Abstract
Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM.
Similar content being viewed by others
References
Arena, M., Azzone, G., & Piantoni, G. (2020). Shared value creation during site decommissioning: A case study from the energy sector. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119587
Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766
Atakhan-Kenneweg, M., Oerlemans, L. A., & Raab, J. (2021). New inter-organizational knowledge tie formation after firm relocation: Investigating the impact of spatial, relational, and temporal context. Journal of Business Research, 127, 264–276. https://doi.org/10.1016/j.jbusres.2021.01.023
Aus Dem Moore, N., Großkurth, P., & Themann, M. (2019). Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization. Journal of Environmental Economics and Management, 94, 1–26. https://doi.org/10.1016/j.jeem.2018.11.003
Brouwer, A. E., Mariotti, I., & Van Ommeren, J. N. (2004). The firm relocation decision: An empirical investigation. The Annals of Regional Science, 38(2), 335–347. https://doi.org/10.1007/s00168-004-0198-5
Cay, T., & Yuan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541–548. https://doi.org/10.1016/j.landusepol.2012.04.023
Central Intelligence Agency. (2021). The World Factbook 2021. Retrieved June 18, 2021, from https://www.cia.gov/the-world-factbook/
Chang, W.-L. (2009). Using multi-criteria decision aid to rank and select co-branding partners: From a brand personality perspective. Kybernetes, 38(6), 950–965. https://doi.org/10.1108/03684920910973171
Chen, W., Shen, Y., Wang, Y., & Wu, Q. (2018). The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. Journal of Cleaner Production, 205, 525–535. https://doi.org/10.1016/j.jclepro.2018.09.106
Doczy, R., & AbdelRazig, Y. (2017). Green buildings case study analysis using AHP and MAUT in sustainability and costs. Journal of Architectural Engineering, 23(3), 05017002. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000252
Doumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. Kluwer.
Emrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research, 55(22), 6653–6675. https://doi.org/10.1080/00207543.2017.1334976
Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34(7), 1689–1709. https://doi.org/10.1016/j.apm.2009.10.005
Garuti, C., & Salomon, V. (2012). Compatibility indices between priority vectors. International Journal of the Analytic Hierarchy Process, 4(2), 152–160. https://doi.org/10.13033/ijahp.v4i2.130
Garuti, C. E. (2019). A set theory justification of Garuti’s compatibility index. Journal of Multi-Criteria Decision Analysis, 27(2), 50–60. https://doi.org/10.1002/mcda.1667
Grillitsch, M., & Asheim, B. (2018). Place-based innovation policy for industrial diversification in regions. European Planning Studies, 26(8), 1638–1662. https://doi.org/10.1080/09654313.2018.1484892
Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Springer.
Indraprahasta, G. S., Derudder, B., & Hudalah, D. (2019). Local institutional actors and globally linked territorial development in Bekasi District: A strategic coupling? Singapore Journal of Tropical Geography, 40(2), 219–238. https://doi.org/10.1111/sjtg.12269
Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis. Wiley.
Jiang, Y., Timmermans, H., & Yu, B. (2018). Relocation of manufacturing industry from the perspective of transport accessibility: An application of percolation theory. Transport Policy, 63, 10–29. https://doi.org/10.1016/j.tranpol.2017.11.003
Johansson, M., & Olhager, J. (2017). Manufacturing relocation through offshoring and backshoring: The case of Sweden. Journal of Manufacturing Technology Management, 29(4), 637–657. https://doi.org/10.1108/JMTM-01-2017-0006
Khan, S. A., Chaabane, A., & Dweiri, F. T. (2018). Multi-criteria decision-making methods application in supply chain management: A systematic literature review. In V. A. Salomon (Ed.), Multi-criteria methods and techniques applied to supply chain management (pp. 3–31). Intech Open.
