Skip to main content
Log in

Filtering active moments in basketball games using data from players tracking systems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In recent years, sport analytics evolved in the massive collection of data, especially from Global Positioning System (GPS) sensors installed in sport facilities or worn by the athletes. The largest amount of data are used to track locations and trajectories of players during their performance. Data analysis of positioning information during the actions of a game allows a deep characterization of the performance of single players and the whole team. Basketball is one of the team sports where analytics are becoming a fundamental asset. However, during a game, actions are interleaved with inactive periods (e.g., pauses or breaks). For a proper knowledge extraction on the game features, the analysis of players movements must be restricted to active periods only. This paper proposes an algorithm to automatically identify active periods by using players’ tracking data in basketball. The algorithm is based on thresholds that apply to players kinematic parameters. The values of thresholds are identified by setting-up a “ground truth” extracted from the video analysis of the games and by developing a performance evaluation method derived from “Receiver Operating Characteristic” (ROC) curves. When tested on a number of real games, the method shows good performance. This algorithm, along with the identified parameters, could be adopted by practitioners to identify game active periods without the need for video analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Aware of possible limitations, we decided to not consider data of both home and away team due to the presence of missing data (i.e. some players had not been tracked for the full game length).

  2. The high variability among single interruptions is increased by the fact that players can attempt either one or two free-throws, depending on the situation. The min values of 3 and 6 seconds are outliers, since, sometimes, it was not possible to correctly track the time due to a replay during the television broadcast.

  3. The aggregation of index t at a frequency of 1 second is necessary, since we match tracking data (expressed in ms) with video-based data (expressed in seconds).

References

  • Bendtsen, M. (2017). Regimes in baseball players’ career data. Data Mining and Knowledge Discovery 31(6), 1580–1621. https://doi.org/10.1007/s10618-017-0510-5

  • Bensic, M., Sarlija, N., & Zekic-Susac, M. (2005). Modelling smallbusiness credit scoring by using logistic regression, neural networks and decision trees. Intelligent Systems in Accounting, Finance and Management: International Journal, 13(3), 133–150. https://doi.org/10.1002/isaf.261

    Article  Google Scholar 

  • Bermingham, L., & Lee, I. (2018). A probabilistic stop and move classifier for noisy gps trajectories. Data Mining and Knowledge Discovery, 32(6), 1634–1662. https://doi.org/10.1007/s10618-018-0568-8

    Article  Google Scholar 

  • Berrar, D., Lopes, P., Davis, J., & Dubitzky, W. (2019). Guest editorial: Special issue on machine learning for soccer. Machine Learning, 108(1), 1–7. https://doi.org/10.1007/s10994-018-5763-8

    Article  Google Scholar 

  • Brefeld, U., & Zimmermann, A. (2017). Guest editorial: Special issue on sports analytics. Data Mining and Knowledge Discovery, 31(6), 1577–1579. https://doi.org/10.1007/s10618-017-0530-1

    Article  Google Scholar 

  • Brefeld, U. (2019). Machine Learning and Data Mining for Sports Analytics. Springer. https://doi.org/10.1007/978-3-030-17274-9

  • Cea, S., Durán, G., Guajardo, M., Sauré, D., Siebert, J., & Zamorano, G. (2020). An analytics approach to the FIFA ranking procedure and the World Cup final draw. Annals of Operations Research, 286(1), 119–146.

    Article  Google Scholar 

  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0

    Article  Google Scholar 

  • Cravo, J., Almeida, F., Abreu, P. H., Reis, L. P., Lau, N., & Mota, L. (2014). Strategy planner: Graphical definition of soccer set-plays. Data and Knowledge Engineering, 94, 110–131. https://doi.org/10.1016/j.datak.2014.10.001

    Article  Google Scholar 

  • Csató, L. (2020). The UEFA Champions League seeding is not strategy-proof since the 2015/16 season. Annals of Operations Research, 292, 161–169.

    Article  Google Scholar 

  • D’Amour, A., Cervone, D., Bornn, L., & Goldsberry, K. (2015). Move or die: how ball movement creates open shots in the nba, MIT Sloan Sports Analytics Conference.

