Skip to main content

Advertisement

Log in

The optimal product pricing and carbon emissions reduction profit allocation of CET-covered enterprises in the cooperative supply chain

  • S.I.: Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The carbon quota allocation rules of China’s pilot carbon emissions trading (CET) regions are various, which mainly include benchmarking, historical carbon intensity reduction and auctioning. When the allocation rules change, it is unresolved how to achieve the optimal product prices and effectively allocate the carbon emissions reduction profits of CET-covered enterprises in the cooperative supply chain. Thus, this paper uses the Stackelberg game, Nash equilibrium and the Shapley value based on cost modification to investigate these issues. The results indicate that: (1) The increasing carbon prices can always improve the retail prices only under the auctioning rule. Meanwhile, the growing low-carbon awareness of consumer cannot be always conducive to improving the wholesale and retail prices, and the similar product prices of non-CET-covered enterprises have greater impact on the wholesale prices than that on the retail prices. (2) Only under the free carbon quota allocation rules, can the optimal wholesale and retail prices under the Stackelberg game be always higher than those under the Nash equilibrium. Meanwhile, the auctioning rule can better reduce carbon emissions than the free allocation rules. (3) Improving carbon emissions reduction contribution and emission reduction costs can be conducive to increasing the carbon emission reduction profits of the supplier and retailer, while the impact of carbon emission reduction contribution on improving the carbon emission reduction profits is not always greater than that of the carbon emission reduction costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.gmpsp.org.cn/portal/article/index/id/2999/cid/76.html.

  2. https://openknowledge.worldbank.org/bitstream/handle/10986/23874/ETP-CH.pdf?sequence=13&isAllowed=y.

  3. The carbon emission reduction profits denote the profits derived from the saved carbon emission quota in the cooperative supply chain without considering the demand effect. This is because when the retailer increases per unit demand for its product, so does the supplier. Thus, this paper does not allocate the profits derived from the demand effect. For example, if the cooperative supply chain achieve 1000 tonnes of carbon emission reduction and the carbon price is 3$ per tonnes of carbon emissions, the carbon emission reduction profits will be 3000$.

  4. https://www.gmchina.com/content/dam/company/cn/pdf/csr/GM%20China%202018%20CSR%20Report-CN.pdf.

  5. With the winter of the retail industry coming, increasing retails turn to manufacturing-type retailers, such as seven–eleven, Uniqlo and so on. Under this background, this paper assumes that the retailer has manufacturing function. That is to say, the supplier and retailer both have carbon emissions and both can contribute to the carbon emission reduction in the supply chain.

  6. The CET-covered product demand is in the region: \(\Omega = \left\{ {p \in R_{ + } ,p_{0} \in R_{ + } :a - p_{r} - k * \left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right) + c * p_{0} + c * k * e_{0} > 0} \right\}\).

  7. In fact, though the supplier can transfer its carbon emission reduction costs to the retailer by charging a higher wholesale price under the Stackelberg game, it also should share the carbon emission reduction costs since it has to consider the competition of the similar non-CET-covered products and its market shares. The similar setting can be found in the existing literature, such as Chen et al. (2018).

  8. As stated by International Renewable Energy Agency (2018), the whole society should cooperate in low-carbon energy transition and it is important to make sure the fair allocation on the low-carbon transition costs and profits among the cooperative partners.

  9. Specifically, \(\bar{e}_{{mr}} - \Delta e_{{mr}}\) denotes the carbon emissions per unit of CET-covered product in the cooperative supply chain, and \(c * e_{0}\) means that under the substitution effect between the CET-covered product and the similar non-CET-covered product, the expectation of consumer on the carbon emissions per unit of the non-CET-covered product.

  10. Since the changing trends of the retailer’s Shapley value are similar to those of the supplier, thus we just display the changing trends of the supplier’s Shapley value in Fig. 1.

References

  • Ahmed, W., & Omar, M. (2019). Drivers of supply chain transparency and its effects on performance measures in the automotive industry: Case of a developing country. International Journal of Services and Operations Management, 33(2), 159–186.

    Google Scholar 

  • An, Q. X., Wen, Y., Ding, T., & Li, Y. L. (2019). Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method. Omega, 85, 16–25.

    Google Scholar 

  • Bai, Q. G., Chen, M. Y., & Xu, L. (2017). Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items. International Journal of Production Economics, 187, 85–101.

    Google Scholar 

  • Bassi, A. M., Yudken, J. S., & Ruth, M. (2009). Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors. Energy Policy, 37, 3052–3060.

    Google Scholar 

  • BP. (2020). BP Statistical Review of World Energy 2020.

