
\(w_{{1}}^{{D{*}}} - w_{{1}}^{{U{*}}} = \frac{{(1 - \gamma )q_{{1}} (q_{{1}} - q_{2} )}}{{2(2q_{{1}} - q_{2} )}} > 0\), \(w_{2}^{{D{*}}} - w_{2}^{{U{*}}} = \frac{{(1 - \gamma )q_{2} (q_{{1}} - q_{2} )}}{{4(2q_{{1}} - q_{2} )}} > 0\),
\(p_{{1}}^{{D{*}}} - p_{{1}}^{{U{*}}} = \frac{{(1 - \gamma )q_{1} (3q_{1} - 2q_{2} )}}{{{4}(2q_{1} - q_{2} )}} > 0\), \(p_{2}^{{D{*}}} - p_{2}^{{U{*}}} = \frac{{3(1 - \gamma )q_{2} (q_{1} - q_{2} )}}{{{8}(2q_{1} - q_{2} )}} > 0\),
\(d_{{1}}^{D*} - d_{{1}}^{U*} = - \frac{{(1 - \gamma )\left( {(2q_{1} - q_{2} )(\frac{1}{2} - E_{1} ) - q_{2} (\frac{1}{2} - E_{2} )} \right)}}{{8(q_{1} - q_{2} )\gamma }} < 0\), and.
\(d_{2}^{D*} - d_{2}^{U*} = - \frac{{(1 - \gamma )q_{1} \left( {(4q_{1} - 3q_{2} )(\frac{1}{2} - E_{2} ) - (2q_{1} - q_{2} )(\frac{1}{2} - E_{1} )} \right)}}{{{8}(q_{1} - q_{2} )(2q_{1} - q_{2} )\gamma }} < 0\).
Proof of Proposition 2
The retailer has an incentive to disclose information when \(\Delta \pi_{r} = \pi_{r}^{D} - \pi_{r}^{U} \ge 0\). Then we can derive when \(\gamma \ge \gamma_{r} { = }\frac{{\left( {\frac{1}{2} - E_{2} } \right)^{2} \left[ {4(q_{1} - q_{2} )\left[ {\overline{\rho }^{2} q_{1}^{2} \phi^{2} + q_{2} (4q_{1} - q_{2} )} \right] + q_{2} (q_{1} \overline{\rho }\phi - q_{2} )^{2} } \right]}}{{(4q_{1}^{2} + q_{1} q_{2} - q_{2}^{2} )(q_{1} - q_{2} )}}\), then \(\Delta \pi_{r} \ge 0\).
Manufacturer \(i\) has an incentive to disclose information when \(\Delta \pi_{mi} = \pi_{mi}^{D} - \pi_{mi}^{U} \ge 0\), which gives that \(\Delta \pi_{mi} \ge 0\) if \(\gamma \ge \gamma_{i}\).
Proof of Lemma 4
By comparing the thresholds of information disclosure incentive of each member, we have when \(E_{1} < E_{2}\), then \(\gamma_{1} - \gamma_{r} > \frac{{4q_{2} (2q_{1} - q_{2} )^{{3}} \left( {(\frac{1}{2} - E_{1} )^{2} - (\frac{1}{2} - E_{2} )^{{2}} } \right)}}{{(4q_{1}^{2} + q_{1} q_{2} - q_{2}^{2} )(q_{1} - q_{2} )^{{2}} }} > 0\). As \(\underline {\rho } < \rho^{D} < \overline{\rho }\), then \(\frac{{4q_{1} - 3q_{2} }}{{2q_{1} - q_{2} }} > \frac{{1/2 - E_{1} }}{{1/2 - E_{2} }}\). Therefore, \(\gamma_{r} - \gamma_{2} > \frac{{8(2q_{1} - q_{2} )^{3} (\frac{1}{2} - E_{2} )\left( {(\frac{1}{2} - E_{1} ) - (\frac{1}{2} - E_{2} )} \right)}}{{(4q_{1}^{2} + q_{1} q_{2} - q_{2}^{2} )(q_{1} - q_{2} )}} > 0\).
