Skip to main content

Advertisement

Log in

Policy analysis for emission-reduction with green technology investment in manufacturing

  • S.I. : Scalable Optimization and Decision Making in OR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Different environmental policies create different incentives for emission reduction. The paper examines the effect of two environmental policies, the emission abatement subsidy and emission tax policies, on a market with manufacturer investment in a green technology to reduce emission. Compared to environmental taxation, the results show that the subsidy policy offers a greater incentive to abate emission and yields higher industry profit. However, regarding social welfare, the subsidy policy leads to lower social welfare and environmental performance than the tax policy when emission is highly damaging to the environment and emission abatement is sufficiently costly. From the industrial perspective, increasing technological efficiency is not necessarily beneficial even if it is costless as the government will adjust the environmental policy accordingly for social welfare optimization, may at the manufacturer’s expense. Finally, extensions considering a combined policy (both subsidy and tax), a multiplicative emission cost function, and the problem in a supply chain context are performed to check the robustness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberta Government, (2017). Climate Leadership Plan. https://www.alberta.ca/climate-leadership-plan.aspx.

  • Alizamir, S., de Véricourt, F., & Sun, P. (2016). Efficient feed-in-tariff policies for renewable energy technologies. Operations Research, 64(1), 52–66.

    Google Scholar 

  • American Recovery and Reinvestment Act, (2009). https://www.fcc.gov/general/american-recovery-and-reinvestment-act-2009.

  • Andersen, M.S., (2010). Europe’s experience with carbon-energy taxation. SAPIENS, 3(2), Retrieved 2011–08–24.

  • Arya, A., & Mittendorf, B. (2015). Supply chain consequences of subsidies for corporate social responsibility. Production and Operations Management, 24(8), 1346–1357.

    Google Scholar 

  • Atasu, A., & Van Wassenhove, L. N. (2012). An operations perspective on product take-back legislation for e-waste: Theory, practice, and research needs. Production and Operations Management, 21(3), 407–422.

    Google Scholar 

  • Australian Government, (2014). Emissions Reduction Fund White Paper. http://www.environment.gov.au/climate-change/emissions-reduction-fund.

  • Bai, Q., Gong, Y., Jin, M., & Xu, X. (2019). Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. International Journal of Production Economics, 208, 83–99.

    Google Scholar 

  • Baksi, S. (2014). Regional versus multilateral trade liberalization, environmental taxation, and welfare. Canadian Journal of Economics, 47(1), 232–249.

    Google Scholar 

  • Cariou, P., Parola, F., & Notteboom, T. (2019). Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping. International Journal of Production Economics, 208, 17–28.

    Google Scholar 

  • Chan, H. L., Shen, B., & Cai, Y. (2018). Quick response strategy with cleaner technology in a supply chain: Coordination and win-win situation analysis. International Journal of Production Research, 56(10), 3397–3408.

    Google Scholar 

  • Chen, C. (2001). Design for the environment: A quality-based model for green product development. Management Science, 47(2), 250–263.

    Google Scholar 

  • Chen, C. K., & Ulya, M. A. (2019). Analyses of the reward-penalty mechanism in green closed-loop supply chains with product remanufacturing. International Journal of Production Economics, 210, 211–223.

    Google Scholar 

  • Chen, X., & Hao, G. (2015). Sustainable pricing and production policies for two competing firms with carbon emissions tax. International Journal of Production Research, 53(21), 6408–6420.

    Google Scholar 

  • Clean Energy Wire, (2019). https://www.cleanenergywire.org/factsheets/putting-price-emissions-what-are-prospects-carbon-pricing-germany.

  • Cohen, M. C., Lobel, R., & Perakis, G. (2016). The impact of demand uncertainty on consumer subsidies for green technology adoption. Management Science, 62(5), 1235–1258.

    Google Scholar 

  • David, M., & Sinclair-Desgagné, B. (2010). Pollution abatement subsidies and the eco-industry. Environmental and Resource Economics, 45(2), 271–282.

    Google Scholar 

  • Drake, D. F., Kleindorfer, P. R., & Van Wassenhove, L. N. (2016). Technology choice and capacity portfolios under emissions regulation. Production and Operations Management, 25(6), 1006–1025.

    Google Scholar 

  • Drake, D. F., & Spinler, S. (2013). OM Forum-Sustainable operations management: An enduring stream or a passing fancy? Manufacturing and Service Operations Management, 15(4), 689–700.

