Skip to main content
Log in

Retailer's optimal strategy for a perishable product with increasing demand under various payment schemes

  • S.I. : Business Analytics and Operations Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies the optimal replenishment strategy of the retailer under partial two levels of credit. The paper also considers the following scenarios: (1) the product under consideration is a deteriorating item, (2) the demand function is an incremental function of time, and (3) the retailer pays the supplier by the payment method of Advance-Cash-Credit (ACC) and gives his/her customers a certain credit period. (4) The supplier provides the retailer with a certain price discount to facilitate sales. The goal of the paper is to decide the retailer’s order cycle, which minimizes his/her total cost per unit time. Firstly, we proved the existence and uniqueness of the optimal solution. Secondly, we validated the theoretical results and discussed the performance of upstream ACC payment and downstream credit payment by numerical analysis of key parameters, numerical results show that it is cheaper for the retailer to pay for the payment in upstream ACC and downstream credit payment than in traditional payment method (i.e., upstream cash and downstream cash payment method), which encourage the retailer to order more quantity and less frequently under the former payment method. Thirdly, we compared the retailer’s order behaviors and total cost per unit time under the following five two-level payment types: upstream cash and downstream cash payment, upstream advance, cash, credit, ACC and downstream credit payment, in which the supplier will provide a certain price discount when the retailer pays in advance. It is found that the retailer pays the supplier in upstream advance and downstream credit payment is the lowest cost to the retailer, and it will lead to order the most quantities under this payment method, while the retailer pays the supplier with upstream credit and downstream credit (upstream credit period is shorter than the downstream credit period) is the highest cost to the retailer. The research results can help the retailers make the payment selections and optimize their operational decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Google Scholar 

  • C2FO. (2019). Improve cash flow. Retrieved February 27, 2019 from https://c2fo.com/suppliers.

  • Cambini, A., & Martein, L. (2009). Generalized convexity and optimization: Theory and application. . Springer.

    Google Scholar 

  • Chang, C. T., Ouyang, L. Y., Teng, J. T., Lai, K. K., & Cárdenas-Barrón, L. E. (2019). Manufacturer’s pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash flow analysis. International Journal of Production Economics, 218, 83–95.

    Google Scholar 

  • Chen, J., Dong, M., & Xu, L. (2018). A perishable product shipment consolidation model considering freshness-keeping effort. Transportation Research Part E: Logistics and Transportation Review, 115, 56–86.

    Google Scholar 

  • Chung, K. J., Cárdenas-Barrón, L. E., & Ting, P. S. (2014). An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade credit. International Journal of Production Economics, 155, 310–317.

    Google Scholar 

  • Diabat, A., Taleizadeh, A. A., & Lashgari, M. (2017). A lot sizing model with partial downstream delayed payment, partial upstream advance payment, and partial backordering for deteriorating items. Journal of Manufacturing Systems, 45, 322–342.

    Google Scholar 

  • Feng, L., & Chan, Y. L. (2019). Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits. European Journal of Operational Research, 272(3), 905–913.

    Google Scholar 

  • Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36, 335–338.

    Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1–16.

    Google Scholar 

  • Harris, F. W. (1913). How many parts to make at once. Factory, The Magazine of Management, 10(2), 135–136.

    Google Scholar 

  • Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54(9), 1011–1015.

    Google Scholar 

  • Jaggi, C. K., Tiwari, S., Gupta, M., & Wee, H. M. (2019). Impact of credit financing, storage system and changing demand on investment for deteriorating items. International Journal of Systems Science: Operations & Logistics, 6(2), 143–161.

    Google Scholar 

  • Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86–112.

    Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Ahmadi, A. (2016a). Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain. Annals of Operations Research, 238(1–2), 329–354.

    Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Sadjadi, S. J. (2018). Ordering policies for non-instantaneous deteriorating items under hybrid partial prepayment, partial trade credit and partial backordering. Journal of the Operational Research Society, 69(8), 1167–1196.

    Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Sana, S. S. (2016b). An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 12(3), 1091.

    Google Scholar 

  • Li, R., Chan, Y. L., Chang, C. T., & Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis. International Journal of Production Economics, 193, 578–589.

    Google Scholar 

  • Li, R., Liu, Y., Teng, J. T., & Tsao, Y. C. (2019). Optimal pricing, lot-sizing and backordering decisions when a seller demands an advance-cash-credit payment scheme. European Journal of Operational Research, 278(1), 283–295.