  • Cachon, G. P. (2004). The allocation of inventory risk in a supply chain: Push, pull and advance-purchase discount contracts. Management Science, 50, 222–238.

    Google Scholar 

  • Cachon, G. P. (2014). Retail store density and the cost of greenhouse gas emissions. Management Science, 60, 1907–1925.

    Google Scholar 

  • Cachon, G. P., & Kök, A. G. (2010). Competing manufacturers in a retail supply chain: On contractual form and coordination. Management Science, 56, 571–589.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51, 44.

    Google Scholar 

  • Cachon, G. P., & Swinney, R. (2009). Purchasing, pricing, and quick response in the presence of strategic consumers. Management Science, 55, 497–511.

    Google Scholar 

  • Chen, J. Y., Dimitrov, S., & Pun, H. (2018). The impact of government subsidy on supply chains’ sustainability innovation. Omega, 86, 42–58.

    Google Scholar 

  • Cramton, P., & Kerr, S. (2002). Tradeable carbon permit auctions: How and why to auction not grandfather. Energy Policy, 30, 333–345.

    Google Scholar 

  • Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2015). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’ system. Annals of Operations Research, 228, 135–149.

    Google Scholar 

  • Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part d: Transport and Environment, 17, 370–379.

    Google Scholar 

  • Flynn, B. B., Huo, B. F., & Zhao, X. D. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28, 58–71.

    Google Scholar 

  • Fulop, C. (1988). The role of advertising in the retail marketing mix. International Journal of Advertising, 7, 99–117.

    Google Scholar 

  • Gardner, T. A., Benzie, M., Börner, J., Dawkins, E., Fick, S., Garrett, R., Godar, J., Grimard, A., Lake, S., Larsen, R., Mardas, N., McDermott, C. L., Meyfroidt, P., Osbeck, M., Persson, M., Sembres, T., Suavet, C., Strassburg, B., Trevisan, A., … Wolvekamp, P. (2019). Transparency and sustainability in global commodity supply chains. World Development, 121, 163–177.

    Google Scholar 

  • Gaski, J. F. (1984). The theory of power and conflict in channels of distribution. Journal of Marketing, 15, 107–111.

    Google Scholar 

  • Ge, Z. H., Hu, Q. Y., & Xia, Y. S. (2014). Firms’ R&D cooperation behavior in a supply chain. Production and Operations Management, 23, 599–609.

    Google Scholar 

  • Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.

    Google Scholar 

  • Groenenberg, H., & Blok, K. (2002). Benchmark-based emission allocation in a cap-and-trade system. Climate Policy, 2, 105–109.

    Google Scholar 

  • Haeringer, G. (2006). A new weigh scheme for the Shapley value. Mathematical Social Sciences, 52, 88–98.

    Google Scholar 

  • Hart, S., & Mas-Colell, A. (1989). Potential, value and consistency. Econometrica, 57, 589–614.

    Google Scholar 

  • Hendrikse, G. (2011). Pooling, access, and countervailing power in channel governance. Management Science, 57, 1692–1702.

    Google Scholar 

  • Huang, Z. M., & Li, S. X. (2001). Co-op advertising models in manufacturer-retailer supply chains: A game theory approach. European Journal of Operational Research, 135, 7–544.

    Google Scholar 

  • Huo, B. F., Zhao, X. D., & Zhou, H. G. (2014). The effects of competitive environment on supply chain information sharing and performance: An empirical study in China. Production and Operations Management, 23, 552–569.

    Google Scholar 

  • Inderfurth, K., Sadrieh, A., & Voigt, G. (2013). The impact of information sharing on supply chain performance under asymmetric information. Production and Operations Management, 22, 410–425.

    Google Scholar 

  • International Renewable Energy Agency. (2018). A roadmap to 2050. https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Global_Energy_Transformation_2018_summary_ZH.pdf?la=en&hash=29BB6BF6762815FDE6AB505F47C057E369A340F8.

  • Jaggi, C., Gupta, M., Kausar, A., & Tiwari, S. (2019). Inventory and credit decisions for deteriorating items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash equilibrium solution. Annals of Operations Research, 274, 309–329.

    Google Scholar 

  • Ji, J. N., Zhang, Z. Y., & Yang, L. (2017). Comparisons of initial carbon allowance allocation rules in O2O retail supply chain with the cap-and-trade regulation. International Journal of Production Economics, 187, 68–84.

    Google Scholar 

  • Kadiyali, V., Chintagunta, P., & Vilcassim, N. (2002). Manufacturer-retailer channel interactions and implications for channel power: An empirical investigation of pricing in a local market. Marketing Science, 19, 127–148.