Thus, we can conclude that \(\gamma_{2} < \gamma_{r} < \gamma_{1}\) if \(E_{1} < E_{2}\). Similarly, we can show that \(\gamma_{1} < \gamma_{r} < \gamma_{2}\) if \(E_{1} > E_{2}\). In addition, when \(E_{1} = E_{2} = E\), then \(\gamma_{1} = \left( {1 - 2E} \right)^{2}\), \(\gamma_{2} = \left( {1 - 2E} \right)^{2}\) and \(\gamma_{r} = \left( {1 - 2E} \right)^{2}\), we have \(\gamma_{{1}} = \gamma_{r} = \gamma_{{2}}\). Then we can obtain the results that are summarized in Lemma 4. With Proposition 2, we can derive results that are summarized in Table 3.
Proof of Lemma 5
Taking the derivatives of \(\gamma_{{1}}\) and \(\gamma_{{2}}\) w.r.t. \(E_{{1}}\) and \(E_{{2}}\), we have.
\(\frac{{\partial \gamma_{1} }}{{\partial E_{{1}} }} = - \left( {1 - 2E_{{1}} } \right)\left( {\frac{{q_{1} \overline{\rho }}}{{q_{1} - q_{2} }}} \right)^{{2}} < 0\), \(\frac{{\partial \gamma_{1} }}{{\partial E_{2} }} = \left( {1 - 2E_{2} } \right)\left( {\frac{{q_{2} }}{{q_{1} - q_{2} }}} \right)^{{2}} > 0\), \(\frac{{\partial \gamma_{2} }}{{\partial E_{1} }} = \left( {1 - 2E_{{1}} } \right)\left( {\frac{{q_{1} \overline{\rho }}}{{q_{1} - q_{2} }}} \right)^{{2}} > 0\), and \(\frac{{\partial \gamma_{2} }}{{\partial E_{2} }} = - \left( {1 - 2E_{2} } \right)\left( {\frac{{4q_{1} - 3q_{2} }}{{q_{1} - q_{2} }}} \right)^{{2}} < 0\).
Proof of Lemma 6
Taking the derivatives of \(w_{i}^{U}\), \(p_{i}^{U}\) and \(d_{i}^{U}\) w.r.t. \(\gamma\), we can get: \(\frac{{\partial w_{{1}}^{U} }}{\partial \gamma } = \frac{{q_{1} (q_{{1}} - q_{2} )}}{{2(2q_{{1}} - q_{2} )}} > 0\), \(\frac{{\partial w_{2}^{U} }}{\partial \gamma } = \frac{{q_{2} (q_{{1}} - q_{2} )}}{{4(2q_{{1}} - q_{2} )}} > 0\), \(\frac{{\partial p_{1}^{U} }}{\partial \gamma } = \frac{{q_{1} (3q_{1} - 2q_{2} )}}{{{4}(2q_{1} - q_{2} )}} > 0\), \(\frac{{\partial p_{2}^{U} }}{\partial \gamma } = \frac{{q_{2} (5q_{1} - 3q_{2} )}}{{8(2q_{1} - q_{2} )}} > 0\), \(\frac{{\partial d_{{1}}^{U} }}{\partial \gamma } = - \frac{{(2q_{1} - q_{2} )({1} - {2}E_{1} ) - q_{2} ({1} - {2}E_{2} )}}{{{16}(q_{1} - q_{2} )\gamma^{2} }} < 0\), and \(\frac{{\partial d_{{2}}^{U} }}{\partial \gamma } = - \frac{{q_{1} (4q_{1} - 3q_{2} )({1} - {2}E_{2} ) - q_{1} (2q_{1} - q_{2} )({1} - {2}E_{1} )}}{{{16}(q_{1} - q_{2} )(2q_{1} - q_{2} )\gamma^{2} }} < 0\). Then, taking the derivatives of \(\pi_{{m_{1} }}^{U}\) w.r.t. \(\gamma\), we have \(\frac{{\partial \pi_{{m_{1} }}^{U} }}{\partial \gamma } = \frac{{q_{1} \left( {(q_{1} - q_{2} )\gamma } \right)^{2} - q_{1} \left( {(2q_{1} - q_{2} )(1 - {2}E_{1} ) - q_{2} (1 - {2}E_{2} )} \right)^{2} }}{{{32}(q_{1} - q_{2} )(2q_{1} - q_{2} )\gamma^{2} }}\). Then we can obtain \(\frac{{\partial^{2} \pi_{{m_{{1}} }}^{U} }}{{\partial \gamma^{2} }} = \frac{{\left( {(2q_{1} - q_{2} )(1 - {2}E_{1} ) - q_{2} (1 - {2}E_{2} )} \right)^{2} }}{{{16}(q_{1} - q_{2} )(2q_{1} - q_{2} )\gamma^{3} }} > 0\). We conclude that there exists a unique minimum point, which is given by \(\gamma = \sqrt {\gamma_{1} }\). Similarly, we can get the unique minimum point of Manufacturer 2 and the retailer, which are given by \(\gamma = \sqrt {\gamma_{2} }\) and \(\gamma = \sqrt {\gamma_{r} }\).
