Skip to main content
Log in

Risk management for crude oil futures: an optimal stopping-timing approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Timing the selling of crude oil futures to control risk is a worth studying question given the swift fall of their prices. This paper proposes an optimal stopping model to find the optimal selling time at the beginning of the downtrend. The model depends on the crude oil futures prices drawdown and the boundary to identify the occurrence of downtrend in real-time. The numerical simulation and empirical analyses help verify the effectiveness of the proposed optimal stopping time model, especially, in 2007, when the model can effectively avoid losses. The conclusions of the paper provide a new perspective for investors to control risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bry, G., & Boschan, C. (1971). Cyclical Anaylsis of Time Series: Selected Procedures and Computer Programs. Incorporated: National Bureau of Economic Research.

    Google Scholar 

  • Cerqueti, R., & Fanelli, V. (2019). Long memory and crude oil’s price predictability. Annals of Operations Research, 5, 1–12.

    Google Scholar 

  • Chang, C.-L., McAleer, M., & Tansuchat, R. (2011). Crude oil hedging strategies using dynamic multivariate garch. Energy Economics, 33(5), 912–923.

    Article  Google Scholar 

  • Cheng, F., Fan, T., Fan, D., & Li, S. (2018). The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm. Energy Economics, 72, 341–355.

    Article  Google Scholar 

  • Choi, K., & Hammoudeh, S. (2010). Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment. Energy policy, 38(8), 4388–4399.

    Article  Google Scholar 

  • Claessens, S., Kose, M. A., & Terrones, M. E. (2009). What happens during recessions, crunches and busts? Economic Policy, 24(60), 653–700.

    Article  Google Scholar 

  • Das, D., Bhatia, V., Pillai, J., & Tiwari, A. K. (2018). The relationship between oil prices and us economy revisited. Energy Sources, Part B: Economics, Planning, and Policy, 13(1), 37–45.

    Article  Google Scholar 

  • Dayanik, S., & Karatzas, I. (2003). On the optimal stopping problem for one-dimensional diffusions. Stochastic Processes & Thr Applications, 107(2), 173–212.

    Article  Google Scholar 

  • Du, X., Cindy, L. Y., & Hayes, D. J. (2011). Speculation and volatility spillover in the crude oil and agricultural commodity markets: A bayesian analysis. Energy Economics, 33(3), 497–503.

    Article  Google Scholar 

  • Du Toit, J., & Peskir, G. (2008). Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift, pages 95–112. Springer Berlin Heidelberg, Berlin, Heidelberg.

  • Dynkin, E., & Yushkevich, A. A. (1969). Markov processes: Theorems and problems. Plenum Press.

  • Ekström, E., & Lu, B. (2011). Optimal selling of an asset under incomplete information. International Journal of Stochastic Analysis, 2011, 1–17.

    Article  Google Scholar 

  • Espinosa, G.-E., & Touzi, N. (2012). Detecting the maximum of a scalar diffusion with negative drift. SIAM Journal on Control and Optimization, 50(5), 2543–2572.

    Article  Google Scholar 

  • Fakeev, A. G. (1970). Optimal stopping rules for stochastic processes with continuous parameter. Theory of Probability and Its Applications, 15(2), 324–331.

    Article  Google Scholar 

  • Fantazzini, D. (2016). The oil price crash in 2014/15: Was there a (negative) financial bubble? Energy Policy, 96, 383–396.

    Article  Google Scholar 

  • Fomin, A., Korotayev, A., & Zinkina, J. (2016). Negative oil price bubble is likely to burst in march-may 2016. a forecast on the basis of the law of log-periodical dynamics. arXiv preprintarXiv:1601.04341.

  • Fong, W. M., & See, K. H. (2002). A markov switching model of the conditional volatility of crude oil futures prices. Energy Economics, 24(1), 71–95.

    Article  Google Scholar 

  • Gil-Alana, L. A., Gupta, R., Olubusoye, O. E., & Yaya, O. S. (2016). Time series analysis of persistence in crude oil price volatility across bull and bear regimes. Energy, 109, 29–37.