    Google Scholar 

  • Li, R., Skouri, K., Teng, J. T., & Yang, W. G. (2018). Seller’s optimal replenishment policy and payment term among advance, cash, and credit payments. International Journal of Production Economics, 197, 35–42.

    Google Scholar 

  • Li, S. H., & Zhu, M. (2013). Research on the differential outsourcing risks for fresh cold-chain logistics. In Proceedings of 20th international conference on industrial engineering and engineering management (pp. 827–840). Springer.

  • Maiti, A. K., Maiti, M. K., & Maiti, M. (2009). Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Applied Mathematical Modelling, 33(5), 2433–2443.

    Google Scholar 

  • Mashud, A. H. M., Uddin, M. S., & Sana, S. S. (2019). A two-level trade-credit approach to an integrated price-sensitive inventory model with shortages. International Journal of Applied and Computational Mathematics, 5(4), 1–28.

    Google Scholar 

  • Mateut, S., & Zanchettin, P. (2013). Credit sales and advance payments: Substitutes or complements? Economics Letters, 118(1), 173–176.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2014). Three stage trade credit policy in a three-layer supply chain—A production-inventory model. International Journal of Systems Science, 45(9), 1844–1868.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2016). Two-echelon competitive integrated supply chain model with price and credit period dependent demand. International Journal of Systems Science, 47(5), 995–1007.

    Google Scholar 

  • Progress Grocer. (2015). 82nd Annual report of the grocery industry. Progress Grocer (April). Retrieved August 22, 2016 from http://magazine.progressivegrocer.com/i/491812-apr-2015/39.

  • Roy, M. D., & Sana, S. S. (2021). Production rate and lot size-dependent lead time reduction strategies in a supply chain model with stochastic demand, controllable setup cost and trade-credit financing. RAIRO-Operations Research, 55, S1469–S1485.

    Google Scholar 

  • Sana, S. S., & Chaudhuri, K. S. (2008). A deterministic EOQ model with delays in payments and price-discount offers. European Journal of Operational Research, 184(2), 509–533.

    Google Scholar 

  • Shi, Y., Zhang, Z., Zhou, F., & Shi, Y. (2019). Optimal ordering policies for a single deteriorating item with ramp-type demand rate under permissible delay in payments. Journal of the Operational Research Society, 70(10), 1848–1868.

    Google Scholar 

  • Shi, Y., Zhang, Z., Chen, S. C., Cárdenas-Barrón, L. E., & Skouri, K. (2020). Optimal replenishment decisions for perishable products under cash, advance, and credit payments considering carbon tax regulations. International Journal of Production Economics, 223, 107514. https://doi.org/10.1016/j.ijpe.2019.09.035.

    Article  Google Scholar 

  • Skouri, K., Konstantaras, I., Papachristos, S., & Teng, J. T. (2011). Supply chain models for deteriorating products with ramp type demand rate under permissible delay in payments. Expert Systems with Applications, 38(12), 14861–14869.

    Google Scholar 

  • Taleizadeh, A. A. (2014a). An EOQ model with partial backordering and advance payments for an evaporating item. International Journal of Production Economics, 155, 185–193.

    Google Scholar 

  • Taleizadeh, A. A. (2014b). An economic order quantity model for deteriorating item in a purchasing system with multiple prepayments. Applied Mathematical Modelling, 38(23), 5357–5366.

    Google Scholar 

  • Taleizadeh, A. A. (2017). Lot-sizing model with advance payment pricing and disruption in supply under planned partial backordering. International Transactions in Operational Research, 24(4), 783–800.

    Google Scholar 

  • Taleizadeh, A. A., Pentico, D. W., Jabalameli, M. S., & Aryanezhad, M. (2013a). An economic order quantity model with multiple partial prepayments and partial backordering. Mathematical and Computer Modelling, 57(3–4), 311–323.

    Google Scholar 

  • Taleizadeh, A. A., Pentico, D. W., Jabalameli, M. S., & Aryanezhad, M. (2013b). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354–368.

    Google Scholar 

  • Taleizadeh, A. A., Wee, H. M., & Jolai, F. (2013c). Revisiting a fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Mathematical and Computer Modelling, 57(5–6), 1466–1479.