  • Davis, J., van Haaren, J., Kaytoue, M., & Zimmermann, A. (2018). Machine learning and data mining for sports analytics. https://dtai.cs.kuleuven.be/events/mlsa18/index.php.

  • Durán, G., Guajardo, M., & Gutiérrez, F. (2021). Efficient referee assignment in Argentinean professional basketball leagues using operations research methods. Annals of Operations Research 1–19.

  • Figueira, B., Gonçalves, B., Folgado, H., Masiulis, N., Calleja-González, J., & Sampaio, J. (2018). Accuracy of a basketball indoor tracking system based on standard bluetooth low energy channels (nbn23®). Sensors, 18(6), 1940. https://doi.org/10.3390/s18061940

    Article  Google Scholar 

  • Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the youden index and its associated cutoff point. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 47(4), 458–472. https://doi.org/10.1002/bimj.200410135

    Article  Google Scholar 

  • Franks, A., Miller, A., Bornn, L., & Goldsberry, K. (2015). Characterizing the spatial structure of defensive skill in professional basketball. Annals of Applied Statistics, 9(1), 94–121.

    Article  Google Scholar 

  • Gavrila, D. M. (1999). The visual analysis of human movement: A survey. Computer vision and image understanding, 73(1), 82–98. https://doi.org/10.1006/cviu.1998.0716

    Article  Google Scholar 

  • Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy: Geographic knowledge discovery, Springer Science & Business Media. ISBN: 978-3-540-75176-2.

  • Goes, F. R., Kempe, M., van Norel, J., & Lemmink, K. A. P. M. (2021). Modelling team performance in soccer using tactical features derived from position tracking data. IMA Journal of Management Mathematics

  • Grassetti, L., Bellio, R., Di Gaspero, L., Fonseca, G., & Vidoni, P. (2020). An extended regularized adjusted plus-minus analysis for lineup management in basketball using play-by-play data, IMA Journal of Management Mathematics.

  • Gudmundsson, J., & Horton, M. (2017). Spatio-temporal analysis of team sports. ACM Computing Surveys (CSUR), 50(2), 22. https://doi.org/10.1145/3054132

    Article  Google Scholar 

  • Horton, M. (2018). Algorithms for the Analysis of Spatio-Temporal Data from Team Sports, PhD thesis, University of Sydney. URI: http://hdl.handle.net/2123/17755.

  • Huang, Y.-C., Chen, T.-L., Chiu, B.-C., Yi, C.-W., Lin, C.-W., Yeh, Y.-J., & Kuo, L.-C. (2012). Calculate golf swing trajectories from imu sensing data. In: Parallel Processing Workshops (ICPPW), 2012 41st International Conference on, IEEE (pp. 505-513). ISBN: 978-1-4673-2509-7.

  • Jiang, S., Ye, Q., Gao, W., & Huang, T. (2004). A new method to segment playfield and its applications in match analysis in sports video. In: Proceedings of the 12th annual ACM international conference on Multimedia, ACM (pp. 292-295). ISBN: 978-1-58113-893-1.

  • Jordan, J. D., Melouk, S. H., & Perry, M. B. (2009). Optimizing football game play calling, Journal of Quantitative Analysis in Sports, 5(2). https://doi.org/10.2202/1559-0410.1176.

  • Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity recognition in beach volleyball using a deep convolutional neural network. Data Mining and Knowledge Discovery, 31(6), 1678–1705. https://doi.org/10.1007/s10618-017-0495-0

    Article  Google Scholar 

  • Keshri, S., Oh, M. H., Zhang, S., & Iyengar, G. (2019). Automatic event detection in basketball using HMM with energy based defensive assignment. Journal of Quantitative Analysis in Sports, 15(2), 141–153.

    Article  Google Scholar 

  • Khaustov, V., & Mozgovoy, M. (2020). Recognizing events in spatiotemporal soccer data. Applied Sciences, 10(22), 8046.