    Article  Google Scholar 

  • Guidolin, M., & Pedio, M. (2020). Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help? Annals of Operations Research, 2, 1–40.

    Google Scholar 

  • Günay, S. (2014). Are the scaling properties of bull and bear markets identical? evidence from oil and gold markets. International Journal of Financial Studies, 2(4), 315–334.

    Article  Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Article  Google Scholar 

  • Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and Applied Finance, 3(02), 219–255.

    Article  Google Scholar 

  • Johnson, P., Moriarty, J., & Peskir, G. (2017). Detecting changes in real-time data: A user’s guide to optimal detection. Philosophical Transactions of the Royal Society A, 375(2100), 20160298.

    Article  Google Scholar 

  • Khalfaoui, R., Sarwar, S., & Tiwari, A. K. (2019). Analysing volatility spillover between the oil market and the stock market in oil-importing and oil-exporting countries: Implications on portfolio management. Resources Policy, 62, 22–32.

    Article  Google Scholar 

  • Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–69.

    Article  Google Scholar 

  • Kim, W. J., Hammoudeh, S., Hyun, J. S., & Gupta, R. (2017). Oil price shocks and china’s economy: Reactions of the monetary policy to oil price shocks. Energy Economics, 62, 61–69.

    Article  Google Scholar 

  • Kolodziej, M., Kaufmann, R. K., Kulatilaka, N., Bicchetti, D., & Maystre, N. (2014). Crude oil: Commodity or financial asset? Energy Economics, 46, 216–223.

    Article  Google Scholar 

  • Lammerding, M., Stephan, P., Trede, M., & Wilfling, B. (2013). Speculative bubbles in recent oil price dynamics: Evidence from a bayesian markov-switching state-space approach. Energy Economics, 36, 491–502.

    Article  Google Scholar 

  • Lu, X. F., Lai, K. K., & Liang, L. (2014). Portfolio value-at-risk estimation in energy futures markets with time-varying copula-garch model. Annals of operations research, 219(1), 333–357.

    Article  Google Scholar 

  • Lunde, A., & Timmermann, A. (2004). Duration dependence in stock prices. Journal of Business & Economic Statistics, 22(3), 253–273.

    Article  Google Scholar 

  • Maheu, J. M., & McCurdy, T. H. (2000). Identifying bull and bear markets in stock returns. Journal of Business & Economic Statistics, 18(1), 100–112.

    Google Scholar 

  • Mckean, H. P. (1965). Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics. In Ind Managrev.

  • Minh, N. K., Trung, N. T., Van Khanh, P., et al. (2018). The optimal stopping time for selling an asset when it is uncertain whether the price process is increasing or decreasing when the horizon is infinite. American Journal of Operations Research, 8(02), 82–91.

    Article  Google Scholar 

  • Morton, A. J., & Pliska, S. R. (1995). Optimal portfolio management with fixed transaction costs. Mathematical Finance, 5(4), 337–356.

    Article  Google Scholar 

  • Nandha, M., & Hammoudeh, S. (2007). Systematic risk, and oil price and exchange rate sensitivities in asia-pacific stock markets. Research in International Business and Finance, 21(2), 326–341.

    Article  Google Scholar 

  • Nasir, M. A., Al-Emadi, A. A., Shahbaz, M., & Hammoudeh, S. (2019). Importance of oil shocks and the gcc macroeconomy: A structural var analysis. Resources Policy, 61, 166–179.

    Article  Google Scholar 

  • Oksendal, B. (1985). Stochastic differential equations. The Mathematical Gazette, 77(480), 65–84.

    Google Scholar 

  • Park, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the us and 13 european countries. Energy economics, 30(5), 2587–2608.

    Article  Google Scholar 

  • Pemy, M. (2011). Optimal selling rule in a regime switching lévy market. International Journal of Mathematics and Mathematical Sciences, 2011, 1–28.

    Article  Google Scholar 

  • Pepelyshev, A., & Polunchenko, A. S. (2017). Real-time financial surveillance via quickest change-point detection methods. Stats and its interface, 10(1), 93–106.