    Google Scholar 

  • Taleizadeh, A. A., Lashgari, M., Akram, R., & Heydari, J. (2016). Imperfect economic production quantity model with upstream trade credit periods linked to raw material order quantity and downstream trade credit periods. Applied Mathematical Modelling, 40(19–20), 8777–8793.

    Google Scholar 

  • Taleizadeh, A. A., Tavakoli, S., & San-José, L. A. (2018). A lot sizing model with advance payment and planned backordering. Annals of Operations Research, 271(2), 1001–1022.

    Google Scholar 

  • Taleizadeh, A. A., Pourmohammad-Zia, N., & Konstantaras, I. (2019). Partial linked-to-order delayed payment and life time effects on decaying items ordering. Operational Research. https://doi.org/10.1007/s12351-019-00501-4.

    Article  Google Scholar 

  • Taleizadeh, A. A., Tavassoli, S., & Bhattacharya, A. (2020). Inventory ordering policies for mixed sale of products under inspection policy, multiple prepayment, partial trade credit, payments linked to order quantity and full backordering. Annals of Operations Research, 287(1), 403–437.

    Google Scholar 

  • Tavakoli, S., & Taleizadeh, A. A. (2017). An EOQ model for decaying item with full advanced payment and conditional discount. Annals of Operations Research, 259(1), 415–436.

    Google Scholar 

  • Teng, J. T., Min, J., & Pan, Q. (2012). Economic order quantity model with trade credit financing for non-decreasing demand. Omega, 40(3), 328–335.

    Google Scholar 

  • Teng, J. T., Yang, H. L., & Chern, M. S. (2013). An inventory model for increasing demand under two levels of trade credit linked to order quantity. Applied Mathematical Modelling, 37(14–15), 7624–7632.

    Google Scholar 

  • Teng, J. T. (2009). Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. International Journal of Production Economics, 119(2), 415–423.

    Google Scholar 

  • Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018). Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. International Journal of Production Economics, 200, 16–36.

    Google Scholar 

  • Wu, J., Chang, C. T., Teng, J. T., & Lai, K. K. (2017). Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date. International Journal of Production Economics, 193, 343–351.

    Google Scholar 

  • Wu, J., Teng, J. T., & Chan, Y. L. (2018). Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes. International Journal of Systems Science: Operations & Logistics, 5(4), 310–326.

    Google Scholar 

  • Zhang, Q., Tsao, Y. C., & Chen, T. H. (2014). Economic order quantity under advance payment. Applied Mathematical Modelling, 38(24), 5910–5921.

    Google Scholar 

  • Zia, N. P., & Taleizadeh, A. A. (2015). A lot-sizing model with backordering under hybrid linked-to-order multiple advance payments and delayed payment. Transportation Research Part E: Logistics and Transportation Review, 82, 19–37.

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Fundamental Research Funds for the Central Universities (No. 2018JDXM05), Guangxi Science Foundation (No. 2018GXNSFBA281180), The Ministry of education of Humanities and Social Science Project (No. 19YJC630182), and Hezhou University Project (2019ZZZK05). The research of the third author has been supported respectively by NRF Singapore (NRF-RSS2016-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

From (8), let

$$ f_{1} (T) = K + c\int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} + (h + I_{c} c)\int_{0}^{T} {\int_{t}^{T} {D(x)e^{\theta (x - t)} {\text{d}}x\,{\text{d}}t} } . $$

and

$$ g_{1} (T) = T > 0 $$

Now, evaluating the first-order and second-order derivatives of \(f_{1} (T)\) with respect to \(T\), we obtain

$$ f^{\prime}_{1} (T) = cD(T)e^{\theta T} + (h + I_{c} c)\int_{0}^{T} {D(T)e^{\theta (T - t)} {\text{d}}t} . $$
(A1)

and

$$ f_{1}^{\prime \prime } (T) = ce^{\theta T} [D^{\prime } (T) + \theta D(T)] + (h + I_{c} c)\{ D(T) + \int_{0}^{T} {[D^{\prime } (T) + \theta D(T)]e^{\theta (T - t)} {\text{d}}t} \} > 0. $$
(A2)

Applying Theorems 3.2.9–3.2.10 from Cambini and Martein (2009), we can get the conclusion that \(TC_{1} (T) = f_{1} (T)/g_{1} (T)\) is a strictly pseudo-convex function with respect to \(T.\) Therefore, a unique global minimum \(T_{1}^{ * }\) exists. The proof of Theorem 1 gets complete here.