    Google Scholar 

  • Kim, K., & Chhajed, D. (2002). Product design with multiple quality-type attributes. Management Science, 48, 1502–1511.

    Google Scholar 

  • Laroche, M., Bergeron, J., & Barbaro-Forleo, G. (2001). Targeting consumers who are willing to pay more environmentally-friendly products. Journal of Consumer Marketing, 18, 503–520.

    Google Scholar 

  • Li, Y., Xu, X., Zhao, X., Yeung, J. H. Y., & Ye, F. (2012). Supply chain coordination with controllable lead time and asymmetric information. European Journal of Operational Research, 217, 108–119.

    Google Scholar 

  • Liang, Q., & Hendrikse, G. (2016). Pooling and the yardstick effect of cooperatives. Agricultural Systems, 143, 97–105.

    Google Scholar 

  • Littlechild, S. C., & Owen, G. (1973). A simple expression for the Shapley value in a special case. Management Science, 20, 370–372.

    Google Scholar 

  • Liu, Z. L., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research, 218(3), 602–613.

    Google Scholar 

  • Luo, R. L., Fan, T. J., & Xia, H. Y. (2014). The game analysis of carbon reduction technology investment on supply chain under carbon cap-and-trade rules. Chinese Journal of Management Science, 22, 44–53.

    Google Scholar 

  • Martin, R., Muûls, M., de Preux, L. B., & Wagner, U. J. (2014). Industry compensation under relocation risk: A firm-level analysis of the EU emissions trading scheme. American Economic Review, 108(8), 2482–2508.

    Google Scholar 

  • Ni, J., Zhao, J., & Chu, L. K. (2021). Supply contracting and process innovation in a dynamic supply chain with information asymmetry. European Journal of Operation Research, 288, 552–562.

    Google Scholar 

  • Osborne, M., & Rubinstein, A. (1994). A course in game theory. MIT Press.

    Google Scholar 

  • Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research, 250, 463–485.

    Google Scholar 

  • Shapley, L. S. (1953). A value for n-persons games. Annals of Mathematics Studies, 28, 307–318.

    Google Scholar 

  • Singh, N., & Vives, X. (1984). Price and quantity competition in a differentiated duopoly. The RAND Journal of Economics, 15, 546–554.

    Google Scholar 

  • Somers, T. M., Gupta, Y. P., & Herriott, S. R. (1990). Analysis of cooperative advertising expenditures: A transfer-function modeling approach. Journal of Advertising Research, 30, 35–45.

    Google Scholar 

  • Subramanian, R., Gupta, S., & Talbot, B. (2009). Product design and supply chain coordination under extended producer responsibility. Production and Operations Management, 18, 259–277.

    Google Scholar 

  • Sundarakani, B., Souza, B., Goh, M., Wagner, S. M., & Manikandan, M. (2010). Modeling carbon footprints across the supply chain. International Journal of Production Economics, 128, 43–50.

    Google Scholar 

  • Tsanakas, A., & Barnett, C. (2003). Risk capital allocation and cooperative pricing of insurance liabilities. Insurance: Mathematics and Economics, 33, 239–254.

    Google Scholar 

  • Tseng, S. C., & Hung, S. W. (2014). A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management. Journal of Environmental Management, 133, 315–322.

    Google Scholar 

  • Wang, Q. P., Zhao, D. Z., & He, L. F. (2016). Contracting emission reduction for supply chains considering market low-carbon preference. Journal of Cleaner Production, 120, 72–84.

    Google Scholar 

  • Wen, W., Zhou, P., & Zhang, F. Q. (2018). Carbon emissions abatement: Emissions trading vs consumer awareness. Energy Economics, 76, 34–47.

    Google Scholar 

  • Wu, C. H. (2016). Collaboration and sharing mechanisms in improving corporate social responsibility. Central European Journal of Operational Research, 24, 681–707.

    Google Scholar 

  • Wu, X. L., & Niederhoff, J. A. (2002). Fairness in selling to the newsvendor. Production and Operations Management, 23, 2002–2022.

    Google Scholar 

  • Xia, L., Guo, T., Qin, J., Yue, X., & Zhu, N. (2018). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research, 268, 149–175.

    Google Scholar 

  • Xia, Y., Chen, B., & Kouvelis, P. (2008). Market-based supply chain coordination by matching suppliers’ cost structures with buyers’ order profiles. Management Science, 54, 1861–1875.

    Google Scholar 

  • Xie, X. P., & Zhao, D. Z. (2013). Research on cooperation strategy of enterprises’ carbon emission reduction in low carbon supply chain. Journal of Management Science, 26, 108–119.