    Google Scholar 

  • European Environment Agency, (2006). Market-based instruments for environmental policy in Europe. Report No. 8/2005. http://www.eea.europa.eu/publications/technical_report_2005_8.

  • Fang, C., & Ma, T. (2019). Technology adoption with carbon emission trading mechanism: Modeling with heterogeneous agents and uncertain carbon price. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03297-w.

    Article  Google Scholar 

  • Fredriksson, P. G. (1998). Environmental policy choice: Pollution abatement subsidies. Resource and Energy Economics, 20(1), 51–63.

    Google Scholar 

  • Government of Sweden. (2019). Sweden’s carbon tax. https://www.government.se/government-policy/taxes-and-tariffs/swedens-carbon-tax/.

  • Helmer, R., & Hespanhol, I. (Eds.). (1997). Water pollution control: A guide to the use of water quality management principles. . E & FN Spon.

    Google Scholar 

  • Inui, T., (2002). Protecting the global environment: Initiatives by Japanese business. W. Cruz, & J.J. Warford (Eds.). World Bank Publications.

  • Kleindorfer, P. R., Singhal, K., & Van Wassenhove, L. N. (2005). Sustainable operations management. Production and Operations Management, 14(4), 482–492.

    Google Scholar 

  • Krass, D., Nedorezov, T., & Ovchinnikov, A. (2013). Environmental taxes and the choice of green technology. Production and Operations Management, 22(5), 1035–1055.

    Google Scholar 

  • Lawson, E. (2017). https://www.smartcitiesdive.com/ex/sustainablecitiescollective/9-companies-great-environmental-initiatives/1193165/.

  • Lee, H. L., & Tang, C. S. (2017). Socially and environmentally responsible value chain innovations: New operations management research opportunities. Management Science, 64(3), 983–996.

    Google Scholar 

  • Lerner, A. P. (1972). Pollution abatement subsidies. American Economic Review, 62(5), 1009–1010.

    Google Scholar 

  • Li, Q., Guan, X., Shi, T., & Jiao, W. (2019). Green product design with competition and fairness concerns in the circular economy era. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1657249.

    Article  Google Scholar 

  • Li, Y., Deng, Q., Zhou, C., & Feng, L. (2018). Environmental governance strategies in a two-echelon supply chain with tax and subsidy interactions. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2975-z.

    Article  Google Scholar 

  • Lombardini-Riipinen, C. (2005). Optimal tax policy under environmental quality competition. Environmental and Resource Economics, 32(3), 317–336.

    Google Scholar 

  • Lovei, M., (1995). Financing pollution abatement: Theory and practice. Washington, DC, World Bank. http://documents.worldbank.org/curated/en/1995/10/438843/financing-pollution-abatement-theory-practice.

  • OECD. (2018a). Taxing Energy Use 2018 Germany. https://www.oecd.org/tax/tax-policy/taxing-energy-use-2018-germany.pdf.

  • OECD. (2018b). Revenue from environmentally related taxes in Italy. https://www.oecd.org/tax/tax-policy/environmental-tax-profile-italy.pdf.

  • Ontl, T. A., & Schulte, L. A. (2012). Soil carbon storage. Nature Education Knowledge, 3(10), 35.

    Google Scholar 

  • Ouchida, Y., & Goto, D. (2014). Do emission subsidies reduce emission? In the context of environmental R&D organization. Economic Modelling, 36, 511–516.

    Google Scholar 

  • Ovchinnikov, A., Blass, V., & Raz, G. (2014). Economic and environmental assessment of remanufacturing strategies for product service firms. Production and Operations Management, 23(5), 744–761.

    Google Scholar 

  • Pal, R., & Saha, B. (2015). Pollution tax, partial privatization and environment. Resource and Energy Economics, 40, 19–35.

    Google Scholar 

  • Plambeck, E. L., & Taylor, T. A. (2015). Supplier evasion of a buyer’s audit: Implications for motivating supplier social and environmental responsibility. Manufacturing and Service Operations Management, 18(2), 184–197.

    Google Scholar 

  • Polinsky, A. M. (1979). Notes on the symmetry of taxes and subsidies in pollution control. Canadian Journal of Economics, 12(1), 75–83.