Appendix B: Proof of Theorem 2

From (14), for convenience, let

$$ \begin{aligned} f_{21} (T) & = K + [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]\int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} \\ & \quad + h\int_{0}^{T} {\int_{t}^{T} {D(x)e^{\theta (x - t)} {\text{d}}x{\text{d}}t} } + (u + v)(1 - r)cI_{c} \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } \\ & \quad + w(1 - r)cI_{c} \int_{{R_{1} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } - wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {\int_{{R_{2} }}^{t} {D(x - N){\text{d}}x{\text{d}}t} } . \\ \end{aligned} $$
(B1)

and

$$ g_{21} (T) = T > 0 $$

Evaluating the first-and the second-order derivatives of \(f_{21} (T)\) with respect to \(T\), we obtain

$$ \begin{aligned} f_{21}^{\prime } (T) & = [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]D(T)e^{\theta T} \\ & \quad + h\int_{0}^{T} {D(T)e^{\theta (T - t)} {\text{d}}t} + (u + v)(1 - r)cI_{c} \int_{{R_{2} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} \\ & \quad + w(1 - r)cI_{c} \int_{{R_{1} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} \\ \end{aligned} $$
(B2)

and

$$ \begin{aligned} f_{21}^{\prime \prime } (T) & = [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]e^{\theta T} [D^{\prime } (T) + \theta D(T)] \\ & \quad + h\left\{ {D(T) + \int_{0}^{T} {[D^{\prime } (T) + \theta D(T)]e^{\theta (T - t)} {\text{d}}t} } \right\} \\ & \quad + (u + v)(1 - r)cI_{c} \left\{ {D(T) + \int_{{R_{2} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} } \right\} \\ & \quad + w(1 - r)cI_{c} \left\{ {D(T) + \int_{{R_{1} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} } \right\} > 0 \\ \end{aligned} $$
(B3)

Therefore, \(TC_{21} (T)\) is a strictly pseudo-convex function with respect to T, thus a unique global minimum \(T_{21}^{ * }\) exists. The proof of Part (a) of Theorem 2 gets complete here.

Calculating the first-order derivative of \(TC_{21} (T)\) in (14) with respect to T, we yield

$$ \begin{aligned} \frac{{{\text{d}}TC_{21} (T)}}{{{\text{d}}T}} & = - \frac{1}{{T^{2} }}\{ K - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]\left[ {TD(T)e^{\theta T} - \int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} } \right] \\ & \quad - h\left[ {T\int_{0}^{T} {D(T)e^{\theta (T - t)} {\text{d}}t} - \int_{0}^{T} {\int_{t}^{T} {D(x)e^{\theta (x - t)} {\text{d}}x{\text{d}}t} } } \right] \\ & \quad - (u + v)(1 - r)cI_{c} \left[ {T\int_{{R_{2} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} - \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } } \right] \\ & \quad - w(1 - r)cI_{c} \left[ {T\int_{{R_{1} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} - \int_{{R_{1} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } } \right] \\ & \quad - wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {\int_{{R_{2} }}^{t} {D(x - R_{2} ){\text{d}}x{\text{d}}t = - \frac{1}{{T^{2} }}H_{21} (T)} } . \\ \end{aligned} $$
(B4)

Calculating the first-order derivative of \(H_{21} (T)\) with respect to T, we obtain

$$ \begin{aligned} H_{21}^{\prime } (T) & = - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]Te^{\theta T} [D^{\prime } (T) + \theta D(T)] \\ & \quad - hT\left\{ {D(T) + \int_{0}^{T} {[D^{\prime } (T) + \theta D(T)]e^{\theta (T - t)} {\text{d}}t} } \right\} \\ & \quad - (u + v)(1 - r)cI_{c} T\left\{ {D(T) + \int_{{R_{2} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} } \right\} \\ & \quad - w(1 - r)cI_{c} T\left\{ {D(T) + \int_{{R_{1} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} } \right\} < 0 \\ \end{aligned} $$
(B5)