    Google Scholar 

  • Xu, X. P., He, P., Xu, H., & Zhang, Q. P. (2017). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Google Scholar 

  • Yang, H. X., & Chen, W. B. (2018). Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus cost-sharing. Omega, 78, 179–191.

    Google Scholar 

  • Yang, M., An, Q., Ding, T., Yin, P., & Liang, L. (2019). Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle. Annals of Operations Research, 278, 123–139.

    Google Scholar 

  • Yu, S. W., Wei, Y. M., & Wang, K. (2014). Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy, 66, 630–644.

    Google Scholar 

  • Yue, J. F., Austin, J., Huang, Z. M., & Chen, B. T. (2013). Pricing and advertisement in a manufacturer-retailer supply chain. European Journal of Operational Research, 231, 492–502.

    Google Scholar 

  • Yue, J. F., Austin, J., Wang, W. C., & Huang, Z. M. (2006). Coordination of cooperative advertising in a two-level supply chain when manufacturer offers discount. European Journal of Operational Research, 168, 65–85.

    Google Scholar 

  • Zakeri, A., Dehghanian, F., Fahimnia, B., & Sarkis, J. (2015). Carbon pricing versus emissions trading: A supply chain planning perspective. International Journal of Production Economics, 164, 197–205.

    Google Scholar 

  • Zetterberg, L. (2014). Benchmarking in the European Union Emissions Trading System: Abatement incentives. Energy Economics, 43, 218–224.

    Google Scholar 

  • Zhang, L., Wang, J., & You, J. (2015a). Consumer environmental awareness and channel coordination with two substitutable products. European Journal of Operational Research, 241(1), 63–73.

    Google Scholar 

  • Zhang, N., & Zhang, W. (2020). Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China? Annals of Operations Research, 290, 145–168.

    Google Scholar 

  • Zhang, T., Choi, T. M., & Zhu, X. (2018a). Optimal green product’s pricing and level of sustainability in supply chains: Effects of information and coordination. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3084-8.

    Article  Google Scholar 

  • Zhang, Y. J., & Hao, J. F. (2017). Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles. Annals of Operations Research, 255, 117–140.

    Google Scholar 

  • Zhang, Y. J., & Sun, Y. F. (2016). The dynamic volatility spillover between European carbon trading market and fossil energy market. Journal of Cleaner Production, 112, 2654–2663.

    Google Scholar 

  • Zhang, Y. J., Sun, Y. F., & Huang, J. L. (2018b). Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment. Energy Policy, 115, 119–130.

    Google Scholar 

  • Zhang, Y. J., Wang, A. D., & Tan, W. P. (2015b). The impact of China’s carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises. Energy Policy, 86, 176–185.

    Google Scholar 

  • Zhao, J., Hobbs, B. F., & Pang, J. S. (2010). Long-run equilibrium modeling of emissions allowance allocation systems in electric power markets. Operations Research, 58, 529–548.

    Google Scholar 

  • Zhao, R., Neighbour, G., Han, J., McGuire, M., & Deutz, P. (2012). Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain. Journal of Loss Prevention in the Process Industries, 25(6), 927–936.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (No. 71774051), Major Program of the National Fund of Philosophy and Social Science of China (No. 18ZDA106), Science and Technology Innovation Program of Hunan Province (No. 2020RC4016), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX2018B177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Feng Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1

According to Eq. (7), the first-order partial derivatives of the payment utility function (\(V\)) about the product demands of the CET-covered and similar non-CET-covered enterprises (\(q\) and \(q_{0}\)) can be obtained as Eqs. (A1-1) and (A1-2), respectively.

$$ q^{*} = \frac{{\alpha * \beta _{0} - \alpha _{0} * \gamma }}{{\beta * \beta _{0} - \gamma ^{2} }} - \frac{{\beta _{0} }}{{\beta * \beta _{0} - \gamma ^{2} }} * p_{r} + \frac{\gamma }{{\beta * \beta _{0} - \gamma ^{2} }} * p_{0} - \frac{{\beta _{0} }}{{\beta * \beta _{0} - \gamma ^{2} }} * k * \left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right) + \frac{\gamma }{{\beta * \beta _{0} - \gamma ^{2} }} * k * e_{0} $$
(A1-1)
$$ q_{0}^{*} = \frac{{\alpha _{0} * \beta - \alpha * \gamma - \beta * p_{0} + \gamma * p_{r} - k * \beta * e_{0} + k * \gamma * \left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right)}}{{\beta * \beta _{0} - \gamma ^{2} }} $$
(A1-2)

