Skip to main content
Log in

Simheuristic algorithm for a stochastic parallel machine scheduling problem with periodic re-planning assessment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper addresses a parallel machine scheduling problem with non-anticipatory family setup times and batching, considering the task’s stochastic processing times and release dates. The problem arises from a real-life ship scheduling problem in the oil and gas industry. We developed an Iterated Greedy simheuristic with built-in Monte Carlo Simulation to sample the stochastic parameters. We conducted experiments on a set of instances from the literature, considering two simheuristic variants and three uncertainty levels for the stochastic parameters. To highlight the advantages of using simulation to tackle the stochastic problem, the simheuristics are compared against a regular Iterated Greedy metaheuristic, yielding an improvement of up to 16.5% on the objective function’s expected values, with a reduced impact on computational times. During a risk analysis, the Pareto set of solutions is generated to illustrate the trade-off between the expected objective value of the solutions and the conditional value at risk, providing decision-makers with a useful tool to select the schedules that better fit their risk profiles. We use an iterative mechanism to build confidence intervals within a certain confidence level during the method’s simulation step, interrupting the procedure when it reaches the desired error. This strategy’s advantage is highlighted in the computational experiments, which indicates that the number of replications of the simulation is instance and uncertainty level dependent. A periodic re-planning strategy is also used to evaluate the performance of the simheuristic, highlighting the advantages of using the proposed algorithm in a real-life usage situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.boost.org, last accessed 2021-01-29.

References

  • Abu-Marrul, V., Martinelli, R., & Hamacher, S. (2019). Instances for the plsv scheduling problem: An identical parallel machine approach with non-anticipatory family setup times. https://doi.org/10.17771/PUCRio.ResearchData.45799

  • Abu-Marrul, V., Martinelli, R., & Hamacher, S. (2020). Scheduling pipe laying support vessels with non-anticipatory family setup times and intersections between sets of operations. International Journal of Production Research

  • Abu-Marrul, V., Martinelli, R., Hamacher, S., & Gribkovskaia, I. (2021). Matheuristics for a parallel machine scheduling problem with non-anticipatory family setup times: Application in the offshore oil and gas industry. Computers & Operations Research, 128, 105162.

    Article  Google Scholar 

  • Calvet, L., Wang, D., Juan, A., & Bové, L. (2019). Solving the multidepot vehicle routing problem with limited depot capacity and stochastic demands. International Transactions in Operational Research, 26(2), 458–484.

    Article  Google Scholar 

  • Cunha, V., Santos, I., Pessoa, L., & Hamacher, S. (2020). An ILS heuristic for the ship scheduling problem: Application in the oil industry. International Transactions in Operational Research, 27(1), 197–218.

    Article  Google Scholar 

  • Fanjul-Peyro, L., & Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel machine scheduling. European Journal of Operational Research, 207(1), 55–69.

    Article  Google Scholar 

  • Gonzalez-Martin, S., Juan, A. A., Riera, D., Elizondo, M. G., & Ramos, J. J. (2018). A simheuristic algorithm for solving the arc routing problem with stochastic demands. Journal of Simulation, 12(1), 53–66.

    Article  Google Scholar 

  • Gonzalez-Neira, E. M., Ferone, D., Hatami, S., & Juan, A. A. (2017). A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times. Simulation Modelling Practice and Theory, 79, 23–36.

    Article  Google Scholar 

  • González-Neira, E. M., Urrego-Torres, A. M., Cruz-Riveros, A. M., Henao-García, C., Montoya-Torres, J. R., Molina-Sánchez, L. P., & Jiménez, J. F. (2019). Robust solutions in multi-objective stochastic permutation flow shop problem. Computers & Industrial Engineering, 137, 106026.

    Article  Google Scholar 

  • Grasas, A., Juan, A. A., & Lourenço, H. R. (2016). SimILS: A simulation-based extension of the iterated local search metaheuristic for stochastic combinatorial optimization. Journal of Simulation, 10(1), 69–77.

