Skip to main content
Log in

Pricing strategy of dual-channel supply chain with a risk-averse retailer considering consumers’ channel preferences

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

With the booming of the e-channels, both the competition between the physical channel and the Internet channel and the consumers’ preference for different channels increase the volatility of market demand. The partners may have different degrees of risk aversion in the dual-channel supply chain. Thus, the risk control is significant in exploring supply chain strategies. This article investigates the pricing strategy of a dual-channel supply chain in which the retailer is risk-averse and the consumers have channel preferences. The risk aversion of the retailer is measured by the mean–variance method and the consumers are classified into two types: grocery shoppers and Internet shoppers. Using a Stackelberg game, the optimal equilibrium solutions of the proposed model are derived. The results show that both partners and consumers can benefit from the retailer’s risk control in the dual-channel supply chain. When the risk control factor is less than a critical point, with the increase of the Internet shoppers, the manufacturer’s profit and the integral supply chain’s profit increase and the retailer’s profit doesn’t vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Borenich, A., Dickbauer, Y., Reimann, M., et al. (2020). Should a manufacturer sell refurbished returns on the secondary market to incentivize retailers to reduce consumer returns?. European Journal of Operational Research, 282(2), 569–579.

    Article  Google Scholar 

  • Cai, G. G. (2010). Channel selection and coordination in dual-channel supply chains. Journal of Retailing, 86(1), 22–36.

    Article  Google Scholar 

  • Cai, G. G., Zhang, Z. G., & Zhang, M. (2009). Game theoretical perspectives on dual-channel supply chain competition with price discounts and pricing schemes. International Journal of Production Economics, 117(1), 80–96.

    Article  Google Scholar 

  • Cao, E., Ma, Y., Wan, C., et al. (2013). Contracting with asymmetric cost information in a dual-channel supply chain. Operations Research Letters, 41(4), 410–414.

    Article  Google Scholar 

  • Cattani, K., Gilland, W., Heese, H. S., et al. (2006). Boiling frogs: Pricing strategies for a manufacturer adding a direct channel that competes with the traditional channel. Production and Operations Management, 15(1), 40.

    Article  Google Scholar 

  • Chen, Y., Xu, M., & Zhang, Z. G. (2009). A risk-averse newsvendor model under the CVaR criterion. Operations Research, 57(4), 1040–1044.

    Article  Google Scholar 

  • Chiang, W. K., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49(1), 1–20.

    Article  Google Scholar 

  • Chiu, C. H., & Choi, T. M. (2010). Optimal pricing and stocking decisions for newsvendor problem with value-at-risk consideration. IEEE Transactions on Systems, Man, and Cybernetics-Part a: Systems and Humans, 40(5), 1116–1119.

    Article  Google Scholar 

  • Cho, S., & Workman, J. E. (2015). Effects of need for touch, centrality of visual product aesthetics and gender on channel preference for apparel shopping. Journal of Global Fashion Marketing, 6(2), 120–135.

    Article  Google Scholar 

  • Choi, T. M. (2018). Impacts of retailer’s risk averse behaviors on quick response fashion supply chain systems. Annals of Operations Research, 268(1), 239–257.

    Article  Google Scholar 

  • Choi, T. M., Li, D., & Yan, H. (2008). Mean–variance analysis of a single supplier and retailer supply chain under a returns policy. European Journal of Operational Research, 184(1), 356–376.

    Article  Google Scholar 

  • Choi, T. M., Wen, X., Sun, X., et al. (2019). The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transportation Research Part e: Logistics and Transportation Review, 127, 178–191.

    Article  Google Scholar 

  • Choi, T. M., Chung, S. H., & Zhuo, X. (2020). Pricing with risk sensitive competing container shipping lines: Will risk seeking do more good than harm?. Transportation Research Part b: Methodological, 133, 210–229.

    Article  Google Scholar 

  • Ernst, Y. (2001). Consumer trends in online shopping. Global Online Retailing: An Ernst and Young Special Report. Stores, 83(1), 5–9.

  • Hsiao, L., & Chen, Y. J. (2013). The perils of selling online: Manufacturer competition, channel conflict, and consumer preferences. Marketing Letters, 24(3), 277–292.