Proof of Proposition 3
When \(E_{1} > E_{2}\), we have \(\gamma_{1} < \gamma_{r} < \gamma_{2}\). If \(y_{1} = N\) and \(y_{{2}} = N\), then \(y_{r} = P\) when \(\gamma \ge \gamma_{r}\), and \(y_{r} = N\) otherwise. Since Manufacturer 2 has an incentive to provide quality preference information when \(\gamma \ge \gamma_{{2}}\), we can conclude that \(y_{{2}} = N\). Since Manufacturer 1 has an incentive to provide quality preference information when \(\gamma \ge \gamma_{{1}}\), then \(y_{{1}} = P\) when \(\gamma_{{1}} \le \gamma < \gamma_{r}\), and \(y_{1} = N\) otherwise.
Similarly, when \(E_{1} \le E_{2}\), we have \(\gamma_{2} \le \gamma_{r} \le \gamma_{1}\). If \(y_{1} = N\) and \(y_{{2}} = N\), then \(y_{r} = P\) when \(\gamma \ge \gamma_{r}\), and \(y_{r} = N\) otherwise. If \(y_{1} = N\), then \(y_{2} = P\) when \(\gamma_{2} \le \gamma < \gamma_{r}\), and \(y_{{2}} = N\) otherwise. Since Manufacturer 1 has an incentive to provide quality preference information only when \(\gamma \ge \gamma_{{1}}\), thus \(y_{1} = N\).
Proof of Table 4
For given \(w^{\prime S}_{{1}}\) and \(w^{\prime S}_{{2}}\), taking the derivatives of \(\pi^{\prime S}_{r}\) w.r.t. \(p^{\prime S}_{{1}}\) and \(p^{\prime S}_{{2}}\):
\(\frac{{\partial \pi^{\prime S}_{r} }}{{\partial p^{\prime S}_{{1}} }} = \frac{1 + I}{{2I}} + \frac{{ - 2p^{\prime S}_{{1}} + 2p^{\prime S}_{2} + w^{\prime S}_{{1}} - w^{\prime S}_{2} }}{{(q_{{1}} - q_{2} )I}}\) and \(\frac{{\partial \pi^{\prime S}_{r} }}{{\partial p^{\prime S}_{2} }} = \frac{{2p^{\prime S}_{{1}} - 2p^{\prime S}_{2} - w^{\prime S}_{{1}} + w^{\prime S}_{2} }}{{(q_{{1}} - q_{2} )I}} + \frac{{ - 2p^{\prime S}_{2} + w^{\prime S}_{2} }}{{q_{2} I}}\). We have \(\frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S2}_{1} }} = - \frac{2}{{(q_{1} - q_{2} )I}} < 0\), \(\frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S2}_{2} }} = - \frac{{2q_{1} }}{{q_{2} (q_{1} - q_{2} )I}} < 0\), and.