Then, we can obtain the following equations: \(\frac{{\partial ^{2} V}}{{\partial q^{2} }} = - \beta\), \(\frac{{\partial ^{2} V}}{{\partial q_{0}^{2} }} = - \beta _{0}\), \(\frac{{\partial ^{2} V}}{{\partial q * q_{0} }} = - \gamma\) and \(\frac{{\partial ^{2} V}}{{\partial q_{0} * q}} = - \gamma\), i.e., \(\nabla V_{{(q,q_{0} )}} = \left| {\begin{array}{*{20}c} { - \beta } & { - \gamma } \\ { - \gamma } & { - \beta _{0} } \\ \end{array} } \right|\). Meanwhile, since \(- \beta < 0\) and \(\beta * \beta _{0} - \gamma ^{2} > 0\), thus the odd order sequential principal minor is less than zero, and the even order sequential principal minor is greater than zero, that is, \(\nabla V_{{(q,q_{0} )}}\) is a negative definite matrix. Thus, \(\left( {q^{ * } ,q_{0}^{ * } } \right)\) is the optimal solution.

Appendix A2

Under the Stackelberg game, we can first obtain the optimal marginal profit of the retailer (\(\rho _{r}^{*}\)) based on Eq. (A2-1).

$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = 0 $$
(A2-1)

Then, the supplier determines its optimal marginal profit (\(\rho _{m}^{*}\)) based on the response function of the retailer (\(\rho _{r}^{*}\)) obtained from Eq. (A2-1), which can be obtained according to Eq. (A2-2).

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = 0 $$
(A2-2)

Based on the Eqs. (A2-1) and (A2-2), this paper obtains the optimal marginal profits of the supplier and retailer under three carbon quota allocation rules, and the results are shown in Table 3.

Table 3 The optimal marginal profits of the supplier and retailer under the Stackelberg game

Besides, Under the Stackelberg game and three carbon quota allocation rules, the second-order partial derivatives of the profit of the retailer (\(\Pi _{r}\)) about the marginal profit (\(\rho _{r}\)) are less than zero, as shown in Eqs. (A2-3)–(A2-8), respectively.

Under the benchmarking rule:

$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = a - \rho _{m} - 2\rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} + p_{c} * \left[ {\bar{e}_{r} - E_{{\sec tor}}^{r} + \left( {\lambda - 1} \right) * \Delta e_{{mr}} } \right] $$
(A2-3)
$$ \frac{{\partial ^{2} \Pi _{r} }}{{\partial \rho _{r}^{2} }} = - 2 < 0 $$
(A2-4)

Under the historical carbon intensity reduction rule:

$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = a - \rho _{m} - 2\rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} + p_{c} * \left[ {\bar{e}_{r} - l_{r} * E_{i}^{r} + \left( {\lambda - 1} \right) * \Delta e_{{mr}} } \right] $$
(A2-5)
$$ \frac{{\partial ^{2} \Pi _{r} }}{{\partial \rho _{r}^{2} }} = - 2 < 0 $$
(A2-6)

Under the auctioning rule:

$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = a - \rho _{m} - 2\rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} + p_{c} * \left[ {\bar{e}_{r} + \left( {\lambda - 1} \right) * \Delta e_{{mr}} } \right] $$
(A2-7)
$$ \frac{{\partial ^{2} \Pi _{r} }}{{\partial \rho _{r}^{2} }} = - 2 < 0 $$
(A2-8)

Thus, \(\rho _{r}^{ * }\) is the optimal solution.

Under the Stackelberg game and three carbon quota allocation rules, the second-order partial derivatives of the profit of the supplier (\(\Pi _{m}\)) about the marginal profit (\(\rho _{m}\)) are also less than zero, as shown in Eqs. (A2-9)–(A2-14), respectively.

Under the benchmarking rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = a - 1.5\rho _{m} - \rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + 0.5t * h * \Delta e_{{mr}}^{2} + 0.5p_{c} * \left[ {\bar{e}_{m} - E_{{\sec tor}}^{m} - \lambda * \Delta e_{{mr}} } \right] $$
(A2-9)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 1 < 0 $$
(A2-10)

Under the historical carbon intensity reduction rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = a - 1.5\rho _{m} - \rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + 0.5t * h * \Delta e_{{mr}}^{2} + 0.5p_{c} * \left[ {\bar{e}_{m} - l_{m} * E_{i}^{m} - \lambda * \Delta e_{{mr}} } \right] $$
(A2-11)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 1 < 0 $$
(A2-12)

Under the auctioning rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = a - 1.5\rho _{m} - \rho _{r} - v_{{mr}} + c * p_{0} - k * \bar{e}_{{mr}} + k * \Delta e_{{mr}} + k * c * e_{0} + 0.5t * h * \Delta e_{{mr}}^{2} + 0.5p_{c} * \left[ {\bar{e}_{m} - \lambda * \Delta e_{{mr}} } \right] $$
(A2-13)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 1 < 0 $$
(A2-14)

Thus, \(\rho _{m}^{ * }\) is the optimal solution.