    Article  Google Scholar 

  • Peskir, G., & Shiriaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Pliska, S. R., & Selby, M. J. P. (1994). On a free boundary problem that arises in portfolio management. Philosophical Transactions of the Royal Society A, 347(1684), 555–561.

    Google Scholar 

  • Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy economics, 21(5), 449–469.

    Article  Google Scholar 

  • Saida, A. B., & Prigent, J.-L. (2018). On the robustness of portfolio allocation under copula misspecification. Annals of Operations Research, 262(2), 631–652.

    Article  Google Scholar 

  • Sévi, B. (2014). Forecasting the volatility of crude oil futures using intraday data. European Journal of Operational Research, 235(3), 643–659.

    Article  Google Scholar 

  • Shambora, W. E., & Rossiter, R. (2007). Are there exploitable inefficiencies in the futures market for oil? Energy Economics, 29(1), 18–27.

    Article  Google Scholar 

  • Shiryaev, A. (1963). On optimum methods in quickest detection problems. Theory of Probability & Its Applications, 8(1), 22–46.

    Article  Google Scholar 

  • Shiryaev, A. N., Xu, Z. Q., & Zhou, X. Y. (2008). Thou shalt buy and hold. Quantitative Finance, 8(8), 765–776.

    Article  Google Scholar 

  • Sornette, D., Woodard, R., & Zhou, W.-X. (2009). The 2006–2008 oil bubble: Evidence of speculation, and prediction. Physica A: Statistical Mechanics and its Applications, 388(8), 1571–1576.

    Article  Google Scholar 

  • Tabak, B. M., & Cajueiro, D. O. (2007). Are the crude oil markets becoming weakly efficient over time? a test for time-varying long-range dependence in prices and volatility. Energy Economics, 29(1), 28–36.

    Article  Google Scholar 

  • Thompson, M. E. (1971). Continuous parameter optimal stopping problems. Probability Theory and Related Fields, 19(4), 302–318.

    Google Scholar 

  • Tiwari, A. K., Jena, S. K., Mitra, A., & Yoon, S.-M. (2018). Impact of oil price risk on sectoral equity markets: Implications on portfolio management. Energy Economics, 72, 120–134.

    Article  Google Scholar 

  • Tokic, D. (2011). Rational destabilizing speculation, positive feedback trading, and the oil bubble of 2008. Energy Policy, 39(4), 2051–2061.

    Article  Google Scholar 

  • Uddin, G. S., Tiwari, A. K., Arouri, M., & Teulon, F. (2013). On the relationship between oil price and exchange rates: A wavelet analysis. Economic Modelling, 35, 502–507.

    Article  Google Scholar 

  • Vo, M. T. (2009). Regime-switching stochastic volatility: Evidence from the crude oil market. Energy Economics, 31(5), 779–788.

    Article  Google Scholar 

  • Yan, W., & Li, S. (2008). A class of portfolio selection with a four-factor futures price model. Annals of Operations Research, 164(1), 139–165.

    Article  Google Scholar 

  • Yu, L., Wang, S., & Lai, K. K. (2008). Forecasting crude oil price with an emd-based neural network ensemble learning paradigm. Energy Economics, 30(5), 2623–2635.

    Article  Google Scholar 

  • Zhang, Q. (2001). Stock trading: An optimal selling rule. SIAM Journal on Control and Optimization, 40(1), 64–87.

    Article  Google Scholar 

  • Zhang, Y., & Hamori, S. (2020). Forecasting crude oil market crashes using machine learning technologies. Energies, 13(10), 2440.

    Article  Google Scholar 

  • Zhang, Y., Ma, F., Shi, B., & Huang, D. (2018). Forecasting the prices of crude oil: An iterated combination approach. Energy Economics, 70, 472–483.

    Article  Google Scholar 

  • Zhang, Y., Ma, F., & Wei, Y. (2019). Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches. Energy Economics, 81, 1109–1120.