    Google Scholar 

  • Poyago-Theotoky, J. A. (2007). The organization of R&D and environmental policy. Journal of Economic Behavior & Organization, 62(1), 63–75.

    Google Scholar 

  • Poyago-Theotoky, J., & Teerasuwannajak, K. (2002). The timing of environmental policy: A note on the role of product differentiation. Journal of Regulatory Economics, 21(3), 305–316.

    Google Scholar 

  • Raz, G., Druehl, C. T., & Blass, V. (2013). Design for the environment: Life-cycle approach using a newsvendor model. Production and Operations Management, 22(4), 940–957.

    Google Scholar 

  • Saberi, S., Cruz, J. M., Sarkis, J., & Nagurney, A. (2018). A competitive multiperiod supply chain network model with freight carriers and green technology investment option. European Journal of Operational Research, 266, 934–949.

    Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Google Scholar 

  • Savaskan, R. C., & Van Wassenhove, L. N. (2006). Reverse channel design: The case of competing retailers. Management Science, 52(1), 1–14.

    Google Scholar 

  • Spence, M. (1976). Product differentiation and welfare. American Economic Review, 66(2), 407–414.

    Google Scholar 

  • Singh, N., & Vives, X. (1984). Price and quantity competition in a differentiated duopoly. The Rand Journal of Economics, 15(4), 546–554.

    Google Scholar 

  • Tang, C. S., & Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223(3), 585–594.

    Google Scholar 

  • Toshimitsu, T. (2010). On a consumer-based emission tax policy. Manchester School, 78(6), 626–646.

    Google Scholar 

  • Tsai, T. H., Wang, C. C., & Chiou, J. R. (2016). Can privatization be a catalyst for environmental R&D and result in a cleaner environment? Resource and Energy Economics, 43, 1–13.

    Google Scholar 

  • US Environmental Protection Agency, (2015). The US experience with economic incentives for protecting the environment. https://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0216B-08.pdf/$file/EE-0216B-08.pdf .

  • Wang, Q., Zhao, D., & He, L. (2016). Contracting emission reduction for supply chains considering market low-carbon preference. Journal of Cleaner Production, 120, 72–84.

    Google Scholar 

  • Xia, L., Guo, T., Qin, J., Yue, X., & Zhu, N. (2018). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research, 268, 149–175.

    Google Scholar 

  • Xu, X., He, P., Xu, H., & Zhang, Q. (2017). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Google Scholar 

  • Yang, L., Zhang, Q., & Ji, J. (2017). Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation. International Journal of Production Economics, 191, 286–297.

    Google Scholar 

Download references

Acknowledgements

The authors thank the editors and anonymous referees for their comments that have helped improve the paper. This work is supported by the National Natural Science Foundation of China under [Grant Nos. 71871207, 71921001, 71991464/71991460, and 72091215/72091210].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Tables and Proofs

Appendix: Tables and Proofs

See Tables 1, 2, 3, 4, 5, 6 and 7.

Table 1 Optimal solutions under no environmental policy
Table 2 Equilibrium outcomes for the subsidy and tax policies
Table 3 Equilibrium outcomes for the subsidy and tax policies under Cournot competition
Table 4 Equilibrium outcomes for the subsidy and tax policies under Bertrand competition
Table 5 Equilibrium values with a combined policy
Table 6 Equilibria for the subsidy and tax policies with a multiplicative emission function
Table 7 Equilibrium outcomes for the subsidy and tax policies in a supply chain

Proof of Lemma 1

From the “Net emission” values under the subsidy and tax policies in Table 2, we have

\(\frac{{\partial e^{S} }}{\partial d} = - \frac{{\lambda \left( {\alpha - c} \right)}}{{2\beta \left( {\lambda + d} \right)^{2} }} < 0\),

\(\frac{{\partial e^{S} }}{\partial \lambda } = \frac{{d\left( {\alpha - c} \right)}}{{2\beta \left( {\lambda + d} \right)^{2} }} > 0\),

\(\frac{{\partial e^{T} }}{\partial d} = - \frac{{\lambda \left( {2\beta + \lambda } \right)^{2} \left( {3\beta + \lambda } \right)\left( {\alpha - c} \right)}}{{\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]^{2} }} < 0\), and.

\(\frac{{\partial e^{T} }}{\partial \lambda } = \frac{{\beta \left( {12\beta^{2} d + 8\beta d\lambda + \beta \lambda^{2} + d\lambda^{2} } \right)\left( {\alpha - c} \right)}}{{\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]^{2} }} > 0\).