Koch, N., & Basse Mama, H. (2019). Does the EU Emissions Trading Systems induce investment leakage? Evidence from German multinational firms. Energy Economics, 81, 479–492. https://doi.org/10.1016/j.eneco.2019.04.018
Kurata, H., Nomura, R., & Suga, N. (2020). Vertical specialization in North-South trade: Industrial relocation, wage and welfare. Review of International Economics, 28(1), 119–137. https://doi.org/10.1111/roie.12444
Lee, C.-Y., & Chen, B.-S. (2018). Mutually-exclusive-and-collectively-exhaustive feature selection scheme. Applied Soft Computing, 68, 961–971. https://doi.org/10.1016/j.asoc.2017.04.055
Lee, E., Lee, J., & Jongseok, L. (2006). Reconsideration of the winner-take-all hypothesis: Complex networks and local bias. Management ScienceVol., 52(12), 1838–1848. https://doi.org/10.1287/mnsc.1060.0571
Li, M., & Wang, Q. (2020). Does industrial relocation alleviate environmental pollution? A mathematical economics analysis. Environmental, Development and Sustainability, 22(5), 4673–4698. https://doi.org/10.1007/s10668-019-00403-7
Li, T., Liu, Y., Wang, C., Olfsson, G., Wang, Z., & Wang, H. (2019). Decentralization of the non-capital functions of Beiijing: Industrial relocation and its environmental effects. Journal of Cleaner Production, 224, 545–556. https://doi.org/10.1016/j.jclepro.2019.03.247
Liao, H. F., & Chan, R. C. (2011). Industrial relocation of Hong Kong manufacturing firms: Towards an expanding industrial space beyond the Pearl River Delta. GeoJournal, 76(6), 623–639. https://doi.org/10.1007/s10708-009-9316-3
Liern, V., & Pérez-Gladish, B. (2020). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03718-1
Lipovetsky, S. (2020). Priority vector estimation: Consistency, compatibility, precision. International Journal of the Analytic Hierarchy Process, 12(3), 577–591. https://doi.org/10.13033/ijahp.v12i3.801
Liu, Y., Sun, Z., Liang, H., & Dong, Y. (2021a). Ranking range model in multiple attribute decision making: A comparison of selected methods. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2021.107180
Liu, Y., Yeung, G., Liang, Y.-T., & Li, X. (2021). Pro-active regional policy and the relocation of manufacturing firms: A case study of state-led industrial relocation in Guangdong. China: Eurasian Geography and Economics. https://doi.org/10.1080/15387216.2020.1870515
Lombardi Netto, A., Salomon, V. A., Ortiz-Barrios, M. A., Florek-Paszkowska, A. K., Petrillo, A., & De Oliveira, O. J. (2020). Multiple criteria assessment of sustainability programs in the textile industry. International Transactions in Operational Research, 28(3), 1550–1572. https://doi.org/10.1111/itor.12871
Lundberg, H., Andresen, E., & Törnroos, J. -Å. (2016). Understanding network emergence after turbulent industrial relocation: A Swedish biorefinery initiative. European Management Journal, 34(5), 475–483. https://doi.org/10.1016/j.emj.2016.03.001
Mardani, A., Jusoh, A., Nor, K. M. D., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple criteria decision-making techniques and their applications: A review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139
Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications: Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003
Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management: A review. European Journal of Operational Research, 169(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
Mu, E., Cooper, O., & Peasley, M. (2020). Best practices in analytic network process studies. Expert Systems with Applications, 159, 113536. https://doi.org/10.1016/j.eswa.2020.113536
Oliveira, G. D., & Dias, L. C. (2020). The potential learning effect of a MCDA approach on consumer preferences for alternative fuel vehicles. Annals of Operations Research, 293(2), 767–787. https://doi.org/10.1007/s10479-020-03584-x
Oppio, A., Bottero, M., & Arcidiacono, A. (2018). Assessing urban quality: a proposal for a MCDA evaluation framework. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2738-2
Ortiz Barrios, M., Cabarcas Reyes, J., Ishizaka, A., Barbati, M., Jaramillo Rueda, N., & Carrascal Zambrano, G. J. (2020). A hybrid fuzzy multi criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03737-y
Ortiz-Barrios, M., & Alfaro-Saiz, J.-J. (2020). A hybrid fuzzy multi-criteria decision-making model to evaluate the overall performance of public emergency departments: A case study. International Journal of Information Technology & Decision Making, 19(6), 1485–1548. https://doi.org/10.1142/S0219622020500364
Ortiz-Barrios, M., Hoz, C.M.-D., López-Meza, P., Petrillo, A., & De Felice, F. (2020). A case of food supply chain management with AHP, DEMATEL, and TOPSIS. Journal of Multi-Criteria Decision Analysis, 27(1–2), 104–128. https://doi.org/10.1002/mcda.1693
Pan, Z., Wang, G., Hu, Y., & Cao, B. (2019). Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis. Habitat International, 86, 61–70. https://doi.org/10.1016/j.habitatint.2019.03.004
Pappas, D., Chalvatzis, K. J., Guan, D., & Ioannidis, A. (2018). Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 225, 183–194. https://doi.org/10.1016/j.apenergy.2018.04.132
Rice, J. A. (2007). Mathematical statistics and data analysis (e-book ed.). Cengage.
Roy, B. (1981). The optimisation problem formulation: Criticism and overstepping. Journal of the Operational Research Society, 32(6), 427–436. https://doi.org/10.1057/jors.1981.93
Saaty, T. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61. https://doi.org/10.1080/01969727408546075
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
Saaty, T. L. (1986). Absolute and relative measurement with the AHP–The most livable cities in the United States. Socio-Economic Planning Sciences, 20(6), 327–331. https://doi.org/10.1016/0038-0121(86)90043-1
Saaty, T. L. (2013). Principia mathematica decernendi (Kindle). RWS.