Consequently, \(H_{21} (T)\) is strictly decreasing on \(T \in [R_{1} - R_{2} , + \infty ).\) Obviously, \(\mathop {\lim }\limits_{T \to + \infty } H_{21} (T) = - \infty .\) Hence, let

$$ \begin{aligned} \Delta_{21} & = H_{21} (R_{1} - R_{2} ) \\ & = K - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ][(R_{1} - R_{2} )D(R_{1} - R_{2} )e^{{\theta (R_{1} - R_{2} )}} \\ & \quad - \int_{0}^{{R_{1} - R_{2} }} {D(x)e^{\theta x} dx]} - h[(R_{1} - R_{2} )\int_{0}^{{R_{1} - R_{2} }} {D(R_{1} - R_{2} )e^{{\theta (R_{1} - R_{2} - t)}} dt} \\ & \quad - \int_{0}^{{R_{1} - R_{2} }} {\int_{t}^{{R_{1} - R_{2} }} {D(x)e^{\theta (x - t)} dxdt} } ] - (u + v)(1 - r)cI_{c} [(R_{1} - R_{2} )\int_{{R_{2} }}^{{R_{1} }} {D(R_{1} - R_{2} )e^{{\theta (R_{1} - t)}} dt} \\ & \quad - \int_{{R_{2} }}^{{R_{1} }} {\int_{{t - R_{2} }}^{{R_{1} - R_{2} }} {D(x)e^{{\theta (x - t + R_{2} )}} dxdt} } ] - wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {\int_{{R_{2} }}^{t} {D(x - R_{2} )dxdt} } \\ \end{aligned} $$
(B6)

If \(\Delta_{21} = H_{21} (R_{1} - R_{2} ) > 0,\) applying the Mean Value Theorem, we obtain a unique \(T_{21}^{ * } \in (R_{1} - R_{2} , + \infty )\) such that \(H_{21} (T_{21}^{ * } ) = 0\). \(H_{21} (T)\) is a positive function in \(T \in [R_{1} - R_{2} ,T_{21}^{ * } ],\) and a negative function in \(T \in [T_{21}^{ * } , + \infty ].\) Therefore, \(TC_{21} (T)\) is decreasing in \(T \in [R_{1} - R_{2} ,T_{21}^{ * } ],\) and increasing in \(T \in [T_{21}^{ * } , + \infty ).\) The proof of Part (b) of Theorem 2 gets complete here.

If \(\Delta_{21} = H_{21} (R_{1} - R_{2} ) < 0,\) then \(H_{21} (T)\) is negative for all \(T \in [R_{1} - R_{2} , + \infty ).\) Hence, \(TC_{21} (T)\) is increasing in \(T \in [R_{1} - R_{2} , + \infty ).\) The proof of Part (c) of Theorem 2 gets complete here.

