Skip to main content

Advertisement

Log in

An ensemble machine learning approach for forecasting credit risk of agricultural SMEs’ investments in agriculture 4.0 through supply chain finance

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Credit risk imposes itself as a significant barrier of agriculture 4.0 investments in the supply chain finance (SCF) especially for Small and Medium-sized Enterprises. Therefore, it is important for financial service providers (FSPs) to differentiate between low- and high-quality SMEs to accurately forecast the credit risk. This study proposes a novel hybrid ensemble machine learning approach to forecast the credit risk associated with SMEs’ agriculture 4.0 investments in SCF. Two core approaches were used, i.e., Rotation Forest algorithm and Logit Boosting algorithm. Key variables influencing the credit risk of agriculture 4.0 investments in SMEs were identified and evaluated using data collected from 216 agricultural SMEs, 195 Leading Enterprises and 104 FSPs operating in African agriculture sector. Besides the classical measures of credit risk assessment without involving SCF, the findings indicate that current ratio, financial leverage, profit margin on sales and growth rate of the agricultural SME are the upmost important variables that SCF actors need to focus on, in order to accurately and optimistically forecast and alleviate credit risk. The output of our study provides useful guidelines for SMEs, as it highlights the conditions under which they would be seen as creditworthy by FSPs. On the other hand, this study encourages the wide application of SCF in financing agriculture 4.0 investments. Due to the model’s performance, credit risk forecasting accuracy is improved, which results in future savings and credit risk mitigation in agriculture 4.0 investments of SMEs in SCF.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedin, M. Z., Chi, G., Uddin, M. M., Satu, M. S., Khan, M. I., & Hajek, P. (2020). Tax default prediction using feature transformation-based machine learning. IEEE Access, 9, 19864–19881.

    Article  Google Scholar 

  • Abedin, M. Z., Guotai, C., Moula, F. E., Azad, A. S., & Khan, M. S. U. (2019). Topological applications of multilayer perceptrons and support vector machines in financial decision support systems. International Journal of Finance & Economics, 24(1), 474–507.

    Article  Google Scholar 

  • Apley, D. W. (2016). Visualizing the effects of predictor variables in black box supervised learning models. ArXiv. ArXiv Preprint http://arxiv.org/abs/1612.08468

  • Bekhet, H. A., & Eletter, S. F. K. (2014). Credit risk assessment model for jordanian commercial banks: Neural scoring approach. Review of Development Finance, 4(1), 20–28.

    Article  Google Scholar 

  • Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Annals of Operations Research, 1–26.

  • Belhadi, A., Kamble, S. S., Zkik, K., Cherrafi, A., & Touriki, F. E. (2020). The integrated effect of big data analytics, lean six sigma and green manufacturing on the environmental performance of manufacturing companies: The case of North Africa. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119903

    Article  Google Scholar 

  • Belhadi, A., Zkik, K., Cherrafi, A., & Sha’ri, M. Y. (2019). Understanding big data analytics for manufacturing processes: Insights from literature review and multiple case studies. Computers and Industrial Engineering, 137, 106099. https://doi.org/10.1016/j.cie.2019.106099

    Article  Google Scholar 

  • Bhunia, A., Khan, I., & MuKhuti, S. (2011). A study of managing liquidity. Journal of Management Research, 3(2), 1.

    Article  Google Scholar 

  • Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I. F., & Mak, R. H. (2019). Artificial intelligence in cancer imaging: clinical challenges and applications. CA: A Cancer Journal for Clinicians, 69(2), 127–157.

  • Calabrese, R., & Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172–1188.

    Article  Google Scholar 

  • Chen, H., Xu, Y., & Yang, J. (2020) Systematic risk, debt maturity, and the term structure of credit spreads. Journal of Financial Economics.

  • Chen, X., Wang, X., & Desheng Dash, Wu. (2010). Credit risk measurement and early warning of SMEs: An empirical study of listed SMEs in China. Decision Support Systems, 49(3), 301–310.

    Article  Google Scholar 

  • Chi, G., Abedin, M. Z., & Moula, F. E. (2017). Chinese small business credit scoring: Application of multiple hybrids neural network. International Journal of Database Theory and Application, 10(2), 1–22.

    Article  Google Scholar 

  • De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Proceedings of the World Government Summit, Dubai, UAE, 11–13.

  • Comerton-Forde, C., Hendershott, T., Jones, C. M., Moulton, P. C., & Seasholes, M. S. (2010). Time variation in liquidity: The role of market-maker inventories and revenues. The Journal of Finance, 65(1), 295–331.