    Article  Google Scholar 

  • Gruler, A., Quintero-Araújo, C. L., Calvet, L., & Juan, A. A. (2017). Waste collection under uncertainty: A simheuristic based on variable neighbourhood search. European Journal of Industrial Engineering, 11(2), 228–255.

    Article  Google Scholar 

  • Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., & Juan, A. A. (2018). Combining variable neighborhood search with simulation for the inventory routing problem with stochastic demands and stock-outs. Computers & Industrial Engineering, 123, 278–288.

    Article  Google Scholar 

  • Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., & Juan, A. A. (2020). A variable neighborhood search simheuristic for the multiperiod inventory routing problem with stochastic demands. International Transactions in Operational Research, 27(1), 314–335.

    Article  Google Scholar 

  • Guimarans, D., Dominguez, O., Panadero, J., & Juan, A. A. (2018). A simheuristic approach for the two-dimensional vehicle routing problem with stochastic travel times. Simulation Modelling Practice and Theory, 89, 1–14.

    Article  Google Scholar 

  • Hatami, S., Calvet, L., Fernández-Viagas, V., Framiñán, J. M., & Juan, A. A. (2018). A simheuristic algorithm to set up starting times in the stochastic parallel flowshop problem. Simulation Modelling Practice and Theory, 86, 55–71.

    Article  Google Scholar 

  • Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2011). Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research Part C: Emerging Technologies, 19(5), 751–765.

    Article  Google Scholar 

  • Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J. (2014). A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simulation Modelling Practice and Theory, 46, 101–117.

    Article  Google Scholar 

  • Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62–72.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  Google Scholar 

  • Latorre-Biel, J. I., Ferone, D., Juan, A. A., & Faulin, J. (2021). Combining simheuristics with petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Systems with Applications, 168, 114240.

    Article  Google Scholar 

  • Law, AM., Kelton, WD., & Kelton, WD. (2000). Simulation modeling and analysis, vol 3. New York: McGraw-Hill.

  • Lee, C. (2017). A dispatching rule and a random iterated greedy metaheuristic for identical parallel machine scheduling to minimize total tardiness. International Journal of Production Research, 56, 1–17.

    Google Scholar 

  • Lopes, T. C., Michels, A. S., Lüders, R., & Magatão, L. (2020). A simheuristic approach for throughput maximization of asynchronous buffered stochastic mixed-model assembly lines. Computers & Operations Research, 115, 104863.

    Article  Google Scholar 

  • Mecler, D., Abu-Marrul, V., Martinelli, R., & Hoff, A. (2021). Iterated greedy algorithms for a complex parallel machine scheduling problem. European Journal of Operational Research.

  • Onggo, B. S., Panadero, J., Corlu, C. G., & Juan, A. A. (2019). Agri-food supply chains with stochastic demands: A multi-period inventory routing problem with perishable products. Simulation Modelling Practice and Theory, 97, 101970.

    Article  Google Scholar 

  • Pagès-Bernaus, A., Ramalhinho, H., Juan, A. A., & Calvet, L. (2019). Designing e-commerce supply chains: a stochastic facility-location approach. International Transactions in Operational Research, 26(2), 507–528.

    Article  Google Scholar 

  • Panadero, J., Doering, J., Kizys, R., Juan, A. A., & Fito, A. (2020). A variable neighborhood search simheuristic for project portfolio selection under uncertainty. Journal of Heuristics, 26(3), 353–375.

    Article  Google Scholar 

  • Pinedo, M. (2012). Scheduling. Theory, algorithms, and systems, vol 29. Springer.

  • Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations Research, 34(8), 2403–2435.

    Article  Google Scholar 

  • Queiroz, M.M., & Mendes, A.B. (2011). Heuristic approach for solving a pipe layer fleet scheduling problem. In Rizzuto, E., Soares, C.G. (eds.) Sustainable maritime transportation and exploitation of sea resources (chap 9, pp. 1073–1080). London: Taylor & Francis Group.