Proof of Proposition 1

(i) Differentiating the “Manufacturer’s profit” value under the subsidy policy in Table 2 with respect to d, we have \(\frac{{\partial \Pi_{M}^{S} }}{\partial d} = \frac{{\lambda^{2} d\left( {\alpha - c} \right)^{2} }}{{4\beta^{2} \left( {\lambda + d} \right)^{3} }} > 0\).

(ii) Differentiating the “Manufacturer’s profit” value under the subsidy policy in Table 2 with respect to \(\lambda\), we obtain \(\frac{{\partial \Pi_{M}^{S} }}{\partial \lambda } = \frac{{d^{2} \left( {d - \lambda } \right)\left( {\alpha - c} \right)^{2} }}{{8\beta^{2} \left( {\lambda + d} \right)^{3} }} \ge 0\) if \(d \ge \lambda\), with equality holding at \(d = \lambda\); otherwise, \(\frac{{\partial \Pi_{M}^{S} }}{\partial \lambda } < 0\).

(iii) Differentiating the “Manufacturer’s profit” value under the tax policy in Table 2 with respect to d, we have \(\frac{{\partial \Pi_{M}^{T} }}{\partial d} = - \frac{{2\beta \lambda^{3} \left( {2\beta + \lambda } \right)\left( {3\beta + \lambda } \right)^{2} \left( {\alpha - c} \right)^{2} }}{{\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]^{3} }} < 0\).

(iv) Differentiating the “Manufacturer’s profit” value under the tax policy in Table 2 with respect to \(\lambda\), we obtain \(\frac{{\partial \Pi_{M}^{T} }}{\partial \lambda } = \frac{{f_{1} \left( d \right)\left( {\alpha - c} \right)^{2} }}{{2\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]^{3} }}\), where.

\(f_{1} \left( d \right) = \left[ \begin{gathered} - \left( {2\beta + \lambda } \right)^{4} d^{3} - 3\beta \lambda \left( {4\beta + \lambda } \right)\left( {2\beta + \lambda } \right)^{2} d^{2} \hfill \\ + \beta^{2} \lambda^{2} \left( {60\beta^{2} + 36\beta \lambda + 5\lambda^{2} } \right)d + \beta^{3} \lambda^{3} \left( {20\beta + 7\lambda } \right) \hfill \\ \end{gathered} \right]\).

Since \({\text{sgn}} \left( {\frac{{\partial \Pi_{M}^{T} }}{\partial \lambda }} \right) = {\text{sgn}} \left( {f_{1} \left( d \right)} \right)\), we only need to discuss \({\text{sgn}} \left( {f_{1} \left( d \right)} \right)\) below. Define \(f_{1}^{{\prime}} \left( d \right)\) and \(f_{1} \left( d \right)\) as follows:

\(\left\{ \begin{gathered} f_{1}^{^{\prime}} \left( d \right) = \frac{{\partial f_{3} \left( d \right)}}{\partial d} = - 3\left( {2\beta + \lambda } \right)^{4} d^{2} - 6\beta \lambda \left( {4\beta + \lambda } \right)\left( {2\beta + \lambda } \right)^{2} d + \beta^{2} \lambda^{2} \left( {60\beta^{2} + 36\beta \lambda + 5\lambda^{2} } \right) \hfill \\ f_{1} \left( d \right) = \frac{{\partial^{2} f_{3} \left( d \right)}}{{\partial d^{2} }} = - 6\left( {2\beta + \lambda } \right)^{4} d - 6\beta \lambda \left( {4\beta + \lambda } \right)\left( {2\beta + \lambda } \right)^{2} \hfill \\ \end{gathered} \right.\).

If \(d > d^{T}\), \(f_{1} \left( d \right) < 0\), which means \(f_{1}^{^{\prime}} \left( d \right)\) decreases in d. Furthermore, it can be verified that \(f_{1}^{^{\prime}} \left( {d^{T} } \right) < 0\), which suggests \(f_{1}^{^{\prime}} \left( {d^{T} } \right) < 0\) holds for all \(d > d^{T}\). This in turn means \(f_{1} \left( d \right)\) decreases with respect to d when \(d > d^{T}\). Algebraic calculation shows that \(f_{1} \left( {d^{T} } \right) > 0\). Since the cubic and quadratic terms are negative, \(f_{1} \left( {d^{T} } \right) < 0\) must hold when d is sufficiently large. Thus, it can be proved that there exists a \(d_{1} > d^{T}\) such that \(f_{1} \left( d \right) \le 0\) for all \(d \ge d_{1}\), with \(f_{1} \left( {d_{1} } \right) = 0\) at \(d = d_{1}\), where \(d_{1}\) is the largest root of \(f_{1} \left( {d_{1} } \right) = 0\). Thus, we can conclude the required.