    Article  Google Scholar 

  • Zhang, Y.-J., & Wang, J. (2015). Exploring the wti crude oil price bubble process using the markov regime switching model. Physica A: Statistical Mechanics and its Applications, 421, 377–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Theorem 1

Proof of Theorem 1

According to Peskir and Shiriaev (2006), \(E|\tau - \theta |\) can be represented as

$$\begin{aligned} E|\tau -\theta |=\mathrm {E}\left[ \int _{0}^{\tau }F(\frac{S_{t}-B_{t}}{\sqrt{1-t}})dt\right] +\frac{1}{2} \end{aligned}$$
(1.1)

where \(F(x) = 4\Phi (x) - 3\). Our optimal stopping problem 3.5 can be transformed as

$$\begin{aligned} V = \inf _{\tau \in \mathfrak {M}} E\left( \int ^{\tau }_0 F\left( \frac{S_t - B_t}{\sqrt{1 - t}}dt\right) \right) + \frac{1}{2}. \end{aligned}$$
(1.2)

Because \(S_t-B_t\) and \(|B_t|\) have the same distribution, we can replace \(S_t - B_t\) with \(|B_t|\). Then our optimal stopping problem can be simplified as

$$\begin{aligned} V = \inf _{\tau \in \mathfrak {M}} E\left( \int ^{\tau }_0 F\left( \frac{|B_t|}{\sqrt{1 - t}}dt\right) \right) + \frac{1}{2}\text {.} \end{aligned}$$
(1.3)

Let \(1-t = e^{-2s}\), then \(\frac{B_t}{\sqrt{1 - t}} = e^sB_{1-e^{-2s}}\). Its differential is

$$\begin{aligned} de^sB_{1-e^{-2s}} = e^{s}B_{1-e^{-2s}}ds + e^{s}dB_{1-e^{-2s}} = e^{s}B_{1-e^{-2s}}ds + \sqrt{2}d\tilde{B}_s \end{aligned}$$
(1.4)

where \(\tilde{B}_s = \frac{1}{\sqrt{2}}\int _{0}^{s}e^{t}dB_{1-e^{-2t}}\). Because \(\tilde{B}_s\) is the Itô integral, its mean value and variance are \(E\tilde{B}_s = 0\) and \(Var(\tilde{B}_s) = s\), and it is also a martingale. Hence, \(\tilde{B}_s\) can be defined as a Brownian motion. We set process \(Y_s\) as

$$\begin{aligned} Y_s&= e^sB_{1-e^{-2s}}\text {, } \quad Y_0 = y \quad \text {,} \end{aligned}$$
(1.5)
$$\begin{aligned} dY_s&= Y_sds + \sqrt{2}d\tilde{B}_s\text {.} \end{aligned}$$
(1.6)

Then the infinitesimal generator of \(Y_s\) is

$$\begin{aligned} \mathcal {L}_{Y}=Y\frac{d}{dY}+\frac{d^{2}}{dY^{2}}\text {.} \end{aligned}$$
(1.7)

We replace \(\frac{|B_t|}{\sqrt{1 - t}}\) with \(Y_s\) to obtain

$$\begin{aligned} V=2\inf _{\tau \in \mathfrak {M}}\mathrm {E}\left[ \int _{0}^{s_{\tau }}e^{-2s}F(|Y_{s}|)ds\right] +\frac{1}{2}\text {,} \end{aligned}$$
(1.8)

where \(s_{\tau }=\log (1/\sqrt{1-\tau })\). \(\tau \) on the filtration \(\mathcal {F}^B_t\)and \(s_{\tau }\) on the filtration \(\mathcal {F}^{\tilde{B}_s}\) correspond one to one. So the optimal stopping problem can be simplified as

$$\begin{aligned} H=\inf _{\rho \ge 0}\mathrm {E}\left[ \int _{0}^{\rho }e^{-2s}F(|Y_{s}|)ds\right] \text {.} \end{aligned}$$
(1.9)

which is a general optimal stopping problem. We assume that the optimal stopping time \(\rho \) satisfies

$$\begin{aligned} \rho =\inf \{s>0\ :\ |Y_{s}|\ge Y^{*}\}\text {.} \end{aligned}$$
(1.10)