Appendix C: Proof of Proposition 1

$$ \begin{aligned} ({\text{a}})\quad \quad \frac{{\partial TC_{21} (T)}}{\partial r}\left| {_{{T = T_{21}^{ * } }} } \right. & = \left( {\frac{{\partial TC_{21} (T)}}{\partial T} \cdot \frac{\partial T}{{\partial r}} + \frac{{\partial TC_{21} (T)}}{\partial r}} \right)\left| {_{{T = T_{21}^{ * } }} } \right. \\ & = - \frac{1}{T}\left\{ {[c + cI_{c} u(R_{2} + d) + cI_{c} vR_{2} ]\int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} } \right. \\ & \quad + (u + v)cI_{c} \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } \\ & \quad \left. { + wcI_{c} \int_{{R_{1} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } } \right\}\left| {_{{T = T_{21}^{ * } }} } \right. < 0. \\ \end{aligned} $$
(C1)
$$ \begin{aligned} ({\text{b}})\quad \quad \frac{{\partial TC_{21} (T)}}{{\partial R_{1} }}\left| {_{{T = T_{21}^{ * } }} } \right. & = \left( {\frac{{\partial TC_{21} (T)}}{\partial T} \cdot \frac{\partial T}{{\partial R_{1} }} + \frac{{\partial TC_{21} (T)}}{{\partial R_{1} }}} \right)\left| {_{{T = T_{21}^{ * } }} } \right. \\ & = - \frac{1}{T}\left\{ {w(1 - r)cI_{c} \int_{{R_{1} - R_{2} }}^{T} {D(x)e^{{\theta (x - R_{1} + R_{2} )}} {\text{d}}x} + wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {D(x - R_{2} ){\text{d}}x} } \right\}\left| {_{{T = T_{21}^{ * } }} } \right. < 0. \\ \end{aligned} $$
(C2)
$$ \begin{aligned} ({\text{c}})\quad \quad \frac{{\partial TC_{21} (T)}}{\partial d}\left| {_{{T = T_{21}^{ * } }} } \right. & = \left( {\frac{{\partial TC_{21} (T)}}{\partial T} \cdot \frac{\partial T}{{\partial d}} + \frac{{\partial TC_{21} (T)}}{\partial d}} \right)\left| {_{{T = T_{21}^{ * } }} } \right. \\ & = \frac{1}{T}\left[ {(1 - r)cI_{c} u\int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} } \right]\left| {_{{T = T_{21}^{ * } }} } \right. > 0. \\ \end{aligned} $$
(C3)
$$ \begin{aligned} ({\text{d}})\quad \quad \frac{{\partial TC_{21} (T)}}{{\partial R_{2} }}\left| {_{{T = T_{21}^{ * } }} } \right. & = \left( {\frac{{\partial TC_{21} (T)}}{\partial T} \cdot \frac{\partial T}{{\partial R_{2} }} + \frac{{\partial TC_{21} (T)}}{{\partial R_{2} }}} \right)\left| {_{{T = T_{21}^{ * } }} } \right. \\ & = \frac{1}{T}\left\{ {(u + v)(1 - r)cI_{c} \int_{{R_{2} }}^{{T + R_{2} }} {\left[ {D(t - R_{2} ) + \int_{{t - R_{2} }}^{T} {D(x)\theta } (t - R_{2} )e^{{\theta (x - t + R_{2} )}} {\text{d}}x} \right]{\text{d}}t} } \right. \\ & \quad + w(1 - r)cI_{c} \int_{{R_{1} }}^{{T + R_{2} }} {\left[ {D(t - R_{2} ) + \int_{{t - R_{2} }}^{T} {D(x)\theta } (t - R_{2} )e^{{\theta (x - t + R_{2} )}} {\text{d}}x} \right]{\text{d}}t} \\ & \quad \left. { + wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {\left[ {D(0) + \int_{{R_{2} }}^{t} {D^{\prime } (x - R_{2} ){\text{d}}x} } \right]{\text{d}}t} } \right\}\left| {_{{T = T_{21}^{ * } }} } \right. > 0. \\ \end{aligned} $$
(C4)

Appendix D: Proof of Theorem 3

From (16), we define

$$ \begin{aligned} f_{22} (T) & = K + [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]\int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} \\ & \quad + h\int_{0}^{T} {\int_{t}^{T} {D(x)e^{\theta (x - t)} {\text{d}}x{\text{d}}t} } + (u + v)(1 - r)c_{p} I_{c} \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } \\ & \quad - wpI_{e} \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{R_{2} }}^{t} {D(x - R_{2} ){\text{d}}x{\text{d}}t} } - wpI_{e} (R_{1} - T - R_{2} )\int_{0}^{T} {D(t){\text{d}}t} \\ \end{aligned} $$
(D1)

and

$$ g_{22} (T) = T > 0 $$

Now, calculating the first order and the second-order derivatives of \(f_{22} (T)\) with respect to T, we have

$$ \begin{aligned} f_{22}^{\prime } (T) & = [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]D(T)e^{\theta T} \\ & \quad + h\int_{0}^{T} {D(T)e^{\theta (T - t)} dt} + (u + v)(1 - r)cI_{c} \int_{{R_{2} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} \\ & \quad - wpI_{e} \int_{{R_{2} }}^{{T + R_{2} }} {D(x - R_{2} ){\text{d}}x + } wpI_{e} \int_{0}^{T} {D(t){\text{d}}t} - wpI_{e} (R_{1} - T - R_{2} )D(T) \\ \end{aligned} $$
(D2)

and

$$ \begin{aligned} f_{22}^{\prime \prime } (T) & = \{ [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]e^{\theta T} - wpI_{e} (R_{1} - T - R_{2} )\} D^{\prime } (T) \\ & \quad + [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]D(T)\theta e^{\theta T} \\ & \quad + h\{ D(T) + \int_{0}^{T} {[D^{\prime } (T) + \theta D(T)]e^{\theta (T - t)} {\text{d}}t} \} \\ & \quad + (u + v)(1 - r)cI_{c} \{ D(T) + \int_{{R_{2} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} \} + wpI_{e} D(T) \\ \end{aligned} $$
(D3)