Proof of Lemma 2

Comparing corresponding price and quantity decisions under the subsidy and tax policies in Table 2, we derive.

\(p^{S} - p^{T} = - \frac{{\lambda \left( {4\beta d - 3\beta \lambda + d\lambda } \right)\left( {\alpha - c} \right)}}{{4\left[ {\left( {4\beta + \lambda } \right)^{2} d + \beta \lambda \left( {16\beta + \lambda } \right)} \right]}} < 0\), and.

\(q^{S} - q^{T} = \frac{{\lambda \left( {4\beta d - 3\beta \lambda + d\lambda } \right)\left( {\alpha - c} \right)}}{{4\beta \left[ {\left( {4\beta + \lambda } \right)^{2} d + \beta \lambda \left( {16\beta + \lambda } \right)} \right]}} > 0\).

In addition, since there is no pass-through under the subsidy policy but it exists under the tax policy, we have \(p^{N} = p^{S} < p^{T}\) and \(q^{N} = q^{S} > q^{T}\).

Proof of Lemma 3

Comparing the “Abatement level” values under the subsidy and tax policies in Table 2, we have.

\(a^{S} - a^{T} = \frac{{\lambda f_{2} \left( d \right)\left( {\alpha - c} \right)}}{{2\beta \left( {\lambda + d} \right)\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]}}\),

where \(f_{2} \left( d \right) = \left( {2\beta + \lambda } \right)d^{2} + \beta \left( {2\beta - \lambda } \right)d + 2\beta^{2} \lambda\).

Since \(f_{2} \left( d \right) > 0\) for \(d > d^{T}\), we have \(a^{S} - a^{T} > 0\).

Proof of Proposition 2

Comparing the “Net emission” values under the subsidy and tax policies in Table 2, we obtain \(e^{S} - e^{T} = \frac{{\lambda \left[ {\left( { - 2\beta^{2} + 2\beta \lambda + \lambda^{2} } \right)d - \beta \lambda \left( {2\beta + \lambda } \right)} \right]\left( {\alpha - c} \right)}}{{2\beta \left( {\lambda + d} \right)\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]}}\). Algebraic calculation shows that \(e^{S} \ge e^{T}\) holds only when \(\lambda > \left( {\sqrt 3 - 1} \right)\beta\) and \(d \ge d_{2} \left( { > d^{T} } \right)\), with equality holding at \(d = d_{2}\), where \(d_{2} = \frac{{ - \beta \lambda \left( {2\beta + \lambda } \right)}}{{ - \lambda^{2} - 2\beta \lambda + 2\beta^{2} }}\); otherwise, \(e^{S} < e^{T}\). Since the manufacturer has no incentive to abate emission under no environmental policy. The net emission under no environmental policy is the highest.

Proof of Lemma 4

First, comparing the “Manufacturer’s profit” values under the subsidy and tax policies in Table 2 yields \(\Pi_{M}^{S} - \Pi_{M}^{N} = \frac{{\lambda d^{2} \left( {\alpha - c} \right)^{2} }}{{8\beta^{2} \left( {\lambda + d} \right)^{2} }} > 0\). Next, we have.

\(\Pi_{M}^{N} - \Pi_{M}^{T} = \frac{{\lambda \left( {\lambda d - \beta \lambda + 2d\beta } \right)\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {10\beta + 3\lambda } \right)} \right]\left( {\alpha - c} \right)^{2} }}{{4\beta \left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]^{2} }}\),

which is positive when \(d > d^{T}\). Summarizing above results, we have \(\Pi_{M}^{S} > \Pi_{M}^{N} > \Pi_{M}^{T}\).