According to Peskir and Shiriaev (2006), the optimal stopping problem is equivalent to a Dirichlet differential equation with the free boundary:

$$\begin{aligned} \left\{ \begin{aligned}&(\mathcal {L}_{Y}-2)H(y)=-F(|y|)\ \text {when} \ y\in (-y^{*},\ y^{*})\ \\&H(\pm y^{*})=0 \\&H'(\pm y^{*})=0 \end{aligned} \right. \end{aligned}$$
(1.11)

The solution is

$$\begin{aligned} \hat{H}(y)=\Phi (y^{*})(1+y^{2})-y\varphi (y)+(1-y^{2})\Phi (y))-\frac{3}{2}, y\in [0,\ y^{*}] \end{aligned}$$
(1.12)

where \(y^*\) is the unique root of the following equation.

$$\begin{aligned} 4\Phi (y) - 2y\phi (y) - 3 = 0 \end{aligned}$$
(1.13)

Next, we need to verify the function \(\hat{H}(y)\) is the minimum value function and \(\rho \) is the optimal stopping time. From Itô integral, we have

$$\begin{aligned} e^{-2s}\hat{H}(Y_{s})=\hat{H}(y)+\int _{0}^{s}e^{-2t}(\mathcal {L}_{Y}\hat{H}(Y_{t})-2\hat{H}(Y_{t}))dt +\sqrt{2}\int _{0}^{s}e^{-2t}\hat{H}'(Y_{s})d\tilde{B}_{t} \end{aligned}$$
(1.14)

Because when \(y\in (-y^{*},\ y^{*})\), \(\mathcal {L}_{Y}\hat{H}(y)-2\hat{H}(y)=-F(|y|)\), and when \(y\notin (-y^{*},\ y^{*})\) , \(\mathcal {L}_{Y}\hat{H}(y)-2\hat{H}(y) >-F(|y|)\), we obtain

$$\begin{aligned} e^{-2s}\hat{H}(Y_{s})\ge \hat{H}(y)-\int _{0}^{s}e^{-2t}F(|Y_{t}|)dt+\sqrt{2}\int _{0}^{s}e^{-2t}\hat{H}'(Y_{s})d\tilde{B}_{t}\text {, } \end{aligned}$$
(1.15)

We set s equals \(\rho \), then \(\hat{H}(Y_{\rho }) = \hat{H}(y^*) = 0\). We have

$$\begin{aligned}&0\ge \hat{H}(y)-\int _{0}^{\rho }e^{-2t}F(|Y_{t}|)dt+\sqrt{2}\int _{0}^{\rho }e^{-2t}\hat{H}'(Y_{s})d\tilde{B}_{t}\text {, } \end{aligned}$$
(1.16)
$$\begin{aligned}&\int _{0}^{\rho }e^{-2t}F(|Y_{t}|)dt\ge \hat{H}(y)+\sqrt{2}\int _{0}^{\rho }e^{-2t}\hat{H}'(Y_{s})d\tilde{B}_{t}\text {.} \end{aligned}$$
(1.17)

Take the expectation of both sides of the above equation, we have

$$\begin{aligned} E\int _{0}^{\rho }e^{-2t}F(|Y_{t}|)dt\ge \hat{H}(y)\text {.} \end{aligned}$$
(1.18)

It is noted that the left-hand side of the inequality \(E\int _{0}^{\rho }e^{-2t}F(|Y_{t}|)dt\) is the minimum of the object function H(y). Because of the definition of the minimum value \(H(y) \le \hat{H}(y)\), we have\(H(y) = \hat{H}(y)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubaker, S., Liu, Z. & Zhan, Y. Risk management for crude oil futures: an optimal stopping-timing approach. Ann Oper Res 313, 9–27 (2022). https://doi.org/10.1007/s10479-021-04092-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04092-2

Keywords

Navigation