    Article  Google Scholar 

  • Hsiao, L., & Chen, Y. J. (2014). Strategic motive for introducing internet channels in a supply chain. Production and Operations Management, 23(1), 36–47.

    Article  Google Scholar 

  • Hung, Y. H., Li, L. Y. O., & Cheng, T. C. E. (2013). Transfer of newsvendor inventory and supply risks to sub-industry and the public by financial instruments. International Journal of Production Economics, 143(2), 567–573.

    Article  Google Scholar 

  • Li, B., Chen, P., Li, Q., et al. (2014). Dual-channel supply chain pricing decisions with a risk-averse retailer. International Journal of Production Research, 52(23), 7132–7147.

    Article  Google Scholar 

  • Li, B., Hou, P. W., Chen, P., et al. (2016). Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer. International Journal of Production Economics, 178, 154–168.

    Article  Google Scholar 

  • Li, B., & Jiang, Y. (2019). Impacts of returns policy under supplier encroachment with risk-averse retailer. Journal of Retailing and Consumer Services, 47, 104–115.

    Article  Google Scholar 

  • Liu Z, Xu Q, Yang K. Optimal independent pricing strategies of dual-channel supply chain based on risk-aversion attitudes. Asia-Pacific Journal of Operational Research, 2018, 35(02): 1840004(1–17).

  • Lu, Q., & Liu, N. (2015). Effects of e-commerce channel entry in a two-echelon supply chain: A comparative analysis of single-and dual-channel distribution systems. International Journal of Production Economics, 165, 100–111.

    Article  Google Scholar 

  • Luo, L., & Sun, J. (2016). New product design under channel acceptance: Brick-and-mortar, online-exclusive, or brick-and-click. Production and Operations Management, 25(12), 2014–2034.

    Article  Google Scholar 

  • Markowitz H. Portfolio selection: Efficient diversification of investments. John Wiley and Sons, New York (1959), vol. 12, pp. 26-31

  • Mitra, S., & Webster, S. (2008). Competition in remanufacturing and the effects of government subsidies. International Journal of Production Economics, 111(2), 287–298.

    Article  Google Scholar 

  • Qin, J., Ren, L., Xia, L., et al. (2020). Pricing strategies for dual-channel supply chains under a trade credit policy. International Transactions in Operational Research, 27(5), 2469–2508.

    Article  Google Scholar 

  • Ray, P., & Jenamani, M. (2016). Mean-variance analysis of sourcing decision under disruption risk. European Journal of Operational Research, 250(2), 679–689.

    Article  Google Scholar 

  • Steiner, R. L. (2004). The evolution and applications of dual-stage thinking. The Antitrust Bulletin, 49(4), 877–909.

    Article  Google Scholar 

  • Takahashi, K., Aoi, T., Hirotani, D., et al. (2011). Inventory control in a two-echelon dual-channel supply chain with setup of production and delivery. International Journal of Production Economics, 133(1), 403–415.

    Article  Google Scholar 

  • Wang, R. F., Li, B., Li, Z. H., et al. (2018). Selection policy for a manufacturer’s online channel: Do it oneself or cooperate with retailers. IMA Journal of Management Mathematics, 29(4), 393–414.

    Article  Google Scholar 

  • Webb, K. L. (2002). Managing channels of distribution in the age of electronic commerce. Industrial Marketing Management, 31(2), 95–102.

    Article  Google Scholar 

  • Wei, Y., & Choi, T. M. (2010). Mean–variance analysis of supply chains under wholesale pricing and profit sharing schemes. European Journal of Operational Research, 204(2), 255–262.

    Article  Google Scholar 

  • Wu, J., Li, J., Wang, S., et al. (2009). Mean–variance analysis of the newsvendor model with stockout cost. Omega, 37(3), 724–730.

    Article  Google Scholar 

  • Xiao, T., & Choi, T. M. (2009). Purchasing choices and channel structure strategies for a two-echelon system with risk-averse players. International Journal of Production Economics, 120(1), 54–65.

    Article  Google Scholar 

  • Xie, G., Yue, W., Wang, S., et al. (2011). Quality investment and price decision in a risk-averse supply chain. European Journal of Operational Research, 214(2), 403–410.