    Article  Google Scholar 

  • Corallo, A., Latino, M. E., & Menegoli, M. (2018). From Industry 4.0 to agriculture 4.0: A framework to manage product data in agri-food supply chain for voluntary traceability. International Journal of Nutrition and Food Engineering, 12(5), 146–150.

    Google Scholar 

  • Custódio, C., Miguel, A. F., & Luís, L. (2013). Why are US firms using more short-term debt? Journal of Financial Economics, 108(1), 182–212.

    Article  Google Scholar 

  • Deakins, D., Guhlum H. (1994). Risk assessment with asymmetric information. International Journal of Bank Marketing.

  • Dev, V. A., & Eden, M. R. (2019). Gradient boosted decision trees for lithology classification. In Computer Aided Chemical Engineering (Vol. 47, pp. 113-118). Elsevier..

  • Diamond, D. W., & Rajan, R. G. (2001, June). Banks, short-term debt and financial crises: theory, policy implications and applications. In Carnegie-Rochester conference series on public policy (Vol. 54, No. 1, pp. 37-71). North-Holland

  • Fantazzini, D., & Silvia, F. (2009). Random survival forests models for SME credit risk measurement. Methodology and Computing in Applied Probability, 11(1), 29–45.

    Article  Google Scholar 

  • Fayyaz, M. R., Rasouli, M. R., & Amiri, B. (2020). A data-driven and network-aware approach for credit risk prediction in supply chain finance. Emerald Publishing Limited.

    Google Scholar 

  • Frank, M. Z., & Vidhan, K. G. (2003). Testing the pecking order theory of capital structure. Journal of Financial Economics, 67(2), 217–248.

    Article  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189–1232.

  • Gouvêa, M. A., Eric B. G. (2007). Credit risk analysis applying logistic regression, neural networks and genetic algorithms models. In POMS 18th annual conference.

  • Guotai, C., Mohammad, Z. A., & Fahmida, E. M. (2017). Modeling credit approval data with neural networks: an experimental investigation and optimization. Journal of Business Economics and Management, 18(2), 224–240.

    Article  Google Scholar 

  • Han, T., Jiang, D., Zhao, Q., Wang, L., & Yin, K. (2018). Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Transactions of the Institute of Measurement and Control, 40(8), 2681–2693.

    Article  Google Scholar 

  • Hofmann, E. (2005). Supply chain finance: some conceptual insights. Beiträge Zu Beschaffung Und Logistik, 203–14.

  • Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities?. Technological forecasting and social change, 146, 119–132.

  • Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558.

    Article  Google Scholar 

  • Ilk, N., Shang, G., & Goes, P. (2020). Improving customer routing in contact centers: An automated triage design based on text analytics. Journal of Operations Management, 66(5), 553–577.

    Article  Google Scholar 

  • Jackson, R. H. G., & Anthony, W. (2013). The performance of insolvency prediction and credit risk models in the UK: A comparative study. The British Accounting Review, 45(3), 183–202.

    Article  Google Scholar 

  • Kamble, S. S., Angappa, G., & Rohit, S. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967.

    Article  Google Scholar 

  • Kamble, S. S., Angappa, G., Vikas, K., Amine, B., & Cyril, F. (2021). A machine learning based approach for predicting blockchain adoption in supply chain. Technological Forecasting and Social Change, 163, 120465.

    Article  Google Scholar 

  • Keskin, B. B., Bott, G. J., & Freeman, N. K. (2021). Cracking sex trafficking: Data analysis, pattern recognition, and path prediction. Production and Operations Management, 30(4), 1110–1135.

    Article  Google Scholar 

  • Kotsiantis, S. (2013). Rotation forest with logitboost. International Journal of Innovative Computing, Information and Control, 9(3), 1087–1094.

    Google Scholar 

  • Kovács, I., & Husti, I. (2018). The role of digitalization in the agricultural 4.0–how to connect the industry 4.0 to agriculture? Hungarian Agricultural Engineering, 33, 38–42.

    Article  Google Scholar 

  • Lam, H. K. S., Yuanzhu, Z., Minhao, Z., Yichuan, W., & Andrew, L. (2019). The effect of supply chain finance initiatives on the market value of service providers. International Journal of Production Economics, 216, 227–238.

    Article  Google Scholar 

  • Li, D., Chen, S., Chiong, R., Wang, L., & Dhakal, S. (2020). Predicting the printed circuit board cycle time of surface-mount-technology production lines using a symbiotic organism search-based support vector regression ensemble. International Journal of Production Research, 1-20.

  • Li, D. C., Che-Jung, C., Chien-Chih, C., & Wen-Chih, C. (2012). A grey-based fitting coefficient to build a hybrid forecasting model for small data sets. Applied Mathematical Modelling, 36(10), 5101–5108.

    Article  Google Scholar 

  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., & Hottle, R. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072.