Without loss of generality, we may assume that \([(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]e^{\theta T} - wpI_{e} (R_{1} - T - R_{2} ) > 0\), because in the second term, \(\tau\), \(I_{e}\) and \((M - T - N)\) all are significantly less than 1. Therefore, \(f_{22}^{\prime \prime } (T) > 0\), hence, \(TC_{22} (T)\) is a strictly pseudo-convex function in T, which implies a unique global minimum \(T_{22}^{ * }\) exists such that \(TC_{22} (T)\) is minimized. The proof of Part (a) of Theorem 3 gets complete here.

Calculating the first-order derivative of \(TC_{22} (T)\) in (21) with respect to T, we get

$$ \begin{aligned} \frac{{{\text{d}}TC_{22} (T)}}{{{\text{d}}T}} & = - \frac{1}{{T^{2} }}\left\{ {K - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]\left[ {TD(T)e^{\theta T} - \int_{0}^{T} {D(x)e^{\theta x} {\text{d}}x} } \right]} \right. \\ & \quad - (u + v)(1 - r)cI_{c} \left[ {T\int_{{R_{2} }}^{{T + R_{2} }} {D(T)e^{{\theta (T - t + R_{2} )}} {\text{d}}t} - \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{t - R_{2} }}^{T} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } } \right] \\ & \quad - h\left[ {T\int_{0}^{T} {D(T)e^{\theta (T - t)} {\text{d}}t} - \int_{0}^{T} {\int_{t}^{T} {D(x)e^{\theta (x - t)} {\text{d}}x{\text{d}}t} } } \right] \\ & \quad + wpI_{e} \left[ {T\int_{{R_{2} }}^{{T + R_{2} }} {D(x - R_{2} ){\text{d}}x - } \int_{{R_{2} }}^{{T + R_{2} }} {\int_{{R_{2} }}^{t} {D(x - R_{2} ){\text{d}}x{\text{d}}t} } } \right] \\ & \quad - \left. {wpI_{e} \left[ {T\int_{0}^{T} {D(t)dt - (R_{1} - T - R_{2} )} TD(T) + (R_{1} - T - R_{2} )\int_{0}^{T} {D(t){\text{d}}t} } \right]} \right\} = - \frac{1}{{T^{2} }}H_{22} (T) \\ \end{aligned} $$
(D4)

Furthermore,

$$ \begin{aligned} H_{22}^{\prime } (T) & = \{ - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]e^{\theta T} + wpI_{e} (R_{1} - T - R_{2} )\} TD^{\prime } (T) \\ & \quad - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]TD(T)\theta ]e^{\theta T} \\ & \quad - hT\left\{ {D(T) + \int_{0}^{T} {[D^{\prime } (T) + \theta D(T)]e^{\theta (T - t)} {\text{d}}t} } \right\} \\ & \quad - (u + v)(1 - r)cI_{c} T\left\{ {D(T) + \int_{{R_{2} }}^{{T + R_{2} }} {[D^{\prime } (T) + \theta D(T)]e^{{\theta (T - t + R_{2} )}} {\text{d}}t} } \right\} - wpI_{e} TD(T) \\ \end{aligned} $$
(D5)

Similarly, without loss of generality, we may assume that.

$$ - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]e^{\theta T} + wpI_{e} (R_{1} - T - R_{2} ) < 0. $$