    Article  Google Scholar 

  • Xu, G., Dan, B., Zhang, X., et al. (2014). Coordinating a dual-channel supply chain with risk-averse under a two-way revenue sharing contract. International Journal of Production Economics, 147, 171–179.

    Article  Google Scholar 

  • Yang, Y., Wang, L., Wang, Y., et al. (2014). Modeling and optimization of two-stage procurement in dual-channel supply chain. Information Technology and Management, 15(2), 109–118.

    Google Scholar 

  • Yao, D. Q., & Liu, J. J. (2005). Competitive pricing of mixed retail and e-tail distribution channels. Omega, 33(3), 235–247.

    Article  Google Scholar 

  • Zhang, A., Ren, J., Guan, Z., et al. (2021). Decision and coordination in the dual-channel supply chain considering the risk-averse and customer returns. Journal of Mathematical Finance, 11(01), 48.

    Article  Google Scholar 

  • Zhang, Y., & Hezarkhani, B. (2021). Competition in dual-channel supply chains: The manufacturers’ channel selection. European Journal of Operational Research, 291(1), 244–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongwei Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is supported by the National Natural Science Foundation of China (Grant No. 71871230, 71991463) and Doctoral Scientific Research Foundation of Henan University of Science and Technology (Grant No.13480037).

Appendix

Appendix

Proof of Proposition 1

(1) By a direct calculation,

$$ p_{0}^{*} - p^{*} = \frac{{s\beta \left( {2 - \beta + 2s\beta - 2s} \right)}}{{2\left( {1 - s + s\beta } \right)\left( {1 - s + 2s\beta } \right)}} . $$

Since \(0 < s < 1\) and \(1 < \beta < 2\), we have \(p_{0}^{*} > p^{*}\).

(2) By a tedious calculation, we have

$$ w_{0}^{*} - w^{*} = \frac{{f_{1} \left( \beta \right) + f_{2} \left( \beta \right)d}}{{2s\left( {1 - s + s\beta } \right)\left( {1 - s + 2s\beta } \right)\left( {2 - 2s - \beta + 2s\beta } \right)}} , $$

where \(f_{1} \left( \beta \right) = - s\left( {1 - s} \right)\left( {1 - 2s} \right)^{2} \beta^{2} + 4\left( {1 - s} \right)^{2} s\left( {1 - 2s} \right)\beta - 4\left( {1 - s} \right)^{3} s\),

\(f_{2} \left( \beta \right) = 8s^{3} \beta^{3} + \left( {20s^{2} - 20s^{3} } \right)\beta^{2} + 16s\left( {s^{2} - 2s + 1} \right)\beta + 4\left( {1 - s} \right)^{3}\).

When \(s = \frac{1}{2}\), \(f_{1} \left( \beta \right) = - 4\left( {1 - s} \right)^{3} s < 0\).

When \(s \ne \frac{1}{2}\),

$$ - \frac{{4\left( {1 - s} \right)^{2} s\left( {1 - 2s} \right)}}{{2\left[ { - s\left( {1 - s} \right)\left( {1 - 2s} \right)^{2} } \right]}} = 1 + \frac{1}{1 - 2s}\left\{ {\begin{array}{*{20}c} { > 2, s < \frac{1}{2},} \\ {< {1, s} > \frac{1}{2}.} \\ \end{array} } \right. $$

Therefore, \(f_{1} \left( \beta \right)\) is monotonic in \(\left[ {1,2} \right]\). Note that

\(f_{1} \left( 1 \right) = \left( { - 1 + s} \right)s < 0\) and \(f_{1} \left( 2 \right) = 4\left( { - 1 + s} \right)s^{3} < 0\).

Thus \(f_{1} \left( \beta \right) < 0\) in this case.

It is clear that \(f_{2} \left( \beta \right) > 0\), and so the solution (denoted by \(d_{0}^{*}\)) of the equation

$$ f_{1} \left( \beta \right) + f_{2} \left( \beta \right)d = 0 $$

is equal to

$$ d_{0}^{*} = - \frac{{f_{1} \left( \beta \right)}}{{f_{2} \left( \beta \right)}} = \frac{{\left( {1 - s} \right)s\left( {2 - 2s - \beta + 2s\beta } \right)^{2} }}{{4(1 - s + s\beta )^{2} \left( {1 - s + 2s\beta } \right)}}. $$

Thus, if \(0 < d \le d_{0}^{*}\), then \(w^{*} \ge w_{0}^{*}\); if \(d_{0}^{*} < d \le \Lambda /2 - \pi_{0m}^{*}\), then \(w^{*} > w_{0}^{*}\).