\(\frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S2}_{1} }}\frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S2}_{2} }} - \frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S}_{1} \partial p^{\prime S}_{2} }}\frac{{\partial^{2} \pi^{\prime S}_{r} }}{{\partial p^{\prime S}_{2} \partial p^{\prime S}_{1} }} = \frac{4}{{(q_{1} - q_{2} )q_{2} I^{2} }} > 0\). This suggests that there exist unique optimal solutions to (\(p^{\prime S}_{{1}}\),\(p^{\prime S}_{{2}}\)), which are given by:
Manufacturer 2 maximizes its profit \(\pi^{\prime S}_{{m_{2} }}\) by setting \(w^{\prime S}_{{2}}\). With \(p^{\prime S}_{{1}}\) and \(p^{\prime S}_{{2}}\) in (11), the demand of Product 1 and Product 2 are \(d^{\prime S}_{1} = \frac{1 + I}{{4I}} - \frac{{w^{\prime S}_{1} - w^{\prime S}_{2} }}{{2(q_{1} - q_{2} )I}}\) and \(d^{\prime S}_{2} = \frac{{q_{2} w^{\prime S}_{{1}} - q_{1} w^{\prime S}_{{2}} }}{{{2}q_{2} (q_{{1}} - q_{2} )I}}\), respectively. Then the profit of Manufacturer 1 and Manufacturer 2 are \(\pi^{\prime S}_{{m_{1} }} = (w^{\prime S}_{1} - c_{2} )(\frac{1 + I}{{4I}} - \frac{{w^{\prime S}_{1} - w^{\prime S}_{2} }}{{2(q_{1} - q_{2} )I}})\) and \(\pi^{\prime S}_{{m_{2} }} = (w^{\prime S}_{{2}} - c_{2} )(\frac{{q_{2} w^{\prime S}_{{1}} - q_{1} w^{\prime S}_{{2}} }}{{{2}q_{2} (q_{{1}} - q_{2} )I}})\), respectively. Then we have \(\frac{{\partial \pi^{\prime S}_{{m_{1} }} }}{{\partial w^{\prime S}_{1} }} = \frac{1 + I}{{4I}} + \frac{{w^{\prime S}_{2} - 2w^{\prime S}_{1} + c_{2} }}{{2(q_{1} - q_{2} )I}}\) and \(\frac{{\partial \pi^{\prime S}_{{m_{2} }} }}{{\partial w^{\prime S}_{{2}} }} = \frac{{w^{\prime S}_{{1}} - {2}w^{\prime S}_{{2}} + c_{2} }}{{{2}(q_{{1}} - q_{2} )I}} + \frac{{ - {2}w^{\prime S}_{{2}} + c_{2} }}{{{2}q_{2} I}}\). We thus can obtain \(\frac{{\partial^{2} \pi^{\prime S}_{{m_{1} }} }}{{\partial w^{\prime S2}_{1} }} = - \frac{1}{{(q_{1} - q_{2} )I}} < 0\) and \(\frac{{\partial^{2} \pi^{S}_{{m_{2} }} }}{{\partial w^{S2}_{2} }} = - \frac{1}{{(q_{1} - q_{2} )I}} - \frac{1}{{q_{2} I}} < 0\). We conclude that there exist unique optimal solutions to (\(w^{\prime S}_{{1}}\),\(w^{\prime S}_{{2}}\)), which are given by:
\(w^{\prime S*}_{1} = \frac{{(1 + I)q_{1} }}{2} - \frac{{q_{1} (2\Delta_{1}^{S} + \Delta_{2}^{S} )}}{{4q_{1} - q_{2} }}\) and \(w^{\prime S*}_{2} = \frac{{(1 + I)q_{2} }}{2} - \frac{{q_{2} \Delta_{1}^{S} + 2q_{1} \Delta_{2}^{S} }}{{4q_{{1}} - q_{2} }}\).
Substituting \(w^{\prime S*}_{1}\) and \(w^{\prime S*}_{2}\) into (11), we can derive (\(p^{\prime S*}_{{1}}\), \(p^{\prime S*}_{{2}}\)) and we can get (\(d^{\prime S*}_{1}\), \(d^{\prime S*}_{2}\), \(\pi^{\prime S*}_{{m_{1} }}\), \(\pi^{\prime S*}_{{m_{2} }}\), \(\pi^{\prime S*}_{r}\)) as in Table 4.