  • Quintero-Araujo, C. L., Gruler, A., Juan, A. A., de Armas, J., & Ramalhinho, H. (2017). Using simheuristics to promote horizontal collaboration in stochastic city logistics. Progress in Artificial Intelligence, 6(4), 275–284.

    Article  Google Scholar 

  • Quintero-Araujo, CL., Guimarans, D., & Juan, AA. (2019). A simheuristic algorithm for the capacitated location routing problem with stochastic demands. Journal of Simulation 0(0):1–18

  • Raba, D., Estrada-Moreno, A., Panadero, J., & Juan, A. A. (2020). A reactive simheuristic using online data for a real-life inventory routing problem with stochastic demands. International Transactions in Operational Research, 27(6), 2785–2816.

    Article  Google Scholar 

  • Rabbani, M., Heidari, R., & Yazdanparast, R. (2019). A stochastic multi-period industrial hazardous waste location-routing problem: Integrating nsga-ii and monte carlo simulation. European Journal of Operational Research, 272(3), 945–961.

    Article  Google Scholar 

  • Rabe, M., Deininger, M., & Juan, A. A. (2020). Speeding up computational times in simheuristics combining genetic algorithms with discrete-event simulation. Simulation Modelling Practice and Theory, 103, 102089.

    Article  Google Scholar 

  • Reyes-Rubiano, L., Ferone, D., Juan, A. A., & Faulin, J. (2019). A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times. SORT-Statistics and Operations Research Transactions, 1(1), 3–24.

    Google Scholar 

  • Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033–2049.

    Article  Google Scholar 

  • Ruiz, R., Pan, Q. K., & Bahman, N. (2019). Iterated greedy methods for the distributed permutation flowshop scheduling problem. Omega, 83, 213–222.

    Article  Google Scholar 

  • Santos, M. S., Pinto, T. V., Júnior, Ênio Lopes, Cota, L. P., Souza, M. J., & Euzébio, T. A. (2020). Simheuristic-based decision support system for efficiency improvement of an iron ore crusher circuit. Engineering Applications of Artificial Intelligence, 94, 103789.

  • Street, A. (2010). On the conditional value-at-risk probability-dependent utility function. Theory and Decision, 68(1), 49–68.

    Article  Google Scholar 

  • Subramanian, A., Battarra, M., & Potts, C. N. (2014). An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. International Journal of Production Research, 52(9), 2729–2742.

    Article  Google Scholar 

  • Subramanian, A., Farias, K., & Potts, C. N. (2017). Efficient local search limitation strategy for single machine total weighted tardiness scheduling with sequence-dependent setup times. Computers & Operations Research, 79, 190–206.

    Article  Google Scholar 

  • Villarinho, P. A., Panadero, J., Pessoa, L. S., Juan, A. A., & Oliveira, F. L. C. (2021). A simheuristic algorithm for the stochastic permutation flow-shop problem with delivery dates and cumulative payoffs. International Transactions in Operational Research, 28(2), 716–737.

    Article  Google Scholar 

  • Yazdani, M., Kabirifar, K., Frimpong, B. E., Shariati, M., Mirmozaffari, M., & Boskabadi, A. (2021). Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in sydney, australia. Journal of Cleaner Production, 280, 124138.

    Article  Google Scholar 

Download references

Funding

This study was financed in part by PUC-Rio, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant Numbers 315361/2020-4 and 10940/2019-2, by the Fundação de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ) under Grant number E-26/010.002232/2019, and by the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (Diku)—Project number UTF-2017-four-year/10075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Abu-Marrul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Marrul, V., Martinelli, R., Hamacher, S. et al. Simheuristic algorithm for a stochastic parallel machine scheduling problem with periodic re-planning assessment. Ann Oper Res 320, 547–572 (2023). https://doi.org/10.1007/s10479-022-04534-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04534-5

Keywords