(3) By a direct calculation,

$$ \;\left( {p_{0}^{*} - w_{0}^{*} } \right) - \left( {p^{*} - w^{*} } \right) = \frac{{f_{3} \left( \beta \right) + f_{4} \left( \beta \right)d}}{{2s\left( {1 - s + 2s\beta } \right)\left( {2 - 2s - \beta + 2s\beta } \right)}}, $$

where

$$ f_{3} \left( \beta \right) = s(2s - 1)^{2} \beta^{2} + 4s\left( {1 - s} \right)\left( {2s - 1} \right)\beta + 4s(1 - s)^{2} , $$
$$ f_{4} \left( \beta \right) = - 8s^{2} \beta^{2} - 12s\left( {1 - s} \right)\beta - 4(1 - s)^{2} . $$

It follows from \(f_{4} \left( \beta \right) < 0\) and \(- \frac{{f_{3} \left( \beta \right)}}{{f_{4} \left( \beta \right)}} = \frac{\Lambda }{2} - \pi_{0m}^{*}\) that \(\left( {p_{0}^{*} - w_{0}^{*} } \right)\)\(\le ({p}^{*}-{w}^{*})\).

(4) The proofs are straightforward.

Proof of Proposition 2

(1) If the retailer’s risk control is effective, i.e., \(d < \Lambda /2 - \pi_{0m}^{*}\), then

\(\pi_{m}^{*} = \Lambda /2 - d > \Lambda /2 - \left( {\Lambda /2 - \pi_{0m}^{*} } \right)\) = \({ }\pi_{0m}^{*}\).

(2), (3) It is clear that \(\pi_{m}^{*} + \pi_{r}^{*} = \Lambda /2 - d + d = \Lambda /2\) and

\(\Lambda /2 - \left( {\pi_{0m}^{*} + \pi_{0r}^{*} } \right) = \frac{{s^{2} \beta (2 - 2s - \beta + 2s\beta )^{2} }}{{4\left( {1 - s + s\beta } \right)(1 - s + 2s\beta )^{2} }} > 0\).

Proof of Proposition 3

By the definition of RGM, we have

$$ \;k_{0}^{*} - k^{*} = \frac{{p_{0}^{*} - w_{0}^{*} }}{{p_{0}^{*} }} - \frac{{p^{*} - w^{*} }}{{p^{*} }} = - \frac{{f_{5} \left( \beta \right) + f_{6} \left( \beta \right)d}}{{s\left( {1 + 2s} \right)\beta \left( {2 - 2s - \beta + 2s\beta } \right)}}, $$

where \(f_{5} \left( \beta \right) = \left( { - s + 4s^{2} - 4s^{3} } \right)\beta^{2} + \left( {4s - 12s^{2} + 8s^{3} } \right)\beta + - 4s + 8s^{2} - 4s^{3} ,\)

$$ f_{6} \left( \beta \right) = 4s^{2} \left( {1 + 2s} \right)\beta^{2} + 8s\left( {1 + s - 2s^{2} } \right)\beta + 4\left( {1 - 3s + 2s^{2} } \right). $$

It is not difficult to show that \(f_{6} \left( \beta \right) > 0\) and the solution of the equation

$$ f_{5} \left( \beta \right) + f_{6} \left( \beta \right)d = 0 $$

is equal to

$$ d_{1}^{*} = \frac{{s(2 - 2s - \beta + 2s\beta )^{2} }}{{4\left( {1 + 2s} \right)(1 - s + s\beta )^{2} }}. $$

Also, one can show that \(d_{1}^{*} < \Lambda /2 - \pi_{0m}^{*}\) by a direct calculation.

Thus, if \(0 < d \le d_{1}^{*}\), then \(k^{*} \le k_{0}^{*}\); if \(d_{1}^{*} < d \le \Lambda /2 - \pi_{0m}^{*}\), then \(k^{*} \ge k_{0}^{*}\).