Appendix A3

Under the Nash equilibrium, the optimal marginal profits of the supplier and retailer can be jointly determined by Eqs. (A3-1) and (A3-2), and the results are shown in Table 4.

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = 0 $$
(A3-1)
$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = 0 $$
(A3-2)
Table 4 The optimal marginal profits of the supplier and retailer under the Nash equilibrium

Under the Nash equilibrium and three carbon quota allocation rules, the second-order partial derivatives of the profits of the supplier and retailer (\(\Pi _{m}\) and \(\Pi _{r}\)) about their marginal profits (\(\rho _{m}\) and \(\rho _{r}\)) are less than zero, as shown in Eqs. (A3-3)–(A3-14), respectively.

Under the benchmarking rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = q^{*} + \left[ {\rho _{m} - t * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} + p_{c} * \left[ {E_{{\sec tor}}^{m} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} - \bar{e}_{m} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}{\text{ + }}\lambda * \Delta e_{{mr}} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}} \right] $$
(A3-3)
$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = q^{*} + \left[ {\rho _{r} - \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} + p_{c} * \left[ {E_{{\sec tor}}^{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} - \bar{e}_{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }}{\text{ + }}\left( {1 - \lambda } \right) * \Delta e_{{mr}} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}} \right] $$
(A3-4)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 2 < 0 $$
(A3-5)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 2 < 0 $$
(A3-6)

Under the historical carbon intensity reduction rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = q^{*} + \left[ {\rho _{m} - t * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} + p_{c} * \left[ {l_{m} * E_{i}^{m} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} - \bar{e}_{m} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}{\text{ + }}\lambda * \Delta e_{{mr}} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}} \right] $$
(A3-7)
$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = q^{*} + \left[ {\rho _{r} - \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} + p_{c} * \left[ {l_{r} * E_{i}^{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} - \bar{e}_{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }}{\text{ + }}\left( {1 - \lambda } \right) * \Delta e_{{mr}} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}} \right] $$
(A3-8)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 2 < 0 $$
(A3-9)
$$ \frac{{\partial ^{2} \Pi _{r} }}{{\partial \rho _{r}^{2} }} = - 2 < 0 $$
(A3-10)

Under the auctioning rule:

$$ \frac{{\partial \Pi _{m} }}{{\partial \rho _{m} }} = q^{*} + \left[ {\rho _{m} - t * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} + p_{c} * \left[ {\lambda * \Delta e_{{mr}} - \bar{e}_{m} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{m} }} $$
(A3-11)
$$ \frac{{\partial \Pi _{r} }}{{\partial \rho _{r} }} = q^{*} + \left[ {\rho _{r} - \left( {1 - t} \right) * h * \Delta e_{{mr}}^{2} } \right] * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} + p_{c} * \left[ {l_{r} * E_{i}^{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }} - \bar{e}_{r} * \frac{{\partial q^{*} }}{{\partial \rho _{r} }}{\text{ + }}\left( {1 - \lambda } \right) * \Delta e_{{mr}} * \frac{{\partial q^{*} }}{{\partial \rho _{m} }}} \right] $$
(A3-12)
$$ \frac{{\partial ^{2} \Pi _{m} }}{{\partial \rho _{m}^{2} }} = - 2 < 0 $$
(A3-13)
$$ \frac{{\partial ^{2} \Pi _{r} }}{{\partial \rho _{r}^{2} }} = - 2 < 0 $$
(A3-14)

Thus, \(\rho _{m}^{ * }\) and \(\rho _{r}^{ * }\) are the optimal solutions.

Appendix A4

No matter the cooperative supply chain chooses the Stackelberg game or Nash equilibrium, this paper can obtain the optimal carbon emissions reduction based on that the marginal product profits are equal to marginal costs, as shown in Eq. (A4-1).

$$ \rho _{m}^{*} + \rho _{m}^{*} = v_{{mr}} + h * \Delta e_{{mr}}^{2} $$
(A4-1)

Thus, when the cooperative supply chain chooses the Stackelberg game, we can further obtain the optimal carbon emissions reduction under the benchmarking rule, historical carbon intensity reduction rule, and auctioning rule, respectively, as shown Eqs. (A4-2)–(A4-4).