Hence, \(H_{22}^{\prime } (T) < 0\). Since \(H_{22} (0) = K > 0\), let

$$ \begin{aligned} \Delta_{22} & = H_{22} (R_{1} - R_{2} ) \\ & = K - [(1 - r)c + (1 - r)cI_{c} u(R_{2} + d) + (1 - r)cI_{c} vR_{2} ]\left[ {(R_{1} - R_{2} )D(R_{1} - R_{2} )e^{{\theta (R_{1} - R_{2} )}} } \right. \\ & \quad - \int_{0}^{{R_{1} - R_{2} }} {D(x)e^{\theta x} {\text{d}}x]} - h[(R_{1} - R_{2} )\int_{0}^{{R_{1} - R_{2} }} {D(R_{1} - R_{2} )e^{{\theta (R_{1} - R_{2} - t)}} {\text{d}}t} \\ & \quad \left. { - \int_{0}^{{R_{1} - R_{2} }} {\int_{t}^{{R_{1} - R_{2} }} {D(x)e^{\theta (x - t)} {\text{d}}x{\text{d}}t} } } \right] - (u + v)(1 - r)cI_{c} \left[ {(R_{1} - R_{2} )\int_{{R_{2} }}^{{R_{1} }} {D(R_{1} - R_{2} )e^{{\theta (R_{1} - t)}} {\text{d}}t} } \right. \\ & \quad \left. { - \int_{{R_{2} }}^{{R_{1} }} {\int_{{t - R_{2} }}^{{R_{1} - R_{2} }} {D(x)e^{{\theta (x - t + R_{2} )}} {\text{d}}x{\text{d}}t} } } \right] - wpI_{e} \int_{{R_{2} }}^{{R_{1} }} {\int_{{R_{2} }}^{t} {D(x - R_{2} ){\text{d}}x{\text{d}}t} } \\ \end{aligned} $$
(D6)

Consequently, if \(\Delta_{22} \ge 0,\) then \(H_{22} (T) \ge 0\) for all \(T \in [0,R_{1} - R_{2} ].\) Hence, \(TC^{\prime}_{22} (T) < 0\) for all \(T \in [0,R_{1} - R_{2} ],\) and \(TC_{22} (T)\) is decreasing in \(T \in [0,R_{1} - R_{2} ].\) This completes the proof of Part (b) of Theorem 3. On the other hand, if \(\Delta_{22} < 0,\) applying the Mean Value Theorem, we know that there exists a unique \(T_{22}^{ * } \in (0,R_{1} - R_{2} )\) such that \(H_{22} (T) = 0\). \(H_{22} (T)\) is positive in \(T \in [0,T_{21}^{ * } ],\) and negative in \(T \in [T_{21}^{ * } ,R_{1} - R_{2} ].\) Therefore, \(TC_{21} (T)\) is decreasing in \(T \in [0,T_{21}^{ * } ],\) and increasing in \(T \in [T_{21}^{ * } ,R_{1} - R_{2} ].\) The proof of Part (c) of Theorem 3 gets complete here.

Appendix F: Proof of Theorem 4

From (20) and (22), we know that \(\Delta_{21} = \Delta_{22}\), Moreover, \(TC_{21} (R_{1} - R_{2} ) = TC_{22} (R_{1} - R_{2} ).\) Therefore, when \(R_{2} \le R_{1} .\) If \(\Delta_{21} = \Delta_{22} < 0,\) then (1) \(TC_{22} (T)\) is decreasing on \((0,T_{22}^{ * } )\) and increasing on \((T_{22}^{ * } ,R_{1} - R_{2} )\); (2) \(TC_{21} (T)\) is increasing on \((R_{1} - R_{2} , + \infty ).\) Combining (1), (2), and the fact that \(TC_{22} (T_{22}^{ * } ) < TC_{21} (R_{1} - R_{2} ) = TC_{22} (R_{1} - R_{2} ).\) We can conclude that \(T_{2}^{ * } = T_{22}^{ * }\). This completes the proof of Part (a) of Theorem 4.

If \(\Delta_{211} = \Delta_{22} > 0,\) then (1) \(TC_{21} (T)\) is decreasing on \((R_{1} - R_{2} ,T_{21}^{ * } ),\) and increasing on \((T_{21}^{ * } , + \infty )\); (2) \(TC_{22} (T)\) is decreasing on \((0,R_{1} - R_{2} )\). Then from (1), (2), and the fact that \(TC_{21} (T_{21}^{ * } ) < TC_{21} (R_{1} - R_{2} ) = TC_{22} (R_{1} - R_{2} ).\) We can easily get \(T_{2}^{ * } = T_{21}^{ * }\). The proof of Part (b) of Theorem 4 gets complete here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, Z., Tiwari, S. et al. Retailer's optimal strategy for a perishable product with increasing demand under various payment schemes. Ann Oper Res 315, 899–929 (2022). https://doi.org/10.1007/s10479-021-04074-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04074-4

Keywords

Navigation