Proof of Proposition 4

(1) By a direct calculation, we have

\(\frac{{\partial w_{0}^{*} }}{\partial s} = 2\frac{{\partial p_{0}^{*} }}{\partial s} = \frac{{\beta \left( {3 - 2\beta } \right)}}{{(1 - s + s\beta )^{2} }}\), \( \frac{{\partial (p_{0}^{*} - w_{0}^{*} )}}{\partial s} = \frac{{\beta \left( {2\beta - 3} \right)}}{{2\left( {1 - s + 2s\beta } \right)^{2} }}\).

Then the result follows easily.

(2) The proof is similar to that of (1).

(3) By a direct calculation, we have

$$ \frac{{\partial \pi_{0m}^{*} }}{\partial s} = - \frac{{4\left( {\beta - 1} \right)\left( {2\beta - 1} \right)s^{2} + 8\left( {\beta - 1} \right)s + 4 - 5\beta + 2\beta^{2} }}{{4\left( {1 - s + 2s\beta } \right)^{2} }}. $$

It is clear that \(4\left( {\beta - 1} \right)\left( {2\beta - 1} \right) > 0, 8\left( {\beta - 1} \right) > 0, 4 - 5\beta + 2\beta^{2} > 0.{ }\) Thus

\(\frac{{\partial \pi_{0m}^{*} }}{\partial s} < 0\).

Similarly,

$$ \frac{{\partial \pi_{0r}^{*} }}{\partial s} = \frac{{\left( {2 - 2s - \beta + 2s\beta } \right)f\left( s \right)}}{{4\left( {1 - s + 2s\beta } \right)^{3} }}, $$

where \(f\left( s \right) = \left( {4\beta^{2} - 6\beta + 2} \right)s^{2} + \left( {2\beta^{2} + \beta - 4} \right)s + \left( {2 - \beta } \right)\).

It is easy to show that \(4\beta^{2} - 6\beta + 2 > 0\) when \(\beta > 1\).

Note that

$$ f^{\prime}\left( s \right) = 2\left( {4\beta^{2} - 6\beta + 2} \right)s + \left( {2\beta^{2} + \beta - 4} \right). $$

If \(\beta \ge \frac{{\sqrt {33} - 1}}{4}\), then \(2\beta^{2} + \beta - 4 \ge 0,\) and so \(f^{\prime}\left( s \right) > 0\). Since \(f\left( 0 \right) > 0\), we know that \(f\left( s \right) > 0\) in this case.

If \(1.1 < \beta < \frac{{\sqrt {33} - 1}}{4}\), then the discriminant of \(f\left( s \right)\).

\( (2\beta^{2} + \beta - 4)^{2} - 4\left( {4\beta^{2} - 6\beta + 2} \right)\left( {2 - \beta } \right) = \beta \left( {2\beta - 3} \right)\left( {2\beta^{2} + 13\beta - 16} \right) < 0\).

And thus \(f\left( s \right) > 0\) in this case.

If \(\beta \le 1.1\), then

$$ f^{\prime}\left( s \right) < 2\left( {4\beta^{2} - 6\beta + 2} \right) + \left( {2\beta^{2} + \beta - 4} \right) = 10\beta \left( {\beta - 1.1} \right) \le 0. $$

Since \(f\left( 1 \right) = 6\beta^{2} - 6\beta > 0,\) we also have \(f\left( s \right) > 0\).

Since \(\left( {2 - 2s - \beta + 2s\beta } \right) > 0,\) we see that \(\frac{{\partial \pi_{0r}^{*} }}{\partial s} > 0.\)

Finally, by a direct calculation, we have

$$ \frac{{\partial \left( {\pi_{0m}^{*} + \pi_{0r}^{*} } \right)}}{\partial s} = \frac{{ - \beta \left[ {\beta - 1 + sf\left( \beta \right)} \right]}}{{4(1 - s + s\beta )^{3} }}, $$

where \(f\left( \beta \right) = A\beta^{2} + B\beta + C\), where \(A = 6 + 8s^{2}\), \(B = - 13 + 12s - 12s^{2}\),

and \(C = 9 - 12s + 4s^{2}\).

To show \(\frac{{\partial \left( {\pi_{0m}^{*} + \pi_{0r}^{*} } \right)}}{\partial s} < 0,\) we need only to show that \(f\left( \beta \right) > 0\).