Proof of Proposition 3

\(SW^{S} - SW^{T} = \frac{{\lambda f_{3} \left( d \right)\left( {\alpha - c} \right)^{2} }}{{8\beta^{2} \left( {d + \lambda } \right)\left[ {\left( {2\beta + \lambda } \right)^{2} d + \beta \lambda \left( {4\beta + \lambda } \right)} \right]}}\),

where \(f_{3} \left( d \right) = \left( {4\beta^{2} - \beta \lambda - \lambda^{2} } \right)d^{2} + \beta \lambda \left( {3\beta + 2\lambda } \right)d - \beta^{2} \lambda^{2}\).

Since \({\text{sgn}} \left( {SW^{S} - SW^{T} } \right) = {\text{sgn}} \left( {f_{3} \left( d \right)} \right)\), we only need to analyze \({\text{sgn}} \left( {f_{3} \left( d \right)} \right)\) below.

(a). If \(\lambda = {{\left( {\sqrt {17} - 1} \right)\beta } \mathord{\left/ {\vphantom {{\left( {\sqrt {17} - 1} \right)\beta } 2}} \right. \kern-\nulldelimiterspace} 2}\), then \(f_{3} \left( d \right) > 0\) for \(d > d^{T}\). In this case, \(SW^{S} - SW^{T} > 0\).

(b). If \(\lambda \ne {{\left( {\sqrt {17} - 1} \right)\beta } \mathord{\left/ {\vphantom {{\left( {\sqrt {17} - 1} \right)\beta } 2}} \right. \kern-\nulldelimiterspace} 2}\), solving \(f_{3} \left( d \right) = 0\), we obtain two real roots, \(d_{3}\) and \(d_{4}\), as follows:

\(d_{3} = \frac{{\beta \lambda \left( { - 3\beta - 2\lambda + \sqrt {25\beta^{2} + 8\beta \lambda } } \right)}}{{2\left( {4\beta^{2} - \beta \lambda - \lambda^{2} } \right)}}\) and \(d_{4} = \frac{{\beta \lambda \left( { - 3\beta - 2\lambda - \sqrt {25\beta^{2} + 8\beta \lambda } } \right)}}{{2\left( {4\beta^{2} - \beta \lambda - \lambda^{2} } \right)}}\).

If \(\lambda < {{\left( {\sqrt {17} - 1} \right)\beta } \mathord{\left/ {\vphantom {{\left( {\sqrt {17} - 1} \right)\beta } 2}} \right. \kern-\nulldelimiterspace} 2}\), \(f_{3} \left( d \right)\) is a quadratic function graphed by a parabola opening upward, with \(d_{4} < d_{3} < d^{T}\). In this case, \(f_{3} \left( d \right) > 0\) for \(d > d^{T}\). Thus, \(SW^{S} - SW^{T} > 0\). If \(\lambda > {{\left( {\sqrt {17} - 1} \right)\beta } \mathord{\left/ {\vphantom {{\left( {\sqrt {17} - 1} \right)\beta } 2}} \right. \kern-\nulldelimiterspace} 2}\), \(f_{3} \left( d \right)\) is a quadratic function graphed by a parabola opening downward, with \(d_{3} < d^{T} < d_{4}\). In this case, \(f_{3} \left( d \right) \ge \left( < \right)0\) for \(d^{T} < d \le d_{4} \left( {d > d_{4} } \right)\). Thus, \(SW^{S} - SW^{T} < 0\) for \(d > d_{4}\) and \(SW^{S} - SW^{T} \le 0\) for \(d^{T} < d \le d_{4}\). Summarizing the results above, we can see that \(SW^{S} < SW^{T}\) if and only if \(d > d_{4}\) and \(\lambda > {{\left( {\sqrt {17} - 1} \right)\beta } \mathord{\left/ {\vphantom {{\left( {\sqrt {17} - 1} \right)\beta } 2}} \right. \kern-\nulldelimiterspace} 2}\). Otherwise, \(SW^{S} \ge SW^{T}\), with equality holding at \(d = d_{4}\). From the government’s perspective, the case of no environmental policy is a special case of subsidy policy or tax policy. Thus, \(SW^{N} < SW^{S}\) and \(SW^{N} < SW^{T}\) always hold.

Comparing the “Social welfare” values under the subsidy and tax policies in Table 2 yields.