$$ \begin{aligned} \rho _{m}^{*} + \rho _{m}^{*} & = 0.75\left[ {a - v_{{mr}} + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] + 0.25 * h * \Delta e_{{mr}}^{2} - 0.25 * p_{c} * \Delta e_{{mr}} \\ & \quad + 0.25p_{c} * \left( {\bar{e}_{m} + \bar{e}_{r} - E_{{\sec otr}}^{m} - E_{{\sec otr}}^{r} } \right) = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-2)
$$ \begin{aligned} \rho _{m}^{*} + \rho _{r}^{*} & = 0.75\left[ {a - v_{{mr}} + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] + 0.25 * h * \Delta e_{{mr}}^{2} - 0.25 * p_{c} * \Delta e_{{mr}} \\ & \quad + 0.25 * p_{c} * \left( {\bar{e}_{m} + \bar{e}_{r} - l_{m} * E_{i}^{m} - l_{r} * E_{i}^{r} } \right) = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-3)
$$ \begin{aligned} \rho _{m}^{*} + \rho _{r}^{*} & = 0.75\left[ {a - v_{{mr}} + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] + 0.25p_{c} * \left( {\bar{e}_{m} - \bar{e}_{r} } \right) \\ & \quad + 0.25h * \Delta e_{{mr}}^{2} - 0.25 * p_{c} * \Delta e_{{mr}} = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-4)

The Eqs. (A4-2)–(A4-4) are quadratic function about the carbon emissions reduction (i.e., \(\Delta e_{{mr}}\)), which have two optimal solutions. In order to improve the carbon emissions reduction, this paper chooses the greater optimal solution as the carbon emissions reduction target, which are shown in Table 1.

Similarly, when the cooperative supply chain chooses the Nash equilibrium, we can further obtain the optimal carbon emissions reduction under the benchmarking rule, historical carbon intensity reduction rule, and auctioning rule, respectively, as shown Eqs. (A4-5)–(A4-7).

$$ \begin{aligned} \rho _{m}^{*} + \rho _{r}^{*} & = \frac{2}{3}\left[ {a - v_{{mr}} + c * p_{0} + k\left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + c * e_{0} } \right)} \right] + \frac{{h * \Delta e_{{mr}}^{2} }}{3} - \frac{{p_{c} * \Delta e_{{mr}} }}{3} \\ & \quad + \frac{{p_{c} * \left( {\bar{e}_{m} + \bar{e}_{r} - E_{{\sec tor}}^{m} - E_{{\sec tor}}^{r} } \right)}}{3} = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-5)
$$ \begin{aligned} \rho _{m}^{*} + \rho _{r}^{*} & = \frac{2}{3}\left[ {a - v_{{mr}} + c * p_{0} + k\left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + c * e_{0} } \right)} \right] + \frac{1}{3} * h * \Delta e_{{mr}}^{2} \\ & \quad - \,\frac{1}{3} * p_{c} * \Delta e_{{mr}} + \frac{{p_{c} * \left( {\bar{e}_{{mr}} - l_{m} * E_{i}^{m} - l_{r} * E_{i}^{r} } \right)}}{3} = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-6)
$$ \begin{aligned} \rho _{m}^{*} + \rho _{r}^{*} & = \frac{2}{3}\left[ {a - v_{{mr}} + c * p_{0} + k\left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + c * e_{0} } \right)} \right] + \frac{1}{3} * h * \Delta e_{{mr}}^{2} \\ & \quad - \,\frac{1}{3} * p_{c} * \Delta e_{{mr}} + \frac{{p_{c} * \bar{e}_{{mr}} }}{3} = v_{{mr}} + h * \Delta e_{{mr}}^{2} \\ \end{aligned} $$
(A4-7)

The Eqs. (A4-5)–(A4-7) are quadratic function about the carbon emissions reduction (i.e., \(\Delta e_{{mr}}\)), which have two optimal solutions. In order to improve the carbon emissions reduction, this paper chooses the greater optimal solution as the carbon emissions reduction target, which are shown in Table 2.