For \(s \in \left( {\left. {\frac{1}{2}\left( {\sqrt {10} - 3} \right), 1} \right]} \right.\), we have \(f^{\prime}\left( 1 \right) = 2A + B = 4s^{2} + 12s - 1 > 0\).

Thus \(f\left( \beta \right)\) is increasing when \(\beta \in \left( {1,2} \right)\). Note that \(f\left( 1 \right) = 2\). So \(f\left( \beta \right) > 0\).

When \(s \in \left( {0, \left. {\frac{1}{2}\left( {\sqrt {10} - 3} \right)} \right]} \right.\), it can be shown that

$$ B^{2} - 4AC = 16s^{4} + 96s,^{3} + 72s^{2} - 24s - 47 < 0, $$

and so we also have \(f\left( \beta \right) > 0\) in this case.

(4) The result follows from \(\frac{{\partial k_{0}^{*} }}{\partial s} = \frac{{2\left( {2\beta - 3} \right)}}{{(1 + 2s)^{2} \beta }}\).

Proof of Proposition 5

(1) By a calculation, we have

$$ \frac{{\partial w^{*} }}{\partial s} = \frac{{ - s^{2} \beta \left( {\beta - 1} \right)(2 - 2s - \beta + 2s\beta )^{2} + 4(1 - s + s\beta )^{2} \left[ {2 + 2s\left( {2 + s\beta - s} \right)\left( {\beta - 1} \right) - \beta } \right]d}}{{2s^{2} (1 - s + s\beta )^{2} (2 - 2s - \beta + 2s\beta )^{2} }}. $$

Note that

$$ 4(1 - s + s\beta )^{2} \left[ {2 + 2s\left( {2 + s\beta - s} \right)\left( {\beta - 1} \right) - \beta } \right] > 0. $$

We see that if \(d < f\left( {s,\beta } \right)\), then \(\frac{{\partial w^{*} }}{\partial s} < 0\); if \(d > f\left( {s,\beta } \right)\), then \(\frac{{\partial w^{*} }}{\partial s} > 0\), where \(f\left( {s,\beta } \right) = \frac{{s^{2} \beta \left( {\beta - 1} \right)(2 - 2s - \beta + 2s\beta )^{2} }}{{4\left( {1 - s + s\beta } \right)^{2} \left[ {2 + 2s\left( {2 + s\beta - s} \right)\left( {\beta - 1} \right) - \beta } \right]}}\).

(2) By a direct calculation, we have

$$ \frac{{\partial p^{*} }}{\partial s} = \frac{{\left( {1 - \beta } \right)\beta }}{{2(1 - s + 2s\beta )^{2} }} < 0, $$
$$ \frac{{\partial \left( {p^{*} - w^{*} } \right)}}{\partial s} = - \frac{{2d\left( {2 - \beta + s\left( {4\beta - 4} \right) + s^{2} \left( {2 - 4\beta + 2\beta^{2} } \right)} \right)}}{{s^{2} \left( {2 - 2s - \beta + 2s\beta } \right)^{2} }} < 0. $$

(3) The proof is similar to that of (2).

(4) By a direct calculation, we have

$$ \frac{{\partial \pi_{m}^{*} }}{\partial s} = - \frac{{\left( {\beta - 1} \right)\beta }}{{4\left( {1 - s + s\beta } \right)^{2} }} < 0, \frac{{\partial \pi_{r}^{*} }}{\partial s} = 0, \frac{{\partial (\pi_{m}^{*} + \pi_{r}^{*} )}}{\partial s} = \frac{{\partial \pi_{m}^{*} }}{\partial s} < 0. $$

(5) The result follows from

$$ \frac{{\partial k^{*} }}{\partial s} = - \frac{{4d\left( {1 - s + s\beta } \right)\left( {2 - 2s - \beta + s\beta + s\beta^{2} } \right)}}{{s^{2} \beta \left( {2 - 2s - \beta + 2s\beta } \right)}}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhou, X. & Li, B. Pricing strategy of dual-channel supply chain with a risk-averse retailer considering consumers’ channel preferences. Ann Oper Res 309, 305–324 (2022). https://doi.org/10.1007/s10479-021-04326-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04326-3

Keywords

Navigation