    Article  Google Scholar 

  • Liu, Y., & Lihua, H. (2020). Supply chain finance credit risk assessment using support vector machine-based ensemble improved with noise elimination. International Journal of Distributed Sensor Networks, 16(1), 1550147720903631.

    Article  Google Scholar 

  • Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334.

    Article  Google Scholar 

  • Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters, 3(4), 2870–2877.

    Article  Google Scholar 

  • Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International Journal of Production Research, 56(3), 1118–1136.

  • Noori, R., Abdulreza, K., & Mohammad, S. S. (2010). Evaluation of PCA and gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management, 91(3), 767–771.

    Article  Google Scholar 

  • Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research, 11, 169–198.

    Article  Google Scholar 

  • Pandey, D., & Agrawal, M. (2014). Carbon footprint estimation in the agriculture sector. In Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1 (pp. 25-47). Springer.

  • Prathibha, S. R., Anupama, H., Jyothi, M. P. (2017) IoT based monitoring system in smart agriculture. In 2017 international conference on recent advances in electronics and communication technology (ICRAECT) (pp. 81–84). IEEE.

  • Qiao, Y., Friederike, M., Xueqing, H., Huayang, Z., & Xihe, P. (2019). The changing role of local government in organic agriculture development in wanzai county, China. Canadian Journal of Development Studies, 40(1), 64–77. https://doi.org/10.1080/02255189.2019.1520693

    Article  Google Scholar 

  • Ransom, K. M., Nolan, B. T., Traum, J. A., Faunt, C. C., Bell, A. M., Gronberg, J. A., Wheeler, D. C., Rosecrans, C. Z., Jurgens, B., Schwarz, G. E., & Belitz, K. (2017). A hybrid machine learning model to predict and visualize nitrate concentration throughout the central valley aquifer, California, USA. Science of the Total Environment, 601, 1160–1172.

    Article  Google Scholar 

  • Ray, P. P. (2017). Internet of Things for Smart Agriculture: Technologies, Practices and Future Direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395–420.

    Article  Google Scholar 

  • Ren, L., Lin, Z., Lihui, W., Fei, T., & Xudong, C. (2017). Cloud manufacturing: Key characteristics and applications. International Journal of Computer Integrated Manufacturing, 30(6), 501–515.

    Article  Google Scholar 

  • Rodríguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619–1630. https://doi.org/10.1109/TPAMI.2006.211

    Article  Google Scholar 

  • Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–18. https://doi.org/10.1002/widm.1249

    Article  Google Scholar 

  • Shajalal, M., Hajek, P., & Abedin, M. Z. (2021). Product backorder prediction using deep neural network on imbalanced data. International Journal of Production Research. https://doi.org/10.1080/00207543.2021.1901153

    Article  Google Scholar 

  • Shapiro, S. P. (2005). Agency theory. Annual Review of Sociology, 31, 263–284.

    Article  Google Scholar 

  • Sharafati, A., Asadollah, S. B. H. S., & Hosseinzadeh, M. (2020). The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Elsevier.

    Book  Google Scholar 

  • Singh, S., & Priyanka, G. (2014). Comparative study ID3, cart and C4. 5 decision tree algorithm: A survey. International Journal of Advanced Information Science and Technology (IJAIST), 27(27), 97–103.

    Google Scholar 

  • Song, H., Kangkang, Yu., Ganguly, A., & Turson, R. (2016). Supply chain network, information sharing and SME credit quality. Emerald Group Publishing Limited.

    Book  Google Scholar 

  • Stiglitz, J. E., & Andrew, W. (1981). Credit rationing in markets with imperfect information. The American Economic Review, 71(3), 393–410.

    Google Scholar 

  • Wang, J., Zhao, L., & Huchzermeier, A. (2020a). Operations-finance interface in risk management: Research evolution and opportunities. Production and Operations Management. https://doi.org/10.1111/poms.13269

    Article  Google Scholar 

  • Wang, Z., Qiang, W., Yin, L., & Chaojie, L. (2020b). Drivers and outcomes of supply chain finance adoption: an empirical investigation in China. International Journal of Production Economics, 220, 107453.

    Article  Google Scholar 

  • Webb, G. I., & Zijian, Z. (2004). Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Transactions on Knowledge and Data Engineering, 16(8), 980–991.

    Article  Google Scholar 

  • Wetzel, P., & Erik, H. (2019). Supply chain finance, financial constraints and corporate performance: An explorative network analysis and future research agenda. International Journal of Production Economics, 216(July), 364–383. https://doi.org/10.1016/j.ijpe.2019.07.001

    Article  Google Scholar 

  • Wolfert, S., Lan, G., Cor, V., & Marc-Jeroen, B. (2017). big data in smart farming–a review. Agricultural Systems, 153, 69–80.