Manufacturer 1 has an incentive to disclose information when \(\Delta \pi_{{m_{{1}} }} = \pi_{{m_{{1}} }}^{D} - \pi_{{m_{{1}} }}^{U} \ge 0\). Then we can derive when \(\gamma \ge \gamma_{{1}}\), \(\Delta \pi_{{m_{{1}} }} \ge 0\).
Similarly, Manufacturer 2 and the retailer have incentives to disclose information when \(\Delta \pi_{{m_{{2}} }} = \pi_{{m_{{2}} }}^{D} - \pi_{{m_{{2}} }}^{U} \ge 0\) and \(\Delta \pi_{r} = \pi_{r}^{D} - \pi_{r}^{U} \ge 0\), separately. Then we can derive when \(\gamma \ge \gamma^{\prime}_{2} = \left( {{1} - {2}E_{2} } \right)^{2} \left( {\frac{{{2}q_{1} - q_{2} - q_{1} \phi }}{{q_{1} - q_{2} }}} \right)^{2}\) and \(\gamma \ge \gamma^{\prime}_{r} { = }\left( {{1} - {2}E_{2} } \right)^{2} \frac{{q_{1} (4q_{1} - {3}q_{2} )\phi^{2} - 2q_{2}^{2} \phi + 2q_{2} (2q_{1} - q_{2} )}}{{4q_{1}^{2} + q_{1} q_{2} - 4q_{2}^{2} }}\), \(\Delta \pi_{{m_{{2}} }} \ge 0\) and \(\Delta \pi_{r} \ge 0\), separately.
Proof of Proposition 5
When \(E_{1} > E_{2}\), we have \(\gamma_{1} < \gamma_{r} < \gamma_{2}\). If \(y_{1} = N\) and \(y_{{2}} = N\), then \(y_{r} = P\) when \(\gamma \ge \gamma_{r}\) and \(c_{I} \le \Delta \pi_{r}\), and \(y_{r} = N\) otherwise. Since Manufacturer 2 has incentive to provide quality preference information if \(\gamma \ge \gamma_{{2}}\), therefore,\(y_{{2}} = N\). It is obvious that \(y_{{1}} = P\) when \(\gamma_{{1}} \le \gamma < \gamma_{r}\) and \(c_{I} \le \Delta \pi_{{m_{1} }}\), or when \(\gamma_{r} \le \gamma < \overline{\gamma }_{1}\) and \(\Delta \pi_{r} < c_{I} \le \Delta \pi_{{m_{1} }}\), and \(y_{1} = N\) otherwise.
Similarly, when \(E_{1} \le E_{2}\), we have \(\gamma_{2} \le \gamma_{r} \le \gamma_{1}\). If \(y_{1} = N\) and \(y_{{2}} = N\), then \(y_{r} = P\) when \(\gamma \ge \gamma_{r}\) and \(c_{I} \le \Delta \pi_{r}\), and \(y_{r} = N\) otherwise. If \(y_{1} = N\), then \(y_{2} = P\) when \(\gamma_{2} \le \gamma < \gamma_{r}\) and \(c_{I} \le \Delta \pi_{{m_{2} }}\), or when \(\gamma_{r} \le \gamma < \overline{\gamma }_{2}\) and \(\Delta \pi_{r} < c_{I} \le \Delta \pi_{{m_{2} }}\), and \(y_{{2}} = N\) otherwise. Since Manufacturer 1 has incentive to provide quality preference information when \(\gamma \ge \gamma_{{1}}\), thus \(y_{1} = N\). Then we can obtain Table 5.
Rights and permissions
About this article
Cite this article
Sun, F., Yang, H., Chen, J. et al. Disclosure of quality preference-revealing information in a supply chain with competitive products. Ann Oper Res 329, 689–715 (2023). https://doi.org/10.1007/s10479-021-03945-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-021-03945-0