Appendix A5

This paper further compares the optimal product prices between the Stackelberg game and Nash equilibrium. This paper lets the optimal wholesale prices under the Stackelberg minus the optimal wholesale prices under the Nash equilibrium. The results are shown as Eqs. (A5-1)–(A5-3), respectively, when the cooperative supply chain is under the benchmarking rule, historical carbon intensity reduction rule, and auctioning rule.

$$ \Delta _{1} = \frac{1}{6}\left[ {a - v_{{mr}} - h * \Delta e_{{mr}}^{2} + c * p_{0} + k * \left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + c * e_{0} } \right)} \right] + \frac{{p_{c} * \left( {E_{{\sec otr}}^{m} + E_{{\sec otr}}^{r} - \bar{e}_{{mr}} + \Delta e_{{mr}} } \right)}}{6} $$
(A5-1)
$$ \Delta _{2} = \frac{1}{6}\left[ {a - v_{{mr}} - h * \Delta e_{{mr}}^{2} + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] + \frac{1}{6} * p_{c} * \left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + l_{m} * E_{i}^{m} + l_{r} * E_{i}^{r} } \right) $$
(A5-2)
$$ \Delta _{3} = \frac{1}{6}\left[ {a - v_{{mr}} - h * \Delta e_{{mr}}^{2} + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] - \frac{{p_{c} * \left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right)}}{6} $$
(A5-3)

Similarly, this paper further lets optimal retail prices under the Stackelberg minus the optimal retail prices under the Nash equilibrium. The results are shown as Eqs. (A5-4)–(A5-6), respectively, when the cooperative supply chain is under the benchmarking rule, historical carbon intensity reduction rule, and auctioning rule.

$$ \Delta _{{\text{4}}} = \frac{1}{{12}}\left[ {a - \left( {v_{{mr}} + h * \Delta e_{{mr}}^{2} } \right) + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right]{\text{ + }}\frac{1}{{12}}p_{c} * \left( {E_{{\sec otr}}^{m} + E_{{\sec otr}}^{r} - \bar{e}_{{mr}} + \Delta e_{{mr}} } \right) $$
(A5-4)
$$ \Delta _{{\text{5}}} = \frac{1}{{12}}\left[ {a - \left( {v_{{mr}} + h * \Delta e_{{mr}}^{2} } \right) + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right]{\text{ + }}\frac{1}{{12}}p_{c} * \left( {l_{m} * E_{i}^{m} + l_{r} * E_{i}^{r} - \bar{e}_{{mr}} + \Delta e_{{mr}} } \right) $$
(A5-5)
$$ \Delta _{{\text{6}}} = \frac{1}{{12}}\left[ {a - \left( {v_{{mr}} + h * \Delta e_{{mr}}^{2} } \right) + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)} \right] - \frac{{p_{c} * \left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right)}}{{12}} $$
(A5-6)

Since there are \(a - v_{{mr}} - h * \Delta e_{{mr}}^{2} + c * p_{0} + k * \left( {\Delta e_{{mr}} - \bar{e}_{{mr}} + c * e_{0} } \right) > 0\), \(E_{{\sec otr}}^{m} + E_{{\sec otr}}^{r} - \bar{e}_{{mr}} + \Delta e_{{mr}} > 0\), and \(l_{m} * E_{i}^{m} + l_{r} * E_{i}^{r} - \bar{e}_{{mr}} + \Delta e_{{mr}} > 0\), therefore there are \(\Delta _{1} > 0\), \(\Delta _{{\text{2}}} > 0\), \(\Delta _{{\text{4}}} > 0\), and \(\Delta _{{\text{5}}} > 0\). The result indicates that under the two free carbon quota allocation rules, the optimal wholesale prices and the retail prices when the cooperative supply chain chooses Stackelberg game are higher those when the cooperative supply chain chooses the Nash equilibrium. However, under the auctioning rule, when \(\left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right) < \frac{{a - \left( {v_{{mr}} + h * \Delta e_{{mr}}^{2} } \right) + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)}}{{p_{c} }}\), there are \(\Delta _{{\text{3}}} > 0\) and \(\Delta _{{\text{6}}} > 0\), which indicates that the optimal wholesale and retail prices when the cooperative supply chain chooses Stackelberg game are higher those when the cooperative supply chain chooses the Nash equilibrium. When \(\left( {\bar{e}_{{mr}} - \Delta e_{{mr}} } \right) > \frac{{a - \left( {v_{{mr}} + h * \Delta e_{{mr}}^{2} } \right) + c * p_{0} + k * \left( {\Delta e_{{mr}} + c * e_{0} - \bar{e}_{{mr}} } \right)}}{{p_{c} }}\), there are \(\Delta _{{\text{3}}} < 0\) and \(\Delta _{{\text{6}}} < 0\), which indicates that the optimal wholesale and retail prices when the cooperative supply chain chooses Stackelberg game are lower those when the cooperative supply chain chooses the Nash equilibrium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Sun, YF. & Huo, BF. The optimal product pricing and carbon emissions reduction profit allocation of CET-covered enterprises in the cooperative supply chain. Ann Oper Res 329, 871–899 (2023). https://doi.org/10.1007/s10479-021-04162-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04162-5

Keywords

Navigation