    Article  Google Scholar 

  • Wuttke, D. A., Constantin, B., Sebastian, H. H., & Margarita, P. S. (2016). Supply chain finance: optimal introduction and adoption decisions. International Journal of Production Economics, 178, 72–81.

    Article  Google Scholar 

  • Wuttke, D. A., Rosenzweig, E. D., & Heese, H. S. (2019). An empirical analysis of supply chain finance adoption. Journal of Operations Management, 65(3), 242–261. https://doi.org/10.1002/joom.1023

    Article  Google Scholar 

  • Xingli, W., & Huchang, L. (2020). Utility-based hybrid fuzzy axiomatic design and its application in supply chain finance decision making with credit risk assessments. Computers in Industry, 114, 103144.

    Article  Google Scholar 

  • Xu, X., Chen, X., Jia, F., Brown, S., Gong, Y., & Xu, Y. (2018). Supply chain finance: A systematic literature review and bibliometric analysis. International Journal of Production Economics, 204, 160–173.

    Article  Google Scholar 

  • Yan, N., Xuyu, J., Hechen, Z., & Xun, X. (2020). Loss-averse retailers’ financial offerings to capital-constrained suppliers: Loan vs. investment. International Journal of Production Economics, 227, 107665.

    Article  Google Scholar 

  • Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1), 36.

    Article  Google Scholar 

  • Zhang, C., & Yunqian, M. (2012). Ensemble machine learning: Methods and applications. Springer.

    Book  Google Scholar 

  • Zhang, L., Haiqing, H., & Dan, Z. (2015). A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance. Financial Innovation, 1(1), 14.

    Article  Google Scholar 

  • Zhang, L., Jia, J., Gui, G., Hao, X., Gao, W., & Wang, M. (2018). Deep learning based improved classification system for designing tomato harvesting robot. IEEE Access, 6, 67940–67950.

    Article  Google Scholar 

  • Zhu, Y., Chi, X., Bo, S., Gang-Jin, W., & Xin-Guo, Y. (2016). Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models. Sustainability, 8(5), 433.

    Article  Google Scholar 

  • Zhu, Y., Chi, X., Gang-Jin, W., & Xin-Guo, Y. (2017). Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Computing and Applications, 28(1), 41–50.

    Article  Google Scholar 

  • Zhu, Y., Li, Z., Chi, X., Gang-Jin, W., & Truong, V. N. (2019). Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211, 22–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Mani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: RotF-LB algorithm

Appendix: RotF-LB algorithm

Let E be an ensemble of leaners, initially empty, and Z the number of boost samples

For j= 1 to Z do

Begin

The input variables are randomly grouped.

For each group of input variables:

  • Consider a dataset formed by this input variables.

  • Eliminate from the dataset all examples from a proper subset of the classes.

  • Eliminate from the dataset a subset of the examples.

  • Apply PCA with the remaining dataset.

  • Consider the components of PCA as a new set of variables.

  1. 1.

    Starting with equal weights\( \omega_{i}\) = \(\frac{1}{N}\), i = 1, …, N, Function F(x) = 0 and sample probability estimates p(\(x_{i}\)) = 0.5

  2. 2.

    Repeat form = 1 to Z

    1. a.

      Compute the working response and weights

      $$ Z_{i} = \frac{{y_{i} - p\left( {x_{i} } \right)}}{{p\left( {x_{i} } \right)\left( {1 - p\left( {x_{i} } \right)} \right)}}\, {\text{and}}\,\omega_{i} = \frac{{p\left( {x_{i} } \right)}}{{1 - p\left( {x_{i} } \right)}} $$
      (6)
    2. b.

      Fit the decision function \(f_{m}\)(x) by a weighted least-squares regression of \({\text{z}}_{{\text{i}}}\) to \(x_{i}\) using weights \(\omega_{i}\).

    3. c.

      Update both F(x) and p(x)

      $$ F\left( x \right) = F\left( x \right) + 0.5f_{m} \left( x \right){\text{and}}\,p\left( x \right) = \frac{{e^{F\left( x \right)} }}{{e^{F\left( x \right)} + e^{ - F\left( x \right)} }} = \left( {1 + e^{ - 2F\left( x \right)} } \right)^{ - 1} $$
      (7)

Output classifier = the most often predicted class of E.

End

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadi, A., Kamble, S.S., Mani, V. et al. An ensemble machine learning approach for forecasting credit risk of agricultural SMEs’ investments in agriculture 4.0 through supply chain finance. Ann Oper Res 345, 779–807 (2025). https://doi.org/10.1007/s10479-021-04366-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04366-9

Keywords