Proof of Lemma 5

Based the corresponding results in Table 5 for the combined policy, we have:

(i). \(\frac{{\partial s^{C} }}{\partial d} = \frac{{ - \beta \lambda^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} < 0\) and \(\frac{{\partial s^{C} }}{\partial \lambda } = \frac{{ - \beta d^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} < 0\);

(ii). \(\frac{{\partial t^{C} }}{\partial d} = \frac{{2\beta \lambda^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} > 0\) and \(\frac{{\partial t^{C} }}{\partial \lambda } = \frac{{2\beta d^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} > 0\).

(iii). \(\frac{{\partial q^{C} }}{\partial d} = \frac{{ - \lambda^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} < 0\) and \(\frac{{\partial q^{C} }}{\partial \lambda } = \frac{{ - d^{2} \left( {\alpha - c} \right)}}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{2} }} < 0\).

Proof of Proposition 4

(i). \(\frac{{\partial s^{SQ} }}{\partial \theta } = \frac{{ - 2\lambda d\left( {\alpha - c} \right)}}{{\beta \left( {\theta + 2} \right)^{2} \left( {\lambda + 2d} \right)}} < 0\);

(ii).\(\frac{{\partial a_{i}^{SQ} }}{\partial \theta } = \frac{{ - 2d\left( {\alpha - c} \right)}}{{\beta \left( {\theta + 2} \right)^{2} \left( {\lambda + 2d} \right)}} < 0\).

(iii). \(\frac{{\partial q_{i}^{SQ} }}{\partial \theta } = \frac{{ - \left( {\alpha - c} \right)}}{{\beta \left( {\theta + 2} \right)^{2} }} < 0\).

(iv).\(\frac{{\partial e_{i}^{SQ} }}{\partial \theta } = \frac{{ - \lambda \left( {\alpha - c} \right)}}{{\beta \left( {\theta + 2} \right)^{2} \left( {\lambda + 2d} \right)}} < 0\);

(v).\(\frac{{\partial p_{i}^{SQ} }}{\partial \theta } = \frac{{ - \left( {\alpha - c} \right)}}{{\left( {\theta + 2} \right)^{2} }} < 0\);

(vi).\(\frac{{\partial \Pi_{Mi}^{SQ} }}{\partial \theta } = \frac{{2\left[ {2\left( {\lambda + 2\beta } \right)d^{2} + 4\beta \lambda d + \beta \lambda^{2} } \right]\left( {\alpha - c} \right)^{2} }}{{ - \beta^{2} \left( {2 + \theta } \right)^{3} \left( {\lambda + 2d} \right)^{2} }} < 0\);

(vii). \(\frac{{\partial SW^{SQ} }}{\partial \theta } = \frac{{\left[ {2\left( {2\lambda - \beta \theta - 4\beta } \right)d - \beta \lambda \left( {4 + \theta } \right)} \right]\left( {\alpha - c} \right)^{2} }}{{ - \beta^{2} \left( {2 + \theta } \right)^{3} \left( {\lambda + 2d} \right)}} < 0\) holds in the applicable range of \(\lambda\) and \(d\) with positive social welfare, i.e., \(\lambda < 3 + \beta\) or \(d < \frac{{\left( {\beta + 3} \right)\lambda }}{{2\left( {3 + \beta - \lambda } \right)}}\).

Proof of Proposition 5

Differentiating the manufacturer’s profit in Table 5, we have:

\(\frac{{\partial \Pi_{M}^{C} }}{\partial d} = \frac{{ - \beta \lambda^{2} \left( {d + 2\lambda } \right)\left( {\alpha - c} \right)^{2} }}{{\left( {\beta d + \beta \lambda + d\lambda } \right)^{3} }} < 0\), and.

\(\frac{{\partial \Pi_{M}^{C} }}{\partial \lambda } = \frac{{ - d^{2} \left( {3\beta d + 5\beta \lambda + d\lambda } \right)\left( {\alpha - c} \right)^{2} }}{{2\left( {\beta d + \beta \lambda + d\lambda } \right)^{3} }} < 0\).

Fig. 1
figure 1

Sequence of decisions

Fig. 2
figure 2

Variation of the manufacturer’s profit with respect to \(d\) and \(\lambda\)

Fig. 3
figure 3

Comparisons of net emission under different cases

Fig. 4
figure 4

Comparisons of social welfare under different cases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Guo, X. Policy analysis for emission-reduction with green technology investment in manufacturing. Ann Oper Res 316, 5–32 (2022). https://doi.org/10.1007/s10479-021-04071-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04071-7

Keywords

Navigation