Saaty, T. L., & Rogers, P. C. (1976). Higher education in the United States (1985–2000) Scenario construction using a hierarchical framework with eigenvector weighting. Socio-Economic Planning Sciences, 10(6), 251–263. https://doi.org/10.1016/0038-0121(76)90012-4
Salomon, V. A. (2016). Absolute measurement and ideal synthesis on AHP. International Journal of the Analytic Hierarchy Process, 3(1), 538–545. https://doi.org/10.13033/ijahp.v8i3.452
Salomon, V. A., & Rangel, L. D. (2015). Comparing rankings from using TODIM and a fuzzy expert system. Procedia Computer Science, 55, 126–138. https://doi.org/10.1016/j.procs.2015.07.019
Salomon, V. P., Tramarico, C. L., & Marins, F. S. (2016). Analytic hierarchy process applied to supply chain management. In F. De Felice, T. L. Saaty, & A. Petrillo (Eds.), Applications and theory of analytic hierarchy process—Decision making for strategic decisions (pp. 1–16). IntechOpen.
Schamp, E. W. (2005). Decline of the district, renewal of firms: An evolutionary approach to footwear production in the Pirmasens area, Germany. Environment and Planning a: Economy and Space, 37(4), 617–634. https://doi.org/10.1068/a36275
Shih, H.-S., Cheng, C.-B., Chen, C.-C., & Lin, Y.-C. (2014). Environmental impact on the vendor selection problem in electronics firms: A systematic analytic network process with BOCR. International Journal of the Analytic Hierarchy Process, 6(2), 202–227. https://doi.org/10.13033/ijahp.v6i2.256
Tang, T., Li, Z., Ni, J., & Yuan, J. (2020). Land costs, government intervention, and migration of firms: The case of China. China Economic Review. https://doi.org/10.1016/j.chieco.2020.101560
Tramarico, C. L., Mizuno, D., Salomon, V. P., & Marins, F. S. (2015). Analytic hierarchy process and supply chain management: A bibliometric study. Procedia Computer Science, 55, 441–450. https://doi.org/10.1016/j.procs.2015.07.005
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838
Wang, H., Dong, C., & Liu, Y. (2019). Beijing direct investment to its neighbors: A pollution haven or pollution halo effects? Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118062
Wang, Y. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing, 30, 412–420. https://doi.org/10.1016/j.asoc.2015.02.002
Whitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46(7–8), 840–859. https://doi.org/10.1016/j.mcm.2007.03.018
Wijnmalen, D. J. (2007). Analysis of benefits, opportunities, costs, and risks (BOCR) with the AHP–ANP: A critical validation. Mathematical and Computer Modelling, 46(7–8), 892–905. https://doi.org/10.1016/j.mcm.2007.03.020
Wikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6
Wu, A., Li, G., Sun, T., & Liang, Y. (2014). Effects of industrial relocation on Chinese regional economic growth disparities: Based on system dynamics modeling. Chinese Geographical Science, 24, 706–716. https://doi.org/10.1007/s11769-014-0664-7
Yang, Y., & Gallagher, M. (2017). Moving in and moving up? Labor conditions and China’s changing development model. Public Administration and Development, 37(3), 160–175. https://doi.org/10.1002/pad.1818
Yoon, M.-S. (2020). Notes on the use of compatibility index in the analytic hierarchy process. In: Proceedings of the International Symposium on the Analytic Hierarchy Process. https://doi.org/10.13033/isahp.y2020.047
Zamani-Sabzi, H., King, J. P., Gard, C. C., & Abudu, S. (2016). Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Operations Research Perspectives, 3, 92–117. https://doi.org/10.1016/j.orp.2016.11.001
Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research, 107(3), 507–529. https://doi.org/10.1016/S0377-2217(97)00147-1
Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037
Zhang, L., Meng, Q., Sun, Z., & Sun, Y. (2017). Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over China. International Journal of Geo-Information, 6(4), 1–14. https://doi.org/10.3390/ijgi6040121
Zhang, W., Zhang, X., Zhang, M., & Li, W. (2020). How to coordinate economic, logistics and ecological environment? Evidences from 30 provinces and cities in China. Sustainability, 12(3), 1–23. https://doi.org/10.3390/su12031058
Zhang, X., Xu, Z., & Wang, H. (2015). Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach. Information Fusion, 25, 49–62. https://doi.org/10.1016/j.inffus.2014.10.006
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Martino Neto, J., Salomon, V.A.P., Ortiz-Barrios, M.A. et al. Compatibility and correlation of multi-attribute decision making: a case of industrial relocation. Ann Oper Res 326, 831–852 (2023). https://doi.org/10.1007/s10479-022-04603-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-022-04603-9