    Article  Google Scholar 

  • Kostakis, O., Tatti, N., & Gionis, A. (2017). Discovering recurring activity in temporal networks. Data Mining and Knowledge Discovery, 31(6), 1840–1871. https://doi.org/10.1007/s10618-017-0515-0

    Article  Google Scholar 

  • Krzanowski, W. J., & Hand, D. J. (2009). ROC curves for continuous data, Chapman and Hall/CRC. ISBN: 978-1-4398-0021-8.

  • Li, Z., Han, J., Ji, M., Tang, L.-A., Yu, Y., Ding, B., Lee, J.-G., & Kays, R. (2011). Movemine: Mining moving object data for discovery of animal movement patterns. ACM Transactions on Intelligent Systems and Technology (TIST), 2(4), 37. https://doi.org/10.1145/1989734.1989741

    Article  Google Scholar 

  • Link, D., & Hoernig, M. (2017). Individual ball possession in soccer. PloS one, 12(7), e0179953.

    Article  Google Scholar 

  • Linke, D., Link, D., Lames, M., & Ardigò, L. P. (2018). Validation of electronic performance and tracking systems epts under field conditions. PLoS One 13(7). https://doi.org/10.1371/journal.pone.0199519.

  • Liu, X. (2012). Classification accuracy and cut point selection. Statistics in medicine, 31(23), 2676–2686. https://doi.org/10.1002/sim.4509

    Article  Google Scholar 

  • Lucey, P., Morgan, S., Wiens, J., & Yue, Y. (2016). Kdd workshop on large-scale sports analytics. http://large-scale-sports-analytics.org/.

  • Manisera, M., Metulini, R., & Zuccolotto, P. (2019). Basketball analytics using spatial tracking data, New Statistical Developments in Data Science pp. 305-318. https://doi.org/10.1007/978-3-030-21158-5-23.

  • Mehrasa, N., Zhong, Y., Tung, F., Bornn, L., & Mori, G. (2017). Learning person trajectory representations for team activity analysis, arXiv preprintarxiv:1706.00893.

  • Metulini, R. (2017). Filtering procedures for sensor data in basketball. Statistica and Applicazioni, 15(2), 133–150. https://doi.org/10.26350/999999000007

    Article  Google Scholar 

  • Metulini, R. (2017). Spatio-temporal movements in team sports: A visualization approach using motion charts. Electronic Journal of Applied Statistical Analysis, 10(3), 809–831. https://doi.org/10.1285/i20705948v10n3p809

    Article  Google Scholar 

  • Metulini, R. (2018). Players movements and team shooting performance: a data mining approach for basketball. In: 49th Scientific meeting of the Italian Statistical Society, SIS2018 proceeding (pp. 681-688). ISBN- 9788891910233.

  • Metulini, R., Manisera, M., & Zuccolotto, P. (2018). Modelling the dynamic pattern of surface area in basketball and its effects on team performance. Journal of Quantitative Analysis in Sports, 14(3), 117–130. https://doi.org/10.1515/jqas-2018-0041

    Article  Google Scholar 

  • Miller, A. C., & Bornn, L. (2017). Possession sketches: Mapping NBA strategies, MIT Sloan Sports Analytics Conference 2017.

  • Morra, L., Manigrasso, F., Canto, G., Gianfrate, C., Guarino, E., & Lamberti, F. (2020). Slicing and dicing soccer: Automatic detection of complex events from spatio-temporal data. In International Conference on Image Analysis and Recognition Springer.

  • Nikolaidis, Y. (2015). Building a basketball game strategy through statistical analysis of data. Annals of Operations Research, 227(1), 137–159. https://doi.org/10.1007/s10479-013-1309-4

    Article  Google Scholar 

  • Pang, L. X., Chawla, S., Liu, W., & Zheng, Y. (2013). On detection of emerging anomalous traffic patterns using gps data. Data and Knowledge Engineering, 87, 357–373. https://doi.org/10.1016/j.datak.2013.05.002

    Article  Google Scholar 

  • Pappalardo, L., & Simini, F. (2018). Data-driven generation of spatio-temporal routines in human mobility. Data Mining and Knowledge Discovery, 32(3), 787–829. https://doi.org/10.1007/s10618-017-0548-4

    Article  Google Scholar 

  • Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction, Medicine. ISBN: 978-0198565826.

  • Ramanathan, V., Huang, J., Abu-El-Haija, S., Gorban, A., Murphy, K., & Fei-Fei, L. (2016). Detecting events and key actors in multi-person videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3043-3053). https://doi.org/10.1109/CVPR.2016.1.

  • Salman, M., Qaisar, S., & Qamar, A. M. (2017). Classification and legality analysis of bowling action in the game of cricket. Data Mining and Knowledge Discovery, 31(6), 1706–1734. https://doi.org/10.1007/s10618-017-0511-4

    Article  Google Scholar 

  • Schulte, O., Khademi, M., Gholami, S., Zhao, Z., Javan, M., & Desaulniers, P. (2017). A markov game model for valuing actions, locations, and team performance in ice hockey. Data Mining and Knowledge Discovery, 31(6), 1735–1757. https://doi.org/10.1007/s10618-017-0496-z

    Article  Google Scholar 

  • Soekarjo, K. M., Orth, D., Warmerdam, E., & Van Der Kamp, J. (2018). Automatic classification of strike techniques using limb trajectory data. In: International Workshop on Machine Learning and Data Mining for Sports Analytics, Springer (pp. 131-141). https://doi.org/10.1007/978-3-030-17274-911.

  • Song, K., & Shi, J. (2020). A gamma process based in-play prediction model for National Basketball Association games. European Journal of Operational Research, 283(2), 706–713.

    Article  Google Scholar 

  • STATS (2018). Sportvu system. Last visited: 2018-08-17.

  • Swartz, T. B. (2020). Where should i publish my sports paper? The American Statistician, 74(2), 103–108.

    Article  Google Scholar 

  • van Bommel, M., & Bornn, L. (2017). Adjusting for scorekeeper bias in nba box scores. Data Mining and Knowledge Discovery, 31(6), 1622–1642. https://doi.org/10.1007/s10618-017-0497-y

    Article  Google Scholar 

  • Weinland, D., Ronfard, R., & Boyer, E. (2011). A survey of vision-based methods for action representation, segmentation and recognition. Computer vision and image understanding, 115(2), 224–241. https://doi.org/10.1016/j.cviu.2010.10.002

    Article  Google Scholar 

  • Wright, M. (2014). OR analysis of sporting rules-A survey. European Journal of Operational Research, 232(1), 1–8.

    Article  Google Scholar 

  • Wu, S., & Bornn, L. (2017). Modeling offensive player movement in professional basketball. The American Statistician, 72(1), 72–79. https://doi.org/10.1080/00031305.2017.1395365

    Article  Google Scholar 

  • Xinyu W., Long S., Patrick L., Stuart M., & Sridha S. (2013). Large-scale analysis of formations in soccer. In 2013 international conference on digital image computing: Techniques and applications (DICTA), IEEE.

  • Yang, C. H., Lin, H. Y., & Chen, C. P. (2014). Measuring the efficiency of NBA teams: Additive efficiency decomposition in two-stage DEA. Annals of Operations Research, 217(1), 565–589. https://doi.org/10.1007/s10479-014-1536-3

    Article  Google Scholar 

  • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35. https://doi.org/10.1002/1097-0142

    Article  Google Scholar 

  • Zheng, Y., & Zhou, X. (2011). Computing with spatial trajectories. Springer. https://doi.org/10.1007/978-1-4614-1629-6

  • Zhou, X.-H., McClish, D. K., & Obuchowski, N. A. (2009). Statistical methods in diagnostic medicine, Vol. 569. Wiley. https://doi.org/10.1002/9780470906514.

Download references

Acknowledgements

Research carried out in collaboration with the Big&Open Data Innovation Laboratory (BODaI-Lab), University of Brescia (project nr. 03-2016, title Big Data Analytics in Sports, http://bdsports.unibs.it), granted by Fondazione Cariplo and Regione Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Metulini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Facchinetti, T., Metulini, R. & Zuccolotto, P. Filtering active moments in basketball games using data from players tracking systems. Ann Oper Res 325, 521–538 (2023). https://doi.org/10.1007/s10479-021-04391-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04391-8

